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Abstract In the paper, the Marcinkiewicz–Zygmund type moment inequality for
extended negatively dependent (END, in short) random variables is established. Under
some suitable conditions of uniform integrability, the Lr convergence, weak law of
large numbers and strong law of large numbers for usual normed sums and weighted
sums of arrays of rowwise END random variables are investigated by using the
Marcinkiewicz–Zygmund type moment inequality. In addition, some applications of
the Lr convergence, weak and strong laws of large numbers to nonparametric regres-
sion models based on END errors are provided. The results obtained in the paper
generalize or improve some corresponding ones for negatively associated random
variables and negatively orthant dependent random variables.
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1 Introduction

Let 1 ≤ r ≤ 2 and {Xn, n ≥ 1} be a sequence of independent random variables with
EXn = 0 and E |Xn|r < ∞ for all n ≥ 1. Bahr and Esseen (1965) showed that for
any n ≥ 1,

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi

∣
∣
∣
∣
∣

r

≤ Cr

n
∑

i=1

E |Xi |r , (1.1)

where Cr is a positive constant depending only on r .
The formula (1.1) is called the r -th Bahr–Esseen type moment inequality or

Marcinkiewicz–Zygmund type moment inequality.
As we known that the Marcinkiewicz–Zygmund type moment inequality plays

an important role in probability limit theory and mathematical statistics, especially
in establishing strong convergence, weak convergence and large sample properties
of statistics in many stochastic models. There are many sequences of random vari-
ables satisfying the Marcinkiewicz–Zygmund type moment inequality under some
suitable conditions, such as martingale difference sequence (see Chatterji 1969), ρ̃-
mixing sequence (see Bryc and Smolenski 1993 or Wu 2006), negatively associated
sequence (NA, in short, see Shao 2000), negatively orthant dependent sequence (NOD,
in short, see Asadian et al. 2006), negatively superadditive dependent sequence (NSD,
in short, see Hu 2000 or Wang et al. 2014), asymptotically almost negatively associ-
ated sequence with the mixing coefficients satisfying certain conditions (AANA, in
short, see Yuan and An 2009), and so on. However, there is no literature discussing
the Marcinkiewicz–Zygmund type moment inequality for extended negatively depen-
dent sequence (END, in short) which includes independent sequence, NA sequence,
NSD sequence and NOD sequence as special cases. The main purpose of the paper is
to establish the Marcinkiewicz–Zygmund type moment inequality for END random
variables and give some applications to Lr convergence, weak and strong law of large
numbers under some suitable conditions. In addition, we will present some applica-
tions of the Lr convergence, weak and strong law of large numbers to nonparametric
regression models based on END errors.

Now, let us recall the the definition of extended negatively dependent random vari-
ables which was introduced by Liu (2009) as follows.

Definition 1.1 A finite collection of random variables X1, X2, . . . , Xn is said to be
extended negatively dependent (END, in short) if there exists a constant M > 0 such
that both

P(X1 > x1, X2 > x2, . . . , Xn > xn) ≤ M
n
∏

i=1

P(Xi > xi )

and

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤ M
n
∏

i=1

P(Xi ≤ xi )
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hold for all real numbers x1, x2, . . . , xn . An infinite sequence {Xn, n ≥ 1} is said to
be END if every finite subcollection is END.

An array of random variables {Xni , 1 ≤ i ≤ n, n ≥ 1} is called rowwise END
random variables if for every n ≥ 1, {Xni , 1 ≤ i ≤ n} are END random variables.

If M = 1 in Definition 1.1, then the END structure reduces to the well known
notion of NOD random variables, which was introduced by Lehmann (1966) (cf. also
Joag-Dev and Proschan 1983). The END structure can reflect not only a negatively
structure but also a positive one to some extent. Liu (2009) pointed out that the END
random variables can be taken as negatively or positively dependent and provided
some interesting examples to support this idea. Joag-Dev and Proschan (1983) also
pointed out that NA random variables must be NOD and NOD is not necessarily NA,
thus NA random variables are END. In addition, Christofides and Vaggelatou (2004)
indicated that NA implies NSD and Hu (2000) pointed out that NSD is NOD. Hence,
the class of END random variables includes independent sequence, NA sequence,
NSD sequence and NOD sequence as special cases.

Since the concept of END structure was introduced by Liu (2009), many authors
studied the probability limit properties for END random variables and provided some
interesting applications. See for example, Liu (2010) studied the sufficient and nec-
essary conditions of moderate deviations for END random variables with heavy tails;
Chen et al. (2010) established the Kolmogorov strong law of large numbers for END
random variables and gave applications to risk theory and renewal theory; Shen (2011)
presentedRosenthal typemoment inequality for END randomvariables and gave some
applications; Wang and Wang (2013) investigated a more general precise large devi-
ation result for random sums of END real-valued random variables in the presence of
consistent variation; Qiu et al. (2013), Wang et al. (2013), Wang et al. (2013), Wang
et al. (2014), Wu et al. (2014) and Hu et al. (2015) provided some results on complete
convergence for sequences of END random variables or arrays of rowwise END ran-
dom variables; Cheng and Li (2014) established the asymptotics for the tail probability
of random sums with a heavy-tailed random number and END summands; Wang et al.
(2015) studied the complete consistency for the estimator of nonparametric regression
models based on END errors, and so forth.

Remark 1.1 As is mentioned in Liu (2009), the END structure can reflect not only a
negative dependence structure but also a positive one (inequalities from the definition
of NOD random variables hold both in reverse direction), to some extend. We refer
the interested readers to Example 4.1 in Liu (2009) where END random variables
can be taken as negatively or positively dependent. Here, we provide two examples
possessing the END structure.

The first one comes from Example 4.2 in Liu (2009). For any n ≥ 1, let
X1, X2, . . . , Xn be dependent according to a copula function C(u1, u2, . . . , un) with
absolutely continuous distribution functions F1, F2, . . . , Fn . Assume that the joint
copula density

C1,2,...,n(u1, u2, . . . , un) = ∂n

∂u1∂u2 . . . ∂un
C(u1, u2, . . . , un)
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608 A. Shen, A. Volodin

exists and is uniformly bounded in thewhole domain. Then randomvariables {Xn, n ≥
1} are END. As noted in Example 4.2 in Liu (2009), for example, copulas in the Frank
family of the form

Cα(u1, u2, . . . , un) = 1

α
ln

(

1 + (eαu1 − 1) . . . (eαun − 1)

(eα − 1)n

)

, α < 0

belong to this category.
The another one comes from Chen et al. (2010). Recall that an n-dimensional

Farlie–Gumbel–Morgenstern (FGM, in short) distribution has the following form

F1,2,...,n(x1, x2, . . . , xn) =
(

n
∏

k=1

Fk(xk)

)⎛

⎝1 +
∑

1≤i< j≤n

ai j F̄i (xi )F̄j (x j )

⎞

⎠ ,

where Fk = 1 − F̄k for k = 1, 2, . . . , n are corresponding marginal distributions
and ai j are real numbers choose such that F1,2,...,n(x1, x2, . . . , xn) is a proper n-
dimensional distribution. Chen et al. (2010) pointed out that every n-dimensional
FGM distribution describes a specific END structure.

The following concept of stochastic domination will be used in this work.

Definition 1.2 An array {Xni , 1 ≤ i ≤ n, n ≥ 1} of random variables is said to be
stochastically dominated by a random variable X if there exists a positive constant C
such that

P(|Xni | > x) ≤ CP(|X | > x)

for all x ≥ 0, i ≥ 1 and n ≥ 1.

By using the concept of stochastic domination, we can get the following important
property for stochastic domination.

Property 1.1 Suppose that the array {Xni , 1 ≤ i ≤ n, n ≥ 1} is stochastically dom-
inated by a random variable X. Then for all α > 0, there exists a positive constant C
such that E |Xni |α ≤ CE |X |α for all 1 ≤ i ≤ n and n ≥ 1.

This structure of the paper is organized as follows: some important properties of
END randomvariables are provided in Sect. 2, including theMarcinkiewicz–Zygmund
type moment inequality and Rosenthal type moment inequality. These properties will
be used to prove the main results of the paper. In Sect. 3, some results on Lr con-
vergence, weak and strong law of large numbers for arrays of rowwise END random
variables are established. Finally, some applications of the Lr convergence, weak and
strong law of large numbers to nonparametric regression models based on END errors
are provided in Sect. 4.

Throughout the paper, let C denote a positive constant not depending on n, which
may be different in various places. Let I (A) be the indicator function of the set A.
Denote log x = ln max(x, e), x+ = x I (x > 0) and x− = −x I (x < 0).
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2 Properties of END random variables

In this section, we will present some important properties of END random variables
including the Marcinkiewicz–Zygmund type moment inequality and Rosenthal type
moment inequality. These properties play important roles to prove the main results of
the paper.

The first one is a basic property of END random variables, which can be found in
Liu (2010) for instance.

Lemma 2.1 Let random variables X1, X2, . . . , Xn be END, f1, f2, . . . , fn be all
nondecreasing (or all nonincreasing) functions, then random variables f1(X1),
f2(X2), . . . , fn(Xn) are also END.

The next one is the Rosenthal type moment inequality for END random variables,
which was established by Shen (2011). This inequality with exponent 2 can be used
to prove the Marcinkiewicz–Zygmund type moment inequality.

Lemma 2.2 Let {Xn, n ≥ 1} be a sequence of END random variables with EXn = 0
and E |Xn|p < ∞ for some p ≥ 2 and any n ≥ 1. Then there exist positive constants
Cp depending only on p such that for any n ≥ 1,

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi

∣
∣
∣
∣
∣

p

≤ Cp

⎧

⎨

⎩

n
∑

i=1

E |Xi |p +
(

n
∑

i=1

EX2
i

)p/2
⎫

⎬

⎭
. (2.1)

With the Rosenthal type moment inequality accounted for, one can get the
Marcinkiewicz–Zygmund type moment inequality for END random variables as fol-
lows. The proof is similar to that of Lemma 2.1 in Chen et al. (2014). For convenience
of the reader, we will present the proof of Lemma 2.3 in Appendix.

Lemma 2.3 Let {Xn, n ≥ 1} be a sequence of END random variables with EXn = 0
and E |Xn|r < ∞ for some 1 ≤ r ≤ 2 and any n ≥ 1. Then there exist positive
constants cr depending only on r such that for any n ≥ 1,

E
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∣
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∣

n
∑

i=1

Xi

∣
∣
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∣
∣

r

≤ cr

n
∑

i=1

E |Xi |r . (2.2)

Using Lemma 2.3, we can get the following corollary by the same argument as
Theorem 2.3.1 in Stout (1974).

Corollary 2.1 Let {Xn, n ≥ 1} be a sequence of END random variables with EXn =
0 and E |Xn|r < ∞ for some 1 ≤ r ≤ 2 and any n ≥ 1. Then there exist positive
constant cr depending only on r such that for any n ≥ 1,

E

⎛

⎝ max
1≤ j≤n

∣
∣
∣
∣
∣
∣

j
∑

i=1

Xi

∣
∣
∣
∣
∣
∣

r⎞

⎠ ≤ cr log
r n

n
∑

i=1

E |Xi |r . (2.3)
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Remark 2.1 Assume that (2.2) holds for any n ≥ 1 and
∑∞

i=1 Xi converges almost
surely. Then we have by Fatou’s lemma that

E

∣
∣
∣
∣
∣

∞
∑

i=1

Xi

∣
∣
∣
∣
∣

r

≤ cr

∞
∑

i=1

E |Xi |r . (2.4)

Remark 2.2 Let {an, n ≥ 1} be a sequence of real numbers. Under the conditions of
Lemma 2.3, we have for n ≥ 1 that

E

∣
∣
∣
∣
∣

n
∑

i=1

ai Xi

∣
∣
∣
∣
∣

r

≤ 2r−1cr

n
∑

i=1

E |ai Xi |r . (2.5)

Assume further that
∑∞

i=1 ai Xi converges almost surely, we have by Fatou’s lemma
that

E

∣
∣
∣
∣
∣

∞
∑

i=1

ai Xi

∣
∣
∣
∣
∣

r

≤ 2r−1cr

∞
∑

i=1

E |ai Xi |r . (2.6)

We only need to note that ani = a+
ni − a−

ni , and for fixed n ≥ 1, {a+
i Xi , 1 ≤ i ≤ n}

and {a−
i Xi , 1 ≤ i ≤ n} are both END random variables by Lemma 2.1.

3 Main results and their proofs

In Sect. 2, the Marcinkiewicz–Zygmund type moment inequality for END random
variables was established. In this section, we will give some applications of the
Marcinkiewicz–Zygmund typemoment inequality to Lr convergence,weak and strong
laws of large numbers for arrays of rowwise END random variables under some uni-
formly integrable conditions.

In the following, let {Xni , un ≤ i ≤ vn, n ≥ 1} be an array of random variables
defined on a fixed probability space (�,F , P), let {un, n ≥ 1} and {vn, n ≥ 1} be two
sequences of integers (not necessary positive or finite) such that vn > un for all n ≥ 1
and vn − un → ∞ as n → ∞. Let {kn, n ≥ 1} be a sequence of positive numbers
such that kn → ∞ as n → ∞ and {h(n), n ≥ 1} be an increasing sequence of positive
constants with h(n) ↑ ∞ as n ↑ ∞.

3.1 Lr convergence and weak law of large numbers

The notion of h-integrability with exponent r was introduced by Sung et al. (2008),
which deals with usual normed sums of random variables as follows.

Definition 3.1 Let {Xni , un ≤ i ≤ vn, n ≥ 1} be an array of random variables and
r > 0. The array {Xni , un ≤ i ≤ vn, n ≥ 1} is said to be h-integrable with exponent
r if
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sup
n≥1

1

kn

vn∑

i=un

E |Xni |r < ∞ and lim
n→∞

1

kn

vn∑

i=un

E |Xni |r I (|Xni |r > h(n)) = 0.

Under the conditions of h-integrability with exponent r , Sung et al. (2008) further
studied the Lr convergence and weak law of large numbers for arrays of rowwise NA
random variables.

Inspired by the concept of h-integrability with exponent r , Wang and Hu (2014)
introduced a new and weaker concept of uniform integrability as follows.

Definition 3.2 Let {Xni , un ≤ i ≤ vn, n ≥ 1} be an array of random variables and
r > 0. The array {Xni , un ≤ i ≤ vn, n ≥ 1} is said to be residually h-integrable
(R-h-integrable, in short) with exponent r if

sup
n≥1

1

kn

vn∑

i=un

E |Xni |r < ∞ and lim
n→∞

1

kn

vn∑

i=un

E
(

|Xni | − h1/r (n)
)r

I (|Xni |r > h(n)) = 0.

Under the condition of R-h-integrability with exponent r , Wang and Hu (2014)
established some weak laws of large numbers for arrays of dependent random vari-
ables. Noting that

(

|Xni | − h1/r (n)
)r

I (|Xni |r > h(n)) ≤ |Xni |r I (|Xni |r > h(n)),

hence, the concept of R-h-integrability with exponent r is weaker than h-integrability
with exponent r .

For more details about the Lr convergence and weak law of large numbers for
normed sums or weighted sums of random variables based on h-integrability or R-h-
integrability, one can refer to Yuan and Tao (2008), Ordóñez et al. (2012), Shen et al.
(2013), Sung (2013), and so on.

Inspired by Wang and Hu (2014) and Sung (2013), we get the following results on
Lr convergence and weak law of large numbers for arrays of rowwise END random
variables. the first one deals with the Lr convergence and weak law of large numbers
for normed sums of arrays of rowwise END random variables.

Theorem 3.1 Suppose that {Xni , un ≤ i ≤ vn, n ≥ 1} is an array of rowwise END
R-h-integrable with exponent 1 ≤ r < 2 random variables. Let kn → ∞, h(n) ↑ ∞,
and h(n)/kn → 0 as n → ∞. Then

1

k1/rn

vn∑

i=un

(Xni − EXni ) → 0

in Lr and, hence, in probability as n → ∞.
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Proof For fixed n ≥ 1, denote for un ≤ i ≤ vn that

Yni = −h1/r (n)I
(

Xni < −h1/r (n)
)

+ Xni I
(

|Xni | ≤ h1/r (n)
)

+ h1/r (n)I
(

Xni > h1/r (n)
)

,

Zni = Xni − Yni =
(

Xni + h1/r (n)
)

I
(

Xni < −h1/r (n)
)

+
(

Xni − h1/r (n)
)

I
(

Xni > h1/r (n)
)

,

Sn = 1

k1/rn

vn∑

i=un

(Yni − EYni ), Tn = 1

k1/rn

vn∑

i=un

(Zni − EZni ).

Noting that

1

k1/rn

vn∑

i=un

(Xni − EXni ) = Sn + Tn, n ≥ 1,

we have by Cr -inequality that

E

∣
∣
∣
∣
∣
∣

1

k1/rn

vn∑

i=un

(Xni − EXni )

∣
∣
∣
∣
∣
∣

r

≤ CE |Sn|r + CE |Tn|r .

To prove 1
k1/rn

∑vn
i=un

(Xni − EXni ) → 0 in Lr , we only need to show E |Sn|r → 0

and E |Tn|r → 0 as n → ∞, where 1 ≤ r < 2.
Firstly, we will show that E |Sn|r → 0 as n → ∞. Note that 1 ≤ r < 2, it suffices

to show ES2n → 0 as n → ∞.
For fixed n ≥ 1, it is easily checked that {Yni−EYni , un ≤ i ≤ vn} areEND random

variables by Lemma 2.1. Noting that 1 ≤ r < 2 and |Yni | = min{|Xni | , h1/r (n)}, we
have by Lemma 2.3 or Remark 2.1 that

ES2n = E

∣
∣
∣
∣
∣
∣

1

k1/rn

vn∑

i=un

(Yni − EYni )

∣
∣
∣
∣
∣
∣

2

≤ C

k2/rn

vn∑

i=un

E(Yni − EYni )
2 ≤ C

k2/rn

vn∑

i=un

EY 2
ni

≤ C

k2/rn

· h(2−r)/r (n) ·
vn∑

i=un

E |Yni |r

≤ C

[
h(n)

kn

](2−r)/r 1

kn

vn∑

i=un

E |Xni |r

→ 0 as n → ∞,
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which implies that ES2n → 0 as n → ∞ and thus, E |Sn|r → 0 as n → ∞.
Next, we will show that E |Tn|r → 0 as n → ∞. For fixed n ≥ 1, we can see that

{Zni − EZni , un ≤ i ≤ vn} are still END random variables by Lemma 2.1 again.
Noting that

|Zni | =
(

|Xni | − h1/r (n)
)

I
(

|Xni | > h1/r (n)
)

,

we have by Lemma 2.3 or Remark 2.1 again that

E |Tn|r = E

∣
∣
∣
∣
∣
∣

1

k1/rn

vn∑

i=un

(Zni − EZni )

∣
∣
∣
∣
∣
∣

r

≤ C

kn

vn∑

i=un

E |Zni − EZni |r ≤ C

kn

vn∑

i=un

E |Zni |r

≤ C

kn

vn∑

i=un

E
(

|Xni | − h1/r (n)
)r

I
(|Xni |r > h(n)

)

→ 0 as n → ∞,

which implies that E |Tn|r → 0 as n → ∞. This completes the proof of the theorem.
��

Remark 3.1 Note that the concept of R-h-integrability with exponent r is weaker
than h-integrability with exponent r and END is weaker than NA. Hence, the result
of Theorem 3.1 generalizes and improves the corresponding one of Sung et al. (2008)
for NA random variables to the case of END random variables. In addition, the result
of Theorem 3.1 generalizes the corresponding one of Wang and Hu (2014) for NOD
random variables to the case of END random variables.

The next one deals with the Lr convergence and weak law of large numbers for
weighted sums of END random variables. The proof is similar to that of Theorem
2.1 in Sung (2013). So the details are omitted. We should point out that the key
technique used here is still the Marcinkiewicz–Zygmund type moment inequality for
END random variables.

Theorem 3.2 Let 1 ≤ r < 2, {Xni , un ≤ i ≤ vn, n ≥ 1} be an array of rowwise END
random variables and {ani , un ≤ i ≤ vn, n ≥ 1} be an array of constants. Assume
that the following conditions hold:

(i) sup
n≥1

∑vn
i=un

|ani |r E |Xni |r < ∞;

(ii) for any ε > 0,

lim
n→∞

vn∑

i=un

|ani |r E |Xni |r I (|Xni |r > ε) = 0.
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Then

vn∑

i=un

ani (Xni − EXni ) → 0

in Lr and, hence, in probability as n → ∞.

With Theorem 3.2 accounted for, we can get the following corollary. The proof is
similar to that of Corollary 2.1 in Sung (2013), so the details are omitted.

Corollary 3.1 Let {ani , un ≤ i ≤ vn, n ≥ 1} be an array of constants satisfying
kn

.= 1/ supun≤i≤vn
|ani |r → ∞, 0 < h(n) ↑ ∞ and h(n)/kn → 0 as n → ∞. Let

{Xni , un ≤ i ≤ vn, n ≥ 1} be an array of rowwise END h-integrable with exponent
1 ≤ r < 2 random variables. Then

vn∑

i=un

ani (Xni − EXni ) → 0

in Lr and, hence, in probability as n → ∞.

If we take ani = k−1/r
n for un ≤ i ≤ vn and n ≥ 1 in Corollary 3.1, then we can

get the following corollary.

Corollary 3.2 Let {Xni , un ≤ i ≤ vn, n ≥ 1} be an array of rowwise END h-
integrable with exponent 1 ≤ r < 2 random variables, kn → ∞, 0 < h(n) ↑ ∞ and
h(n)/kn → 0 as n → ∞. Then

∑vn
i=un

(Xni − EXni )

k1/rn

→ 0

in Lr and, hence, in probability as n → ∞.

Remark 3.2 Note that the condition “kn
.= 1/ supun≤i≤vn

|ani |r → ∞, 0 < h(n) ↑
∞ and h(n)/kn → 0 as n → ∞” in Corollary 3.1 in the paper is weaker than
“kn

.= 1/ supun≤i≤vn
|ani | → ∞, 0 < h(n) ↑ ∞ and h(n)/kn → 0 as n → ∞”

in Corollary 3.6 of Wang and Hu (2014). Hence, our results of Theorem 3.2 and
Corollary 3.1 generalize and improve the corresponding one of Corollary 3.6 in Wang
and Hu (2014) for NOD random variables to the case of END random variables.

3.2 Strong law of large numbers

In order to establish the strong version ofTheorem3.1,we should introduce the concept
of strongly residual h-integrability with exponent r , which deals with usual normed
sums of random variables as follows.
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Definition 3.3 Let {Xni , un ≤ i ≤ vn, n ≥ 1} be an array of random variables
and r > 0. The array {Xni , un ≤ i ≤ vn, n ≥ 1} is said to be strongly residually
h-integrable (SR-h-integrable, for short) with exponent r if

sup
n≥1

1

kn

vn∑

i=un

E |Xni |r < ∞

and

∞
∑

n=1

1

kn

vn∑

i=un

E
(

|Xni | − h1/r (n)
)r

I
(|Xni |r > h(n)

)

< ∞.

Remark 3.3 We point out that the concept of SR–h-integrability with exponent r is
stronger than the concept of R–h-integrability with exponent r . SR–h-integrability
with exponent r implies R–h-integrability with exponent r .

Our main result on the strong law of large numbers for usual normed sums of arrays
of rowwise END random variables is as follows.

Theorem 3.3 Suppose that {Xni , un ≤ i ≤ vn, n ≥ 1} is an array of rowwise END
SR-h-integrable with exponent 1 ≤ r < 2 random variables. Let kn → ∞, h(n) ↑ ∞,

and
∞∑
n=1

(
h(n)
kn

) 2−r
r

< ∞. Then 1
k1/rn

vn∑

i=un

(Xni − EXni ) → 0 a.s. as n → ∞.

Proof We use the same notations as those in Theorem 3.1. In order to prove
1

k1/rn

vn∑

i=un

(Xni − EXni ) → 0 a.s. as n → ∞, we only need to show

Sn
.= 1

k1/rn

vn∑

i=un

(Yni − EYni ) → 0 a.s. as n → ∞, (3.1)

and

Tn
.= 1

k1/rn

vn∑

i=un

(Zni − EZni ) → 0 a.s. as n → ∞. (3.2)

For (3.1), noting that 1 ≤ r < 2 and |Yni | = min{|Xni | , h1/r (n)}, we have by
Markov’s inequality, Lemma 2.3 or Remark 2.1 that for any ε > 0,

∞
∑

n=1

P (|Sn| > ε) ≤ 1

ε2

∞
∑

n=1

1

k2/rn

E

∣
∣
∣
∣
∣
∣

vn∑

i=un

(Yni − EYni )

∣
∣
∣
∣
∣
∣

2

≤ C
∞
∑

n=1

1

k2/rn

vn∑

i=un

EY 2
ni
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≤ C
∞
∑

n=1

h(2−r)/r (n)

k2/rn

vn∑

i=un

E |Yni |r

≤ C
∞
∑

n=1

(
h(n)

kn

) 2−r
r ·

⎛

⎝sup
n≥1

1

kn

vn∑

i=un

E |Xni |r
⎞

⎠

< ∞,

which together with Borel–Cantelli lemma implies (3.1).
For (3.2), noting that |Zni | = (|Xni | − h1/r (n))I (|Xni |r > h(n)), we have by

Markov’s inequality, Lemma 2.3 or Remark 2.1 again that for any ε > 0,

∞
∑

n=1

P (|Tn| > ε) ≤ 1

εr

∞
∑

n=1

1

kn
E

∣
∣
∣
∣
∣
∣

vn∑

i=un

(Zni − EZni )

∣
∣
∣
∣
∣
∣

r

≤ C
∞
∑

n=1

1

kn

vn∑

i=un

E |Zni |r

= C
∞
∑

n=1

1

kn

vn∑

i=un

E
(

|Xni | − h1/r (n)
)r

I
(|Xni |r > h(n)

)

< ∞,

which together with Borel–Cantelli lemma yields (3.2). This completes the proof of
the theorem. ��

Using Theorem 3.3, we can get the following strong law of large numbers for
weighted sums of arrays of rowwise END random variables.

Corollary 3.3 Let 1 ≤ r < 2, {Xni , un ≤ i ≤ vn, n ≥ 1} be an array of rowwise
END random variables and {ani , un ≤ i ≤ vn, n ≥ 1} be an array of constants. Let
h(n) ↑ ∞, and

(i) sup
n≥1

vn∑

i=un

|ani |r E |Xni |r < ∞;

(ii)
∞∑
n=1

vn∑

i=un

|ani |r E |Xni |r I (|Xni |r > h(n)) < ∞;

(iii)
∞∑
n=1

(

h(n) sup
un≤i≤vn

|ani |r
) 2−r

r

< ∞.

Then

vn∑

i=un

ani (Xni − EXni ) → 0 a.s. as n → ∞. (3.3)
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Proof Denote kn = 1/ sup
un≤i≤vn

|ani |r . It follows by condition (i i i) that h(n)/kn → 0

as n → ∞, and thus kn → ∞ as n → ∞.
Without loss of generality, we assume that ani ≥ 0 for all un ≤ i ≤ vn and

n ≥ 1. Otherwise, we will use a+
ni and a−

ni instead of ani respectively and note that

ani = a+
ni−a−

ni .Hence, it followsbyLemma2.1 that {k1/rn ani Xni , un ≤ i ≤ vn, n ≥ 1}
is still an array of rowwise END random variables.

Taking k1/rn ani Xni instead of Xni in Theorem 3.3, we have by condition (i) that

sup
n≥1

1

kn

vn∑

i=un

E
∣
∣
∣k

1/r
n ani Xni

∣
∣
∣

r = sup
n≥1

vn∑

i=un

|ani |r E |Xni |r < ∞. (3.4)

Noting that
∣
∣
∣k

1/r
n ani

∣
∣
∣ ≤ 1 for all un ≤ i ≤ vn and n ≥ 1, we have by condition (i i)

that

∞
∑

n=1

1

kn

vn∑

i=un

E
(∣
∣
∣k

1/r
n ani Xni

∣
∣
∣− h1/r (n)

)r
I
(

|k1/rn ani Xni |r > h(n)
)

≤
∞
∑

n=1

1

kn

vn∑

i=un

E
∣
∣
∣k

1/r
n ani Xni

∣
∣
∣

r
I
(

|k1/rn ani Xni |r > h(n)
)

≤
∞
∑

n=1

vn∑

i=un

|ani |r E |Xni |r I
(|Xni |r > h(n)

)

< ∞. (3.5)

Hence, the desired result (3.3) follows by (3.4), (3.5) and Theorem 3.3 immediately.
The proof is completed. ��

Remark 3.4 According to the proofs of Theorem 3.3 andCorollary 3.3, one can get the
complete convergence for arrays of rowwise END random variables, which is much
stronger than almost sure convergence. Under the conditions of Theorem 3.3, we have
that for any ε > 0,

∞
∑

n=1

P

⎛

⎝

∣
∣
∣
∣
∣
∣

1

k1/rn

vn∑

i=un

(Xni − EXni )

∣
∣
∣
∣
∣
∣

> ε

⎞

⎠ < ∞; (3.6)

under the conditions of Corollary 3.3, we have that for any ε > 0,

∞
∑

n=1

P

⎛

⎝

∣
∣
∣
∣
∣
∣

vn∑

i=un

ani (Xni − EXni )

∣
∣
∣
∣
∣
∣

> ε

⎞

⎠ < ∞. (3.7)
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4 Applications

In Sect. 3, we established the Lr convergence, weak and strong laws of large numbers
for arrays of rowwise END random variables under some uniformly integrable condi-
tions. In this section, we will present some applications of the Lr convergence, weak
and strong laws of large numbers to nonparametric regression models based on END
errors.

Consider the following nonparametric regression model:

Ynk = g(xnk) + εnk, k = 1, 2, . . . , n, n ≥ 1, (4.1)

where xnk are known fixed design points from A, and A ⊂ R
m is a given compact set

for some m ≥ 1, g(·) is an unknown regression function defined on A, and the εnk are
random errors. As an estimator of g(·), we consider the weighted regression estimator
as follows:

gn(x) =
n
∑

k=1

Wnk(x)Ynk, x ∈ A ⊂ R
m, (4.2)

whereWnk(x) = Wnk(x; xn1, xn2, . . . , xnn), k = 1, 2, . . . , n are theweight functions.
The above weighted regression estimator for nonparametric regression model was

first adapted by Georgiev (1985). Since then, many authors devoted to studying the
asymptotic properties of gn(x) and providing many interesting results. We refer the
readers to Roussas (1989), Fan (1990), Roussas et al. (1992), Tran et al. (1996), Liang
and Jing (2005), Wang et al. (2014), Wang and Si (2015), Chen et al. (2016) for
instance. The purpose of this section is to further investigate the strong consistency
and mean consistency for the estimator gn(x) in the nonparametric regression model
based on END errors by using the results obtained in Sect. 3.

In this section, let c(g) denote the set of continuity points of the function g on A.
The symbol ‖x‖ denotes the Euclidean norm. For any fixed design point x ∈ A, the
following assumptions on weight functions Wnk(x) will be used:

(H1)

n
∑

k=1

Wnk(x) → 1 as n → ∞;

(H2)

n
∑

k=1

|Wnk(x)| ≤ C < ∞ for all n;

(H3)

n
∑

k=1

|Wnk(x)|·|g(xnk)−g(x)|I (‖xnk−x‖>a) → 0 as n → ∞ for all a > 0.

We point out that the design assumptions (H1) − (H3) are regular conditions for
nonparametric regression models and are very general. For more details, one can refer
to Liang and Jing (2005) andWang et al. (2014) for instance. Based on the assumptions
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above, we present the following results on strong consistency and mean consistency
of the nonparametric regression estimator gn(x).

The first one is the strong consistency of the nonparametric regression estimator
gn(x)

Theorem 4.1 Let {εnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise END random
variables with mean zero which is stochastically dominated by a random variable X
with E |X |r < ∞ for some 1 < r < 2. Suppose that the conditions (H1) − (H3) hold,
and

max
1≤k≤n

|Wnk(x)| = O(n−u) for some u > max

{
1

2 − r
,

1

r − 1

}

. (4.3)

Then for all x ∈ c(g),

gn(x) → g(x) a.s. (4.4)

Proof For a > 0 and x ∈ c(g), we obtain from (4.1) and (4.2) that

|Egn(x) − g(x)| ≤
n
∑

k=1

|Wnk(x)| · |g(xnk) − g(x)|I (‖xnk − x‖ ≤ a)

+
n
∑

k=1

|Wnk(x)| · |g(xnk) − g(x)|I (‖xnk − x‖ > a)

+ |g(x)| ·
∣
∣
∣
∣
∣

n
∑

k=1

Wnk(x) − 1

∣
∣
∣
∣
∣
. (4.5)

It follows from x ∈ c(g) that for all ε > 0, there exists a constant δ > 0 such that
for all x

′
which satisfy ‖x ′ − x‖ < δ, we have |g(x ′

) − g(x)| < ε. Hence we take
0 < a < δ in (4.5) and obtain that

|Egn(x) − g(x)| ≤
n
∑

k=1

ε|Wnk(x)|

+
n
∑

k=1

|Wnk(x)| · |g(xnk) − g(x)|I (‖xnk − x‖ > a)

+ |g(x)| ·
∣
∣
∣
∣
∣

n
∑

k=1

Wnk(x) − 1

∣
∣
∣
∣
∣
.

Then by assumptions (H1)-(H3) and the arbitrariness of ε > 0, we have that for all
x ∈ c(g),

lim
n→∞ Egn(x) = g(x). (4.6)
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Hence, to prove (4.4), it suffices to prove

gn(x) − Egn(x) =
n
∑

k=1

Wnk(x)εnk → 0 a.s. (4.7)

We will apply Corollary 3.3 with Xnk = εnk , ank = Wnk(x), un = 1, vn = n and

h(n) = na , where 0 < a < r
(

u − 1
2−r

)

. By E |X |r < ∞, conditions (H2), (4.3) and

Property 1.1, we have that

sup
n≥1

vn∑

i=un

|ani |r E |Xni |r ≤ C sup
n≥1

(

max
1≤k≤n

|Wnk(x)|
)r−1 n

∑

k=1

|Wnk(x)| E |X |r

≤ C sup
n≥1

n−u(r−1) ≤ C < ∞,

∞
∑

n=1

vn∑

i=un

|ani |r E |Xni |r I
(|Xni |r > h(n)

) ≤ C
∞
∑

n=1

n
∑

k=1

|Wnk(x)|r E |X |r

≤ C
∞
∑

n=1

n−u(r−1) < ∞,

∞
∑

n=1

(

h(n) sup
un≤i≤vn

|ani |r
) 2−r

r

≤ C
∞
∑

n=1

n(a−ur)(2−r)/r < ∞.

Thus, the conditions (i)–(i i i) in Corollary 3.3 are satisfied. Noting that Eεnk = 0,
we can immediately get the desired result (4.7) by Corollary 3.3. This completes the
proof of the theorem. ��

The next one is the mean consistency and weak consistency of the nonparametric
regression estimator gn(x).

Theorem 4.2 Let {εnk, 1 ≤ k ≤ n, n ≥ 1} be an array of rowwise END random
variables with mean zero which is stochastically dominated by a random variable X
with E |X |r < ∞ for some 1 < r < 2. Suppose that the conditions (H1) − (H3) hold,
and

max
1≤k≤n

|Wnk(x)| = O(n−u) for some u > 0. (4.8)

Then for all x ∈ c(g),

gn(x) → g(x) in Lr , (4.9)
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and thus,

gn(x) → g(x) in probabili t y. (4.10)

Proof Similar to the proof of Theorem 4.1, we can see that (4.6) still holds. Note that

E |gn(x) − g(x)|r ≤ 2r−1E |gn(x) − Egn(x)|r + 2r−1 |Egn(x) − g(x)|r .

Hence, to prove (4.9), it suffices to prove

E |gn(x) − Egn(x)|r = E

∣
∣
∣
∣
∣

n
∑

k=1

Wnk(x)εnk

∣
∣
∣
∣
∣

r

→ 0 as n → ∞. (4.11)

We will apply Theorem 3.2 with Xnk = εnk , ank = Wnk(x), un = 1 and vn = n. By
E |X |r < ∞, conditions (H2), (4.8) and Property 1.1, we have that

sup
n≥1

vn∑

i=un

|ani |r E |Xni |r ≤ C sup
n≥1

(

max
1≤k≤n

|Wnk(x)|
)r−1 n

∑

k=1

|Wnk(x)| E |X |r

≤ C sup
n≥1

n−u(r−1) ≤ C < ∞,

and for any ε > 0,

vn∑

i=un

|ani |r E |Xni |r I (|Xni |r > ε) ≤ Cn−u(r−1) → 0 as n → ∞.

Thus, the conditions (i) and (i i) in Theorem 3.2 are satisfied. Noting that Eεnk = 0,
we can immediately get the desired result (4.11) by Theorem 3.2. This completes the
proof of the theorem. ��
Acknowledgements The authors are most grateful to anonymous referees for careful reading of the
manuscript and valuable suggestions which helped in improving an earlier version of this paper.

Appendix

Proof of Lemma 2.3. If r = 1 or r = 2, then we can see that (2.2) holds trivially by
Cr -inequality and Lemma 2.2 with p = 2, respectively. So in the following, we only
need to consider the case 1 < r < 2.

For fixed n ≥ 1, denote Mn = ∑n
i=1 E |Xi |r . Without loss of generality, we assume

that Mn > 0. For any ε > 1, it is easily seen that

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi

∣
∣
∣
∣
∣

r

≤ (1 + ε)Mn +
∫ ∞

(1+ε)Mn

P

(∣
∣
∣
∣
∣

n
∑

i=1

Xi

∣
∣
∣
∣
∣
> t1/r

)

dt. (4.12)
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For fixed n ≥ 1 and t ≥ (1 + ε)Mn , denote for 1 ≤ i ≤ n that

Yi = −t1/r I (Xi < −t1/r ) + Xi I (|Xi | ≤ t1/r ) + t1/r I (Xi > t1/r ).

It follows by (4.12) that

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi

∣
∣
∣
∣
∣

r

≤ (1 + ε)Mn +
∫ ∞

(1+ε)Mn

n
∑

i=1

P
(

|Xi | > t1/r
)

dt

+
∫ ∞

(1+ε)Mn

P

(∣
∣
∣
∣
∣

n
∑

i=1

Yi

∣
∣
∣
∣
∣
> t1/r

)

dt

≤ (1 + ε)Mn +
∫ ∞

(1+ε)Mn

n
∑

i=1

P
(

|Xi | > t1/r
)

dt

+
∫ ∞

(1+ε)Mn

P

(∣
∣
∣
∣
∣

n
∑

i=1

(Yi − EYi )

∣
∣
∣
∣
∣
> t1/r −

∣
∣
∣
∣
∣

n
∑

i=1

EYi

∣
∣
∣
∣
∣

)

dt

.= (1 + ε)Mn + I1 + I2. (4.13)

For I1, we have

I1 ≤
n
∑

i=1

∫ ∞

0
P
(

|Xi | > t1/r
)

dt =
n
∑

i=1

E |Xi |r = Mn . (4.14)

Note that

sup
t≥(1+ε)Mn

t−1/r

∣
∣
∣
∣
∣

n
∑

i=1

EYi

∣
∣
∣
∣
∣
≤ 2 sup

t≥(1+ε)Mn

t−1/r · t1/r−1
n
∑

i=1

E |Xi |r I (|Xi | > t1/r )

≤ 2(1 + ε)−1. (4.15)

Hence, by (4.15), Markov’s inequality and Lemma 2.2 with p = 2, we can get that

I2 ≤
∫ ∞

(1+ε)Mn

P

(∣
∣
∣
∣
∣

n
∑

i=1

(Yi − EYi )

∣
∣
∣
∣
∣
>
[

1 − 2(1 + ε)−1
]

t1/r
)

dt

≤
[

1 − 2(1 + ε)−1
]−2

∫ ∞

(1+ε)Mn

t−2/r E

∣
∣
∣
∣
∣

n
∑

i=1

(Yi − EYi )

∣
∣
∣
∣
∣

2

dt

≤ C2

[

1 − 2(1 + ε)−1
]−2 n

∑

i=1

∫ ∞

(1+ε)Mn

t−2/r E X2
i I (|Xi | ≤ t1/r )dt

+C2

[

1 − 2(1 + ε)−1
]−2 n

∑

i=1

∫ ∞

(1+ε)Mn

P(|Xi | > t1/r )dt
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.= I21 + I22. (4.16)

Here, C2 is defined by Lemma 2.2. For I22, we have

I22 ≤ C2

[

1 − 2(1 + ε)−1
]−2 n

∑

i=1

∫ ∞

0
P(|Xi | > t1/r )dt

= C2

[

1 − 2(1 + ε)−1
]−2

Mn . (4.17)

For I21, we can see that

∫ ∞

(1+ε)Mn

t−2/r E X2
i I (|Xi | ≤ t1/r )dt ≤

∫ ∞

(1+ε)Mn

t−2/r dt
∫ (1+ε)2/r M2/r

n

0

P(|Xi | > y1/2)dy +
∫ ∞

(1+ε)Mn

t−2/r dt
∫ t2/r

(1+ε)2/r M2/r
n

P(|Xi | > y1/2)dy

.= J1 + J2. (4.18)

For J1, it follows by Markov’s inequality that

J1 ≤ r

2 − r
(1 + ε)1−2/r M1−2/r

n

∫ (1+ε)2/r M2/r
n

0
E |Xi |r y−r/2dy

= 2r

(2 − r)2
E |Xi |r . (4.19)

For J2, we have

J2 =
∫ ∞

(1+ε)2/r M2/r
n

P(|Xi | > y1/2)dy
∫ ∞

yr/2
t−2/r dt

= r

2 − r

∫ ∞

(1+ε)2/r M2/r
n

yr/2−1P(|Xi | > y1/2)dy

≤ r

2 − r

∫ ∞

0
yr/2−1P(|Xi | > y1/2)dy = 2

2 − r
E |Xi |r . (4.20)

Hence, by (4.16)-(4.20), we can get that

I2 ≤ C2

[

1 − 2(1 + ε)−1
]−2

Mn + C2

[

1 − 2(1 + ε)−1
]−2

[
2r

(2 − r)2
+ 2

2 − r

]

Mn

= C2

[

1 − 2(1 + ε)−1
]−2

[

1 +
(

2

2 − r

)2
]

Mn . (4.21)
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By (4.13), (4.14) and (4.21), we have

E

∣
∣
∣
∣
∣

n
∑

i=1

Xi

∣
∣
∣
∣
∣

r

≤
{

2 + ε + C2

[

1 − 2(1 + ε)−1
]−2

[

1 +
(

2

2 − r

)2
]}

Mn

.= f (ε)Mn . (4.22)

It is easily checked that f (ε) is positive and continuous on (1,∞), and

lim
ε→1+ f (ε) = lim

ε→∞ f (ε) = ∞.

Hence, f (ε) has the minimum on (1,∞). Set cr = inf1<ε<∞ f (ε). It is obvious that
cr > 3 does not depend on n, and thus (2.2) holds. This completes the proof of the
lemma. ��
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