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a b s t r a c t

Let {Yi,−∞ < i < ∞} be a doubly infinite sequence of identically distributed ϕ-mixing
random variables, {ai,−∞ < i < ∞} be an absolutely summable sequence of real
numbers. In this paper we prove the complete convergence and Marcinkiewicz–Zygmund
strong law of large numbers for the partial sums of moving average processes {Xn =∑
∞

i=−∞ aiYi+n, n ≥ 1} based on the sequence {Yi,−∞ < i < ∞} of ϕ-mixing random
variables, improving the result of [Zhang, L., 1996. Complete convergence of moving
average processes under dependence assumptions. Statist. Probab. Lett. 30, 165–170].

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and formulation of the main results

Let {Yi,−∞ < i < +∞} be a doubly infinite sequence of identically distributed random variables and {ai,−∞ < i <
+∞} be an absolutely summable sequence of real numbers. Let

Xn =
∞∑

i=−∞

aiYi+n, n ≥ 1

be the moving average process based on the sequence {Yi,−∞ < i < +∞}. As usual, we denote Sn =
∑n
k=1 Xk, n ≥ 1, the

sequence of partial sums.
Under the assumption that {Yi,−∞ < i < +∞} is a sequence of independent identically distributed random variables,

many limiting results have been obtained for the moving average process {Xn, n ≥ 1}. For example, Ibragimov (1962)
established the central limit theorem, Burton and Dehling (1990) obtained a large deviation principle, and Li et al. (1992)
obtained the complete convergence result for {Xn, n ≥ 1}.
Certainly, even if {Yi,−∞ < i < +∞} is the sequence of independent identically distributed random variables, the

moving average random variables {Xn, n ≥ 1} are dependent. This kind of dependence is calledweak dependence. The partial
sums of weakly dependent random variables {Xn, n ≥ 1} have similar limiting behaviour properties in comparison with the
limiting properties of independent identically distributed random variables.
For example, we could present some of the previous results connected with complete convergence. The following was

proved in Hsu and Robbins (1947).

Theorem A. Suppose {Xn, n ≥ 1} is a sequence of independent identically distributed random variables. If EX1 = 0, E|X1|2 <∞,
then

∑
∞

n=1 P{|Sn| ≥ εn} <∞ for all ε > 0.

The above result was extended by Li et al. (1992) for moving average processes.
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Theorem B. Suppose {Xn, n ≥ 1} is the moving average process based on a sequence {Yi,−∞ < i < ∞} of independent
identically distributed random variables with EY1 = 0, E|Y1|2 <∞. Then

∑
∞

n=1 P{|Sn| ≥ εn} <∞ for all ε > 0.

Very few results for a moving average process based on a dependent sequence are known. In this paper, we provide two
results on the limiting behaviour of a moving average process based on a ϕ-mixing sequence.
Let {Yi,−∞ < i < ∞} be a sequence of random variables defined on a probability space (Ω,F , P) and denote σ -

algebras F m
n = σ(Yi, n ≤ i ≤ m),−∞ ≤ n ≤ m ≤ +∞.

Recall that a sequence of random variables {Yi,−∞ < i <∞} is called ϕ-mixing if the mixing coefficient
ϕ(m) = sup

k≥1
sup{|P{B|A} − P{B}|, A ∈ F k

−∞
, P{A} 6= 0, B ∈ F ∞k+m} → 0

asm→∞.
Recall that a function h is said to be slowly varying at infinity if it is real valued, positive and measurable on [0,∞), and

if for each λ > 0

lim
x→∞

h(λx)
h(x)

= 1.

We refer to Seneta (1976) for other equivalent definitions and for a detailed and comprehensive study of properties of slowly
varying functions.
In the following, we frequently use the following properties of slowly varying functions (cf. Seneta (1976)).
If h is a function slowly varying at infinity, then for any 0 ≤ a ≤ b ≤ ∞ and s 6= −1∫ b

a
xsh(x) dx ≤ Cxs+1h(x) |ba,

where C does not depend on a and b, and for any λ > 0
max
a≤x≤λa

h(x) ≤ C(λ)h(λa).

Of course, these two inequalities take place only if the right hand sides make sense.
The following result of partial sums of ϕ-mixing random variables was proved in Shao (1988), Remarks 3.2 and 3.3.

Theorem C. Let h be a function slowly varying at infinity, 1 ≤ p < 2, r ≥ 1, and {Xi, i ≥ 1} be a sequence of identically
distributed ϕ-mixing random variables with EX1 = 0 and E|X1|rph(|X1|p) <∞.
(i) If r > 1 then

∞∑
n=1

nr−2h(n)P
{
max
1≤k≤n

|Sk| ≥ εn1/p
}
<∞, for all ε > 0.

and
∞∑
n=1

nr−2h(n)P
{
sup
k≥n

∣∣Sk/k1/p∣∣ ≥ ε} <∞, for all ε > 0.

(ii) If r = 1 and
∑
∞

m=1 ϕ
1/2(2m) <∞, then

∞∑
n=1

h(n)
n
P
{
max
1≤k≤n

|Sk| ≥ εn1/p
}
<∞, for all ε > 0.

For moving average processes, Zhang (1996) obtained the following result.

Theorem D. Let h be a function slowly varying at infinity, 1 ≤ p < 2, and r ≥ 1. Suppose that {Xn, n ≥ 1} is a moving average
process based on a sequence {Yi,−∞ < i <∞} of identically distributedϕ-mixing random variables with

∑
∞

m=1 ϕ
1/2(m) <∞.

If EY1 = 0 and E|Y1|rph(|Y1|p) <∞, then
∞∑
n=1

nr−2h(n)P
{
|Sn| ≥ εn1/p

}
<∞, for all ε > 0.

Keeping in mind the above mentioned analogy between the ‘‘usual’’ limiting behaviour of random variables and limiting
behaviour of the moving average process (cf. Theorems A and B), we note that a substantial gap between Theorems C and D
is distinct. Firstly, when r > 1, Theorem C provides the result without anymixing rate, evenwhen r = 1 Theorem C requires
a weaker condition on mixing rate than Theorem D. Secondly, Theorem D does not discuss the complete convergence for
the case of the maximums and supremums of the partial sums as it is done in Theorem C. Note that by the method of Zhang
(1996) it is impossible to eliminate these differences. The main goal of the present investigation is to obtain the results
similar to Theorem C, but for the moving average processes and using different methods from those in Zhang (1996).
Now we state the main results. Theorems 1 and 2 improve Theorem D and extend Theorem C on the case of moving

average processes. The proofs will be detailed in the next section.
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Theorem 1. Let h be a function slowly varying at infinity, 1 ≤ p < 2, and r > 1. Suppose that {Xn, n ≥ 1} is a moving
average process based on a sequence {Yi,−∞ < i < ∞} of identically distributed ϕ-mixing random variables. If EY1 = 0 and
E|Y1|rph(|Y1|p) <∞, then
(i)
∑
∞

n=1 n
r−2h(n)P

{
max1≤k≤n |Sk| ≥ εn1/p

}
<∞, for all ε > 0.

and
(ii)

∑
∞

n=1 n
r−2h(n)P

{
supk≥n

∣∣Sk/k1/p∣∣ ≥ ε} <∞, for all ε > 0.
The second theorem treats the case r = 1.

Theorem 2. Let h be a function slowly varying at infinity and 1 ≤ p < 2. Assume that
∑
∞

i=−∞ |ai|
θ < ∞, where θ belong

to (0, 1) if p = 1 and θ = 1 if 1 < p < 2. Suppose that {Xn, n ≥ 1} is a moving average process based on a sequence
{Yi,−∞ < i < ∞} of identically distributed ϕ-mixing random variables with

∑
∞

m=1 ϕ
1/2(2m) < ∞. If EY1 = 0 and

E|Y1|ph(|Y1|p) <∞, then
∞∑
n=1

h(n)
n
P
{
max
1≤k≤n

|Sk| ≥ εn1/p
}
<∞, for all ε > 0.

In particular, the assumptions EY1 = 0 and E|Y1|p <∞ imply the followingMarcinkiewicz–Zygmund strong law of large numbers

Sn/n1/p → 0 almost surely as n→∞.

2. Few technical lemmas

The following five lemmas will be useful. The first two lemmas can be found in Shao (1988) Lemma 3.1 and Corollary
2.1, hence we omit their proofs. For the first two lemmas we assume that {Yn, n ≥ 1} is a ϕ-mixing sequence and
Sk(n) =

∑k+n
i=k+1 Yi, n ≥ 1, k ≥ 0.

Lemma 1. Let EYi = 0, EY 2i <∞ for all i ≥ 1. Then for all n ≥ 1 and k ≥ 0 we have

ES2k (n) ≤ 8000n exp

{
6
[log n]∑
i=1

ϕ1/2(2i)

}
max

k+1≤i≤k+n
EY 2i .

Lemma 2. Suppose that there exists an array {Ck,n, k ≥ 0, n ≥ 1} of positive numbers such that max1≤i≤n ES2k (i) ≤
Ck,n for every k ≥ 0, n ≥ 1. Then for any q ≥ 2, there exists C = C(q, ϕ(·)) such that for any k ≥ 0, n ≥ 1

E max
1≤i≤n
|Sk(i)|q ≤ C

(
Cq/2k,n + E

(
max
k<i≤k+n

|Yi|q
))

.

The next two lemmas seem to be known (cf., for example the proof of Theorem G in Chen et al. (2006)), but we include
their short and simple proofs for the interested reader. Here we let h be a function slowly varying at infinity.

Lemma 3. If r > 1 and 1 ≤ p < 2, then for any ε > 0
∞∑
n=1

nr−2h(n)P
{
sup
k≥n

∣∣k−1/pSk∣∣ ≥ ε} ≤ C ∞∑
n=1

nr−2h(n)P
{
max
1≤k≤n

|Sk| ≥ (ε/21/p)n1/p
}
.

Proof. We have the following estimations:
∞∑
n=1

nr−2h(n)P
{
sup
k≥n
|Sk|/k1/p > ε

}
=

∞∑
m=1

2m−1∑
n=2m−1

nr−2h(n)P
{
sup
k≥n
|Sk|/k1/p > ε

}

≤ C
∞∑
m=1

P

{
sup
k≥2m−1

|Sk|/k1/p > ε

}
2m−1∑
n=2m−1

2m(r−2)h(2m)

≤ C
∞∑
m=1

2m(r−1)h(2m)P

{
sup
k≥2m−1

|Sk|/k1/p > ε

}

= C
∞∑
m=1

2m(r−1)h(2m)P
{
sup
l≥m

max
2l−1<k≤2l

|Sk|/k1/p > ε

}
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≤ C
∞∑
m=1

2m(r−1)h(2m)
∞∑
l=m

P
{
max
1≤k≤2l

|Sk| > ε2(l−1)/p
}

= C
∞∑
l=1

P
{
max
1≤k≤2l

|Sk| > ε2(l−1)/p
} l∑
m=1

2m(r−1)h(2m)

≤ C
∞∑
l=1

2l(r−1)h(2l)P
{
max
1≤k≤2l

|Sk| > ε2(l−1)/p
}

≤ C
∞∑
l=1

2l−1∑
n=2l−1

nr−2h(n)P
{
max
1≤k≤n

|Sk| > (ε/21/p)n1/p
}

≤ C
∞∑
n=1

nr−2h(n)P
{
max
1≤k≤n

|Sk| > (ε/21/p)n1/p
}
. �

Lemma 4. Let Y be a random variable with E|Y |rph(|Y |p) <∞, where r ≥ 1 and p ≥ 1. If q > rp, then
∞∑
n=1

nr−1− q/ph(n)E|Y |qI{|Y | ≤ n1/p} ≤ CE|Y |rph(|Y |p).

Proof. Since r − q/p < 0, we have that
∞∑
n=1

nr−1−q/ph(n)E|Y |qI{|Y | ≤ n1/p} =
∞∑
n=1

nr−1−q/ph(n)
n∑
m=1

E|Y |qI{m− 1 < |Y |p ≤ m}

=

∞∑
m=1

E|Y |qI{m− 1 < |Y |p ≤ m}
∞∑
n=m

nr−1−q/ph(n)

≤ C
∞∑
m=1

mr−q/ph(m)E|Y |qI{m− 1 < |Y |p ≤ m}

≤ C
∞∑
m=1

Emr−q/ph(m)|Y |qI{m− 1 < |Y |p ≤ m}

≤ C
∞∑
m=1

E(|Y |p)r−q/ph(|Y |p)|Y |qI{m− 1 < |Y |p ≤ m}

≤ C
∞∑
m=1

E|Y |rph(|Y |p)I{m− 1 < |Y |p ≤ m}

≤ CE|Y |rph(|Y |p). �

The last lemma presents a technical fact that is important in the proofs of Theorems 1 and 2.

Lemma 5. Let h be a function slowly varying at infinity and p ≥ 1. Suppose that {Xn, n ≥ 1} is a moving average process based
on a sequence {Yi,−∞ < i <∞} of mean zero identically distributed random variables such that E|Y1|p <∞. For any ε > 0
denote

I =:
∞∑
n=1

nr−2h(n)P

{
max
1≤k≤n

∣∣∣∣∣ ∞∑
i=−∞

ai
i+k∑
j=i+1

YjI{|Yj| > n1/p}

∣∣∣∣∣ ≥ εn1/p/2
}

and

J =:
∞∑
n=1

nr−2h(n)P

{
max
1≤k≤n

∣∣∣∣∣ ∞∑
i=−∞

ai
i+k∑
j=i+1

Ynj

∣∣∣∣∣ ≥ εn1/p/4
}
,

where

Ynj = YjI{|Yj| ≤ n1/p} − EYjI{|Yj| ≤ n1/p}.
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If I <∞ and J <∞, then
∞∑
n=1

nr−2h(n)P
{
max
1≤k≤n

|Sk| ≥ εn1/p
}
≤ I + J <∞.

Proof. Note that
n∑
k=1

Xk =
n∑
k=1

∞∑
i=−∞

aiYi+k =
∞∑

i=−∞

ai
i+n∑
j=i+1

Yj

and since
∑
∞

i=−∞ |ai| <∞,

n−1/p
∣∣∣∣∣E ∞∑
i=−∞

ai
i+n∑
j=i+1

YjI{|Yj| ≤ n1/p}

∣∣∣∣∣ = n−1/p
∣∣∣∣∣E ∞∑
i=−∞

ai
i+n∑
j=i+1

YjI{|Yj| > n1/p}

∣∣∣∣∣ (EYj = 0)

≤ n−1/p
∞∑

i=−∞

|ai|
i+n∑
j=i+1

E|Yj|I{|Yj| > n1/p}

≤ n1−1/p
(
∞∑

i=−∞

|ai|

)
E|Y1|I{|Y1| > n1/p}

≤ CE(n1/p)p−1|Y1|I{|Y1| > n1/p}
≤ CE|Y1|pI{|Y1| > n1/p} → 0, as n→∞.

Hence for n large enough we have

n1/pE

∣∣∣∣∣ ∞∑
i=−∞

ai
i+n∑
j=i+1

YjI{|Yj| ≤ n1/p}

∣∣∣∣∣ < ε/4.

Then
∞∑
n=1

nr−2h(n)P
{
max
1≤k≤n

|Sk| ≥ εn1/p
}
≤ C

∞∑
n=1

nr−2h(n)P

{
max
1≤k≤n

∣∣∣∣∣ ∞∑
i=−∞

ai
i+k∑
j=i+1

YjI{|Yj| > n1/p}

∣∣∣∣∣ ≥ εn1/p/2
}

+ C
∞∑
n=1

nr−2h(n)P

{
max
1≤k≤n

∣∣∣∣∣ ∞∑
i=−∞

ai
i+k∑
j=i+1

Ynj

∣∣∣∣∣ ≥ εn1/p/4
}

= I + J. �

3. Proof of main results

With all the prerequisites accounted before, we could now prove themain results of the paper. We start with Theorem 1.
Proof. According to Lemma 3 it is enough to show that (i) holds. According to Lemma 5 it is enough to prove that I < ∞
and J <∞.
For I , by Markov inequality we have

I ≤ C
∞∑
n=1

nr−2h(n)n−1/pE max
1≤k≤n

∣∣∣∣∣ ∞∑
i=−∞

ai
i+k∑
j=i+1

YjI{|Yj| > n1/p}

∣∣∣∣∣
≤ C

∞∑
n=1

nr−1−1/ph(n)E|Y1|I{|Y1| > n1/p}

= C
∞∑
n=1

nr−1−1/ph(n)
∞∑
m=n

E|Y1|I{m < |Y1|p ≤ m+ 1}

= C
∞∑
m=1

E|Y1|I{m < |Y1|p ≤ m+ 1}
m∑
n=1

nr−1−1/ph(n)

≤ C
∞∑
m=1

mr−1/ph(m)E|Y1|I{m < |Y1|p ≤ m+ 1}

≤ CE|Y1|rph(|Y1|p) <∞.
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For J , by Markov and Hölder inequalities, Lemmas 1 and 2, we have that for any q ≥ 2

J ≤ C
∞∑
n=1

nr−2h(n)n−q/pE max
1≤k≤n

∣∣∣∣∣ ∞∑
i=−∞

ai
i+k∑
j=i+1

Ynj

∣∣∣∣∣
q

≤ C
∞∑
n=1

nr−2h(n)n−q/pE

(
∞∑

i=−∞

(
|ai|1− 1/q

) (
|ai|1/q max

1≤k≤n

∣∣∣∣∣ i+k∑
j=i+1

Ynj

∣∣∣∣∣
))q

≤ C
∞∑
n=1

nr−2−(q/p)h(n)

(
∞∑

i=−∞

|ai|

)q−1
∞∑

i=−∞

|ai|E max
1≤k≤n

∣∣∣∣∣ i+k∑
j=i+1

Ynj

∣∣∣∣∣
q

≤ C
∞∑
n=1

nr−2−(q/p)h(n)

(
n exp

{
6
[log n]∑
i=1

ϕ1/2(2i)

})q/2
(E|Y1|2I{|Y1| ≤ n1/p})q/2

+ C
∞∑
n=1

nr−1−(q/p)h(n)E|Y1|qI{|Y1| ≤ n1/p}

=: J1 + J2.

Note that ϕ(m) → 0 as m → ∞, hence
∑
[log n]
i=1 ϕ1/2(2i) = o(log n). Furthermore, exp

{
A
∑
[log n]
i=1 ϕ1/2(2i)

}
= o(nt) for

any A > 0 and t > 0.
We consider two separate cases. If rp < 2, take q = 2. Note that in this case r − (2r/p) < 0. Take t > 0 small enough

such that r − (2r/p)+ t < 0. We have

J1 = C
∞∑
n=1

nr−2−(2/p)h(n)

(
n exp

{
6
[log n]∑
i=1

ϕ1/2(2i)

})
E|Y1|2I{|Y1| ≤ n1/p}

≤ C
∞∑
n=1

nr−(2/p)−1h(n) exp

{
6
[log n]∑
i=1

ϕ1/2(2i)

}
E|Y1|2I{|Y1| ≤ n1/p}

≤ C
∞∑
n=1

nr−2/p+t−1h(n)E|Y1|rp|Y1|2−rpI{|Y1| ≤ n1/p}

≤ C
∞∑
n=1

nr−(2r/p)+t−1h(n)E|Y1|rp <∞.

If rp ≥ 2, take q >
2p(r−1)
2−p . We have that r − (q/p) + (q/2) < 1. Next, take t > 0 small enough such that

r − (q/p)+ (q/2)+ t < 1. Note that in this case E|Y1|2 <∞. We have

J1 = C
∞∑
n=1

nr−2−(q/p)h(n)

(
n exp

{
6
[log n]∑
i=1

ϕ1/2(2i)

})q/2
(E|Y1|2I{|Y1| ≤ n1/p})q/2

≤ C
∞∑
n=1

nr−(q/p)+(q/2)+t−2h(n) <∞.

By Lemma 4 we have that J2 <∞. �

Next, we prove Theorem 2.

Proof. By Lemma 5 we only need to show that I <∞ and J <∞with r = 1.
For I , by Markov and Cr -inequalities (note that θ ≤ 1)

I ≤ C
∞∑
n=1

n−1h(n)n−θ/pE max
1≤k≤n

∣∣∣∣∣ ∞∑
i=−∞

ai
i+k∑
j=i+1

YjI{|Yj| > n1/p}

∣∣∣∣∣
θ

≤ C
∞∑
n=1

n−θ/ph(n)E|Y1|θ I{|Y1| > n1/p}

= C
∞∑
n=1

n−θ/ph(n)
∞∑
m=n

E|Y1|θ I{m < |Y1|p ≤ m+ 1}
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= C
∞∑
m=1

E|Y1|θ I{m < |Y1|p ≤ m+ 1}
m∑
n=1

n−θ/ph(n)

≤ C
∞∑
m=1

m1−θ/ph(m)E|Y1|θ I{m < |Y1|p ≤ m+ 1}

≤ CE|Y1|ph(|Y1|p) <∞.

For J , by Markov and Hölder inequalities, and Lemma 1

J ≤ C
∞∑
n=1

n−1h(n)n−2/pE max
1≤k≤n

∣∣∣∣∣ ∞∑
i=−∞

ai
i+k∑
j=i+1

Ynj

∣∣∣∣∣
2

≤ C
∞∑
n=1

n−1h(n)n−2/pE

(
∞∑

i=−∞

|ai|1/2
(
|ai|1/2 max

1≤k≤n

∣∣∣∣∣ i+k∑
j=i+1

Ynj

∣∣∣∣∣
))2

≤ C
∞∑
n=1

n−1−2/ph(n)

(
∞∑

i=−∞

|ai|

)
∞∑

i=−∞

|ai|E max
1≤k≤n

∣∣∣∣∣ i+k∑
j=i+1

Ynj

∣∣∣∣∣
2

≤ C
∞∑
n=1

n−1−2/ph(n)

(
n exp

{
6
[log n]∑
i=1

ϕ1/2(2i)

})
E|Y1|2I{|Y1| ≤ n1/p}

≤ C
∞∑
n=1

n−2/ph(n)E|Y1|2I{|Y1| ≤ n1/p} <∞.

The last inequality holds by Lemma 4.
Now we will show almost sure convergence. By the first part of Theorem 2, EY1 = 0 and E|Y1|p <∞ imply

∞∑
n=1

n−1P
{
max
1≤k≤n

|Sk| ≥ εn1/p
}
<∞, for all ε > 0.

Hence

∞ >

∞∑
n=1

n−1P
{
max
1≤m≤n

|Sm| > εn1/p
}

=

∞∑
k=1

2k∑
n=2k−1

n−1P
{
max
1≤m≤n

|Sm| > εn1/p
}

≥ 1/2
∞∑
k=1

P
{
max

1≤m≤2k−1
|Sm| > ε2k/p

}
.

By Borel–Cantelli lemma,

2−k/p max
1≤m≤2k

|Sm| → 0 almost surely

which implies that Sn/n1/p → 0 almost surely. �
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