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Abstract In this paper, we give some applications of the Rosenthal-type inequality
for a sequence of negatively superadditive dependent (NSD) random variables, which
includes sequences of negatively associated random variables as a special case. The
complete consistency for an estimator of a nonparametric regression model based
on NSD errors is investigated. In addition, we extend Feller’s weak law of large
numbers for independent and identically distributed random variables to the case of
NSD random variables by using the Rosenthal-type inequality.

Keywords Complete consistency · Negatively superadditive dependent
random variables · Weak law of large numbers

1 Introduction

Let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed probabil-
ity space (�,F , P). The Rosenthal-type inequality for the maximum partial sum
max1≤m≤n

∑m
i=1 Xi plays an important role in probability limit theory and mathe-

matical statistics. The main purpose of the paper is to present some applications of the
Rosenthal-type inequality for negatively superadditive dependent random variables,
such as the consistency for an estimator of a nonparametric regression model, and a
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296 A. Shen et al.

weak law of large numbers. Firstly, let us recall the concept of negatively superadditive
dependent random variables, which was introduced by Hu (2000).

Definition 1.1 (c.f. Kemperman 1977) A function φ : R
n → R is called superad-

ditive if φ(x ∨ y) + φ(x ∧ y) ≥ φ(x) + φ(y) for all x, y ∈ Rn , where ∨ stands for
componentwise maximum, and ∧ denotes componentwise minimum.

Definition 1.2 (c.f. Hu 2000) A random vector X = (X1, X2, . . . , Xn) is said to be
negatively superadditive dependent (NSD) if

Eφ(X1, X2, . . . , Xn) ≤ Eφ(X∗
1, X∗

2, . . . , X∗
n), (1.1)

where X∗
1, X∗

2, . . . , X∗
n are independent such that X∗

i and Xi have the same distribution
for each i , and φ is a superadditive function such that the expectations in (1.1) exist.

A sequence {Xn, n ≥ 1} of random variables is said to be NSD if for all
n ≥ 1, (X1, X2, . . . , Xn) is NSD.

The concept of NSD random variables was introduced by Hu (2000), which was
based on the class of superadditive functions. Hu (2000) gave an example illustrat-
ing that NSD does not imply negative association (NA, in sort, see Joag-Dev and
Proschan 1983; Wu and Jiang 2010a, b); or Wang et al. 2011), and Hu posed an open
problem whether NA implies NSD. Christofides and Vaggelatou (2004) solved this
open problem and indicated that NA implies NSD. The concept of negatively super-
additive dependence extends the concept of negatively associated dependence, it is
sometimes more useful than the latter, since it can be used to obtain many impor-
tant probability inequalities. Eghbal et al. (2010) derived two maximal inequalities
and strong law of large numbers of quadratic forms of NSD random variables under
the assumption that {Xi , i ≥ 1} is a sequence of nonnegative NSD random variables
with E Xr

i < ∞ for all i ≥ 1 and some r > 1. Eghbal et al. (2011) provided some
Kolmogorov inequality for quadratic forms Tn = ∑1≤i< j≤n Xi X j and weighted
quadratic forms Qn =∑1≤i< j≤n ai j Xi X j , where {Xi , i ≥ 1} is a sequence of non-
negative NSD uniformly bounded random variables. Shen et al. (2013a) studied almost
sure convergence and strong stability for weighted sums of NSD random variables,
Shen et al. (2013b) studied strong convergence for NSD random variables and pre-
sented some moment inequalities. Wang et al. (2013a) studied complete convergence
for arrays of rowwise NSD random variables, with applications to nonparametric
regression.

Since NSD is much weaker than NA, the extension of the limit properties of indepen-
dent or NA random variables to the case of NSD random variables is highly desirable
and of considerable significance in theory and application.

The main purpose of this work is focused on applications of the Rosenthal-type
inequality for NSD random variables. The work is organized as follows: some pre-
liminary lemmas are provided in Sect. 2. The complete consistency for an estimator in
a nonparametric regression model based on NSD errors is studied in Sect. 3, and the
weak law of large numbers for NSD random variables is proved in Sect. 4.

Throughout the paper, C denotes a positive constant not depending on n, which
may be different in various places. an 
 bn or an = O(bn) represents an ≤ Cbn for
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all n ≥ 1. Let �x� denote the integer part of x and I (A) the indicator function of the
set A. Denote x+ = x I (x ≥ 0) and x− = −x I (x < 0).

2 Preliminaries

In this section, we will present some important lemmas which will be used to prove
the main results of the paper. The first one was provided by Hu (2000).

Lemma 2.1 If (X1, X2, . . . , Xn) is NSD and g1, g2, . . . , gn are nondecreasing func-
tions, then (g1(X1), g2(X2), . . . , gn(Xn)) is NSD.

The next one is the Rosenthal-type inequality for NSD random variables. For the
proof, one can refer to Hu (2000) or Wang et al. (2013a). Here we omit the details.

Lemma 2.2 (Rosenthal-type inequality) Let p > 1 and {Xn, n ≥ 1} be a sequence
of NSD random variables with E |Xi |p < ∞ for each i ≥ 1. Then for all n ≥ 1,

E

⎛

⎝ max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xi

∣
∣
∣
∣
∣

p⎞

⎠ ≤ 23−p
n∑

i=1

E |Xi |p , for 1 < p ≤ 2 (2.1)

and

E

⎛

⎝ max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xi

∣
∣
∣
∣
∣

p⎞

⎠ ≤ 2

(
15p

ln p

)p
⎡

⎣
n∑

i=1

E |Xi |p +
(

n∑

i=1

E X2
i

)p/2
⎤

⎦ , for p > 2.

(2.2)

The concept of stochastic domination will be used in this work.

Definition 2.1 A sequence {Xn, n ≥ 1} of random variables is said to be stochastically
dominated by a random variable X if there exists a positive constant C such that

P(|Xn| > x) ≤ C P(|X | > x) (2.3)

for all x ≥ 0 and n ≥ 1.

By the definition of stochastic domination and integration by parts, we can get the
following property for stochastic domination. For the details of the proof, one can
refer to Wu (2010, 2012) or Tang (2013a, b).

Lemma 2.3 Let {Xn, n ≥ 1} be a sequence of random variables which is stochasti-
cally dominated by a random variable X. For any α > 0 and b > 0, the following
two statements hold:

E |Xn|α I (|Xn| ≤ b) ≤ C1
[
E |X |α I (|X | ≤ b) + bα P (|X | > b)

]
, (2.4)

E |Xn|α I (|Xn| > b) ≤ C2 E |X |α I (|X | > b) , (2.5)

where C1 and C2 are positive constants.
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3 The consistency of an estimator in a nonparametric regression model based
on NSD errors

In this section, we will give one application of the Rosenthal type inequality to non-
parametric regression.

Let A ⊂ R
p be a given compact set for some p ≥ 1. Consider the following fixed

design nonparametric regression model

Yni = g (xni ) + εni , i = 1, 2, . . . , n, n ≥ 1, (3.1)

where xn1, xn2, . . . , xnn are known fixed design points from A, g(·) is an unknown
real valued regression function defined on A and εn1, εn2, . . . , εnn are random errors.
Assume that for each n ≥ 1, (εn1, εn2, . . . , εnn) have the same distribution as
(ε1, ε2, . . . , εn). As an estimator of g(·), we shall consider the following weighted
regression estimator:

gn(x) =
n∑

i=1

Wni (x)Yni , x ∈ A ⊂ R
p, (3.2)

where the weight function Wni (x) are of the form Wni (x) = Wni (x; xn1, xn2, . . . ,

xnn), i = 1, 2, . . . , n.
The class of estimators (3.2) was first introduced by Stone (1977) and next adapted

by Georgiev (1983) to the fixed design case. Up to now, the estimator (3.2) has been
studied by many authors. For instance, when the εni are assumed to be independent,
consistency and asymptotic normality have been studied by Georgiev and Greblicki
(1986), Georgiev (1988) and Müller (1987), among others. Results for the case when
εni are dependent have also been studied by various authors in recent years. Fan (1990)
extended the work of Georgiev (1988) and Müller (1987) in the estimation of the
regression model to the case where the εni form an Lq -mixingale sequence for some
1 ≤ q ≤ 2. Roussas (1989) discussed strong consistency and quadratic mean consis-
tency for gn(x) under mixing conditions. Roussas et al. (1992) established asymptotic
normality of gn(x) assuming that the errors are from a strictly stationary stochastic
process and satisfy the strong mixing condition. Tran et al. (1996) discussed again
asymptotic normality of gn(x) assuming that the errors form a linear time series,
more precisely, a weakly stationary linear process based on a martingale difference
sequence. Hu et al. (2002) obtained asymptotic normality for a double array sum of
a linear time series, with applications to the regression model. Liang and Jing (2005)
presented some asymptotic properties for estimates of nonparametric regression mod-
els based on negatively associated sequences, and Yang et al. (2012) extended the
result of Liang and Jing (2005) to the case of negatively dependent errors. Wang et al.
(2012) studied the complete consistency of the estimator of nonparametric regression
models based on ρ̃-mixing sequences. Wang et al. (2013b) established the strong con-
sistency of the estimator of fixed-design regression model under negatively dependent
sequences, and so forth. The main purpose of this section is to investigate the com-
plete consistency for an estimator of the nonparametric regression model based on
NSD random variables, which generalizes the corresponding ones of Liang and Jing
(2005) for negatively associated random variables.
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Unless otherwise specified, we assume throughout the paper that the sample
(xni , Yni ) for 1 ≤ i ≤ n come from the fixed design nonparametric regression
model (3.1) and gn(x) is defined by (3.2). For any function g, we use c(g) to denote
the set of continuity points of g on A. The norm ‖x‖ is the Euclidean norm. For
any fixed design point x ∈ A, the following assumptions on the weight function
Wni (x) = Wni (x; xn1, xn2, . . . , xnn) will be used:

(a)
∑n

i=1 Wni (x) → 1 as n → ∞;
(b)
∑n

i=1 |Wni (x)| ≤ C < ∞ for all n;
(c)
∑n

i=1 |Wni (x)| · |g(xni ) − g(x)| I (‖xni − x‖ > a) → 0 as n → ∞ for all a > 0.

Based on the assumptions above, we can obtain the following complete consistency
of the nonparametric regression estimator gn(x) defined by (3.2).

Theorem 3.1 Let p > 0 and {εn, n ≥ 1} be a sequence of NSD random variables
with mean zero. Suppose that the following conditions are satisfied:

(i) conditions (a)–(c) hold true;
(ii) supn≥1 Eε2

n < ∞ if p ∈ (0, 2] and supn≥1 E |εn|p < ∞ if p > 2;
(iii) for any x ∈ c(g),

∞∑

n=1

[
n∑

i=1

W 2
ni (x)

]p/2

< ∞. (3.3)

Then

gn(x) → g(x) completely, x ∈ c(g). (3.4)

Proof For x ∈ c(g) and a > 0, we have by (3.1) and (3.2) that

|Egn(x) − g(x)| ≤
n∑

i=1

|Wni (x)| · |g(xni ) − g(x)| I (‖xni − x‖ ≤ a)

+
n∑

i=1

|Wni (x)| · |g(xni ) − g(x)| I (‖xni − x‖ > a)

+ |g(x)| ·
∣
∣
∣
∣
∣

n∑

i=1

Wni (x) − 1

∣
∣
∣
∣
∣
. (3.5)

Since x ∈ c(g), hence for any ε > 0, there exists a δ > 0 such that |g(x
′
)− g(x)| < ε

when ‖x
′ − x‖ < δ. Thus, by setting 0 < a < δ in (3.5), we obtain

|Egn(x) − g(x)| ≤ ε

n∑

i=1

|Wni (x)| + |g(x)| ·
∣
∣
∣
∣
∣

n∑

i=1

Wni (x) − 1

∣
∣
∣
∣
∣

+
n∑

i=1

|Wni (x)| · |g(xni ) − g(x)| I (‖xni − x‖ > a). (3.6)
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By conditions (a)–(c) and the arbitrariness of ε > 0, it follows that

lim
n→∞ Egn(x) = g(x), x ∈ c(g). (3.7)

For a fixed design point x ∈ c(g) and n ≥ 1, it is easily seen that {W +
ni (x)εi , 1 ≤ i ≤ n}

and {W −
ni (x)εi , 1 ≤ i ≤ n} are still NSD random variables by Lemma 2.1. Note that

Wni (x) = W +
ni (x)−W −

ni (x), so without loss of generality, we assume that Wni (x) ≥ 0
in what follows.

If 0 < p ≤ 2, Jensen’ s inequality, Lemma 2.2 and supn≥1 Eε2
n < ∞ yield

E |gn(x) − Egn(x)|p = E

∣
∣
∣
∣
∣

n∑

i=1

Wni (x)εni

∣
∣
∣
∣
∣

p

= E

∣
∣
∣
∣
∣

n∑

i=1

Wni (x)εi

∣
∣
∣
∣
∣

p

≤
⎛

⎝E

∣
∣
∣
∣
∣

n∑

i=1

Wni (x)εi

∣
∣
∣
∣
∣

2
⎞

⎠

p/2

≤ C

(
n∑

i=1

W 2
ni (x)Eε2

i

)p/2

≤ C

(
n∑

i=1

W 2
ni (x)

)p/2

. (3.8)

If p > 2, Lemma 2.2 and supn≥1 E |εn|p < ∞ give

E |gn(x) − Egn(x)|p = E

∣
∣
∣
∣
∣

n∑

i=1

Wni (x)εni

∣
∣
∣
∣
∣

p

= E

∣
∣
∣
∣
∣

n∑

i=1

Wni (x)εi

∣
∣
∣
∣
∣

p

≤ C

⎧
⎨

⎩

n∑

i=1

W p
ni (x)E |εi |p +

[
n∑

i=1

W 2
ni (x)Eε2

i

]p/2
⎫
⎬

⎭

≤ C

⎧
⎨

⎩

[
n∑

i=1

W 2
ni (x)

]p/2

+
[

n∑

i=1

W 2
ni (x)

]p/2
⎫
⎬

⎭
, (3.9)

since
(∑n

i=1 aβ
i

)1/β ≤ (∑n
i=1 aα

i

)1/α for any positive numbers {ai , 1 ≤ i ≤ n} and

0 < α ≤ β.
For any ε > 0, we have by Markov’s inequality, (3.8), (3.9) and (3.3) that

∞∑

n=1

P (|gn(x) − Egn(x)| ≥ ε) ≤
∞∑

n=1

E |gn(x) − Egn(x)|p

ε p

≤ C
∞∑

n=1

[
n∑

i=1

W 2
ni (x)

]p/2

< ∞. (3.10)
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Together with (3.7) and (3.10) , we can get that

∞∑

n=1

P (|gn(x) − g(x)| ≥ ε)

≤
∞∑

n=1

P
(
|gn(x) − Egn(x)| ≥ ε

2

)
+

∞∑

n=1

P
(
|Egn(x) − g(x)| ≥ ε

2

)

≤
∞∑

n=1

P
(
|gn(x) − Egn(x)| ≥ ε

2

)
+ C

< ∞,

which implies (3.4). This completes the proof of the theorem. ��
Similar to the proof of Theorem 3.1, we can obtain the following result. We only

need to note that for 0 < p ≤ 2,

E |gn(x) − Egn(x)|p = E

∣
∣
∣
∣
∣

n∑

i=1

Wni (x)εni

∣
∣
∣
∣
∣

p

= E

∣
∣
∣
∣
∣

n∑

i=1

Wni (x)εi

∣
∣
∣
∣
∣

p

≤ C
n∑

i=1

E |Wni (x)εi |p ≤ C
n∑

i=1

|Wni (x)|p . (3.11)

Theorem 3.2 Let {εn, n ≥ 1} be a sequence of NSD random variables with mean
zero and supn≥1 E |εn|p < ∞ for some 0 < p ≤ 2. Assume that conditions (a)–(c)
hold and

∞∑

n=1

n∑

i=1

|Wni (x)|p < ∞, x ∈ c(g).

Then (3.4) holds.

As an application of Theorem 3.1, we give the complete consistency for the nearest
neighbor estimator of g(x). Without loss of generality, put A = [0, 1], and take xni =
i
n , i = 1, 2, . . . , n. For any x ∈ A, let

∣
∣
∣x

(n)
R1(x) − x

∣
∣
∣ ,
∣
∣
∣x (n)

R2(x) − x
∣
∣
∣ , . . . ,

∣
∣
∣x (n)

Rn(x) − x
∣
∣
∣

be a permutation of |xn1 − x | , |xn2 − x | , . . . , |xnn − x | such that

∣
∣
∣x

(n)
R1(x) − x

∣
∣
∣ ≤
∣
∣
∣x

(n)
R2(x) − x

∣
∣
∣ ≤ · · · ≤

∣
∣
∣x

(n)
Rn(x) − x

∣
∣
∣ ,

if |xni − x | = ∣∣xnj − x
∣
∣, then |xni − x | is permuted before

∣
∣xnj − x

∣
∣ when xni < xnj .

Let 1 ≤ kn ≤ n, the nearest neighbor weight function estimator of g(x) in model
(3.1) is

g̃n(x) =
n∑

i=1

W̃ni (x)Yni , (3.12)
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where

W̃ni (x) =
{

1/kn, if |xni − x | ≤
∣
∣
∣x

(n)
Rkn (x) − x

∣
∣
∣ ,

0, otherwise.
(3.13)

Based on the notations above, we can get the following result by using Theorem 3.1.

Corollary 3.1 Let {εn, n ≥ 1} be a sequence of NSD random variables with mean
zero. Let g be continuous on the compact set A. Assume that kn = �nα� and
supn≥1 E |εn|p < ∞ for some 2/p < α < 1 and p > 2, then (3.4) holds, where
gn(x) is replaced by g̃n(x).

Proof It suffices to show that the conditions of Theorem 3.1 are satisfied. For any
x ∈ [0, 1], if follows from the definition of Ri (x) and W̃ni (x) that

n∑

i=1

W̃ni (x) =
n∑

i=1

W̃n Ri (x)(x) =
kn∑

i=1

1

kn
= 1,

n∑

i=1

W̃ 2
ni (x) =

kn∑

i=1

1

k2
n

= 1

kn
, W̃ni (x) ≥ 0,

and

n∑

i=1

∣
∣
∣W̃ni (x)

∣
∣
∣ I (|xni − x | > a) ≤

n∑

i=1

(xni − x)2
∣
∣
∣W̃ni (x)

∣
∣
∣

a2

=
kn∑

i=1

(
x (n)

Ri (x) − x
)2

kna2 ≤
kn∑

i=1

( i
n

)2

kna2

≤
(

kn

na

)2

, for any a > 0.

Hence, conditions (a)–(c) are satisfied. For 2/p < α < 1 and p > 2, we can see that

∞∑

n=1

[
n∑

i=1

W̃ 2
ni (x)

]p/2

=
∞∑

n=1

k−p/2
n < ∞,

which together with (a)–(c) imply (3.4) by Theorem 3.1. This completes the proof
of the corollary. ��
Theorem 3.3 Let {εn, n ≥ 1} be a sequence of NSD random variables with mean zero,
which is stochastically dominated by a random variable X. Assume that conditions
(a)-(c) hold. If there exists some r > 0 such that E |X |1+1/r < ∞ and

max
1≤i≤n

|Wni (x)| = O(n−r ), (3.14)

then (3.4) holds.
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Proof Without loss of generality, we assume that Wni ≥ 0. From condition (3.14), we
assume that

max
1≤i≤n

Wni (x) = n−r , n ≥ 1. (3.15)

By (3.7), we can see that in order to prove (3.4), we only need to show that

gn(x) − Egn(x) =
n∑

i=1

Wni (x)εni → 0 completely as n → ∞. (3.16)

That is to say, it suffices to show that for all ε > 0,

∞∑

n=1

P

(∣
∣
∣
∣
∣

n∑

i=1

Wni (x)εni

∣
∣
∣
∣
∣
> ε

)

< ∞. (3.17)

For fixed n ≥ 1, put

Xni = −I (Wni (x)εni < −1) + Wni (x)εni I (|Wni (x)εni | ≤ 1)

+I (Wni (x)εni > 1), i = 1, 2, . . . , n.

It is easy to check that for any ε > 0,

(∣
∣
∣
∣
∣

n∑

i=1

Wni (x)εni

∣
∣
∣
∣
∣
> ε

)

⊂
(

max
1≤i≤n

|Wni (x)εni | > 1

)⋃
(∣
∣
∣
∣
∣

n∑

i=1

Xni

∣
∣
∣
∣
∣
> ε

)

,

which implies that

∞∑

n=1

P

(∣
∣
∣
∣
∣

n∑

i=1

Wni (x)εni

∣
∣
∣
∣
∣
> ε

)

≤
∞∑

n=1

n∑

i=1

P (|Wni (x)εni | > 1)

+
∞∑

n=1

P

(∣
∣
∣
∣
∣

n∑

i=1

Xni

∣
∣
∣
∣
∣
> ε

)

.= I + J. (3.18)

Hence, to prove (3.17), it suffices to show that I < ∞ and J < ∞.
By condition (b) and E |X |1+1/r < ∞, we have

∞∑

n=1

n∑

i=1

P (|Wni (x)εni | > 1) ≤ C
∞∑

n=1

n∑

i=1

P (|Wni (x)X | > 1)

≤ C
∞∑

n=1

n∑

i=1

Wni (x)E |X |I (|Wni (x)X | > 1)
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≤ C
∞∑

n=1

E |X |I (|X | > nr )

≤ C
∞∑

n=1

∞∑

k=n

E |X |I (kr ≤ |X | < (k + 1)r )

= C
∞∑

k=1

k∑

n=1

E |X |I (kr ≤ |X | < (k + 1)r )

= C
∞∑

k=1

k E |X |I (kr ≤ |X | < (k + 1)r )

≤ C
∞∑

k=1

E |X |1+1/r I
(
kr ≤ |X | < (k + 1)r )

≤ C E |X |1+1/r < ∞, (3.19)

which implies I < ∞.
Next, we will prove that J < ∞. Firstly, we will show that

∣
∣
∣
∣
∣

n∑

i=1

E Xni

∣
∣
∣
∣
∣
→ 0, as n → ∞. (3.20)

Actually, by the conditions Eεi = 0, Lemma 2.3, (3.15) and E |X |1+1/r < ∞,
we have

∣
∣
∣
∣
∣

n∑

i=1

E Xni

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

n∑

i=1

EWni (x)εi I (|Wni (x)εi | ≤ 1)

∣
∣
∣
∣
∣
+

n∑

i=1

P (|Wni (x)εi | > 1)

=
∣
∣
∣
∣
∣

n∑

i=1

EWni (x)εi I (|Wni (x)εi | > 1)

∣
∣
∣
∣
∣
+

n∑

i=1

P (|Wni (x)εi | > 1)

≤ C
n∑

i=1

E |Wni (x)εi |1+1/r I (|Wni (x)εi | > 1)

≤ C
n∑

i=1

W 1+1/r
ni (x)E |X |1+1/r I (|Wni (x)X | > 1)

≤ C

(

max
1≤i≤n

Wni (x)

)1/r n∑

i=1

Wni (x)E |X |1+1/r I
(|X | > nr )

≤ C
(
n−r )1/r

E |X |1+1/r I
(|X | > nr )

= Cn−1 E |X |1+1/r I
(|X | > nr )→ 0, as n → ∞, (3.21)

which implies (3.20). Hence, to prove J < ∞, we only need to show that for all ε > 0,
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J ∗ .=
∞∑

n=1

P

(∣
∣
∣
∣
∣

n∑

i=1

(Xni − E Xni )

∣
∣
∣
∣
∣
>

ε

2

)

< ∞. (3.22)

By Markov’s inequality, Lemma 2.2, Cr inequality and Jensen’s inequality, we have
for M ≥ 2 that

J ∗ ≤ C
∞∑

n=1

E

⎛

⎝

∣
∣
∣
∣
∣

n∑

i=1

(Xni − E Xni )

∣
∣
∣
∣
∣

M
⎞

⎠

≤ C
∞∑

n=1

(
n∑

i=1

E |Xni |2
)M/2

+ C
∞∑

n=1

n∑

i=1

E |Xni |M

.= J1 + J2. (3.23)

Take

M > max {2, 2/r, 1 + 1/r} ,

which implies −r M/2 < −1 and −r(M − 1) < −1. By Cr inequality and Lemma
2.3, we can get

J1 ≤ C
∞∑

n=1

[
n∑

i=1

P (|Wni (x)X | > 1) +
n∑

i=1

E |Wni (x)X |2 I (|Wni (x)X | ≤ 1)

]M/2

.

(3.24)

If r > 1, Markov’s inequality, E |X |1+1/r < ∞ and (3.15) yield

J1 ≤ C
∞∑

n=1

(
n∑

i=1

W 1+1/r
ni (x)E |X |1+1/r

)M/2

≤ C
∞∑

n=1

[(

max
1≤i≤n

Wni (x)

)1/r n∑

i=1

Wni (x)

]M/2

≤ C
∞∑

n=1

n−M/2 < ∞. (3.25)

If 0 < r ≤ 1, we again have by Markov’s inequality, E |X |1+1/r < ∞ and (3.15) that

J1 ≤ C
∞∑

n=1

(
n∑

i=1

W 2
ni (x)E |X |2

)M/2

≤ C
∞∑

n=1

[(

max
1≤i≤n

Wni (x)

) n∑

i=1

Wni (x)

]M/2

≤ C
∞∑

n=1

n−r M/2 < ∞. (3.26)
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From (3.24)–(3.26), we have proved that J1 < ∞.
By Cr inequality and Lemma 2.3, we can see that

J2 ≤ C
∞∑

n=1

n∑

i=1

[
E |Wni (x)εi |M I (|Wni (x)εi | ≤ 1) + P (|Wni (x)εi | > 1)

]

≤ C
∞∑

n=1

n∑

i=1

P (|Wni (x)X | > 1) + C
∞∑

n=1

n∑

i=1

E |Wni (x)X |M I (|Wni (x)X | ≤ 1)

.= J3 + J4. (3.27)

J3 < ∞ has been proved by (3.19). In the following, we will show that J4 < ∞. Put

Inj = {i : [n( j + 1)]−r < Wni (x) ≤ (nj)−r} , n ≥ 1, j ≥ 1. (3.28)

It is easily seen that Ink
⋂

Inj = ∅ for k �= j and
⋃∞

j=1 Inj = {1, 2, . . . , n} for all
n ≥ 1. Writing 	M for the cardinality of a set M , we thus have

J4 ≤ C
∞∑

n=1

∞∑

j=1

∑

i∈Inj

E |Wni (x)X |M I (|Wni (x)X | ≤ 1)

≤ C
∞∑

n=1

∞∑

j=1

(
	Inj
)
(nj)−r M E |X |M I

(|X | ≤ [n( j + 1)]r )

≤ C
∞∑

n=1

∞∑

j=1

(
	Inj
)
(nj)−r M

n( j+1)∑

k=0

E |X |M I
(

k ≤ |X | 1
r < k + 1

)

= C
∞∑

n=1

∞∑

j=1

(
	Inj
)
(nj)−r M

2n∑

k=0

E |X |M I
(

k ≤ |X | 1
r < k + 1

)

+C
∞∑

n=1

∞∑

j=1

(
	Inj
)
(nj)−r M

n( j+1)∑

k=2n+1

E |X |M I
(

k ≤ |X | 1
r < k + 1

)

.= J5 + J6. (3.29)

It is easily seen that for all m ≥ 1,

C ≥
n∑

i=1

Wni (x) =
∞∑

j=1

∑

i∈Inj

Wni (x) ≥
∞∑

j=1

(
	Inj
)

[n( j + 1)]−r

≥
∞∑

j=m

(
	Inj
)

[n( j + 1)]−r ≥
∞∑

j=m

(
	Inj
)

[n( j + 1)]−r
[

n(m + 1)

n( j + 1)

]r(M−1)

=
∞∑

j=m

(
	Inj
)

[n( j + 1)]−r M [n(m + 1)]r(M−1) ,
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which implies that for all m ≥ 1,

∞∑

j=m

(
	Inj
)
(nj)−r M ≤ Cn−r(M−1) · m−r(M−1). (3.30)

Therefore,

J5
.= C

∞∑

n=1

∞∑

j=1

(
	Inj
)
(nj)−r M

2n∑

k=0

E |X |M I
(

k ≤ |X | 1
r < k + 1

)

≤ C
∞∑

n=1

n−r(M−1)
2n∑

k=0

E |X |M I
(

k ≤ |X | 1
r < k + 1

)

≤ C
2∑

k=0

∞∑

n=1

n−r(M−1)E |X |M I
(

k ≤ |X | 1
r < k + 1

)

+C
∞∑

k=2

∞∑

n=�k/2�
n−r(M−1)E |X |M I

(
k ≤ |X | 1

r < k + 1
)

≤ C + C
∞∑

k=2

k1−r(M−1)E |X |M I
(

k ≤ |X | 1
r < k + 1

)

≤ C + C
∞∑

k=2

E |X |M+1/r−(M−1) I
(

k ≤ |X | 1
r < k + 1

)

≤ C + C E |X |1+1/r < ∞ (3.31)

and

J6
.= C

∞∑

n=1

∞∑

j=1

(
	Inj
)
(nj)−r M

n( j+1)∑

k=2n+1

E |X |M I
(

k ≤ |X | 1
r < k + 1

)

≤ C
∞∑

n=1

∞∑

k=2n+1

∑

j≥ k
n −1

(
	Inj
)
(nj)−r M E |X |M I

(
k ≤ |X | 1

r < k + 1
)

≤ C
∞∑

n=1

∞∑

k=2n+1

n−r(M−1)

(
k

n

)−r(M−1)

E |X |M I
(

k ≤ |X | 1
r < k + 1

)

≤ C
∞∑

k=2

�k/2�∑

n=1

k−r(M−1)E |X |M I
(

k ≤ |X | 1
r < k + 1

)

≤ C
∞∑

k=2

k1−r(M−1)E |X |M I
(

k ≤ |X | 1
r < k + 1

)
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≤ C
∞∑

k=2

E |X |M+1/r−(M−1) I
(

k ≤ |X | 1
r < k + 1

)

≤ C E |X |1+1/r < ∞. (3.32)

Thus, the inequality (3.22) follows from (3.23)–(3.27), (3.29), (3.31) and (3.32) imme-
diately. This completes the proof of the theorem. ��
Remark 3.1 As mentioned in Sect. 1, NA implies NSD, so Theorems 3.1–3.3 and
Corollary 3.1 hold for NA random variables without adding any extra conditions.

4 A weak law of large numbers for NSD random variables

In this section, we will present a weak law of large number for sequences of NSD
random variables by using the Rosenthal type inequality. The main result is as follows.

Theorem 4.1 Let α > 1/2 and {X, Xn, n ≥ 1} be a sequence of identically
distributed NSD random variables. Denote Sn =∑n

i=1 Xi . If

lim
n→∞ n P(|X | > nα) = 0, (4.1)

then

Sn

nα
− n1−α E X I

(|X | ≤ nα
) P−→ 0. (4.2)

Proof For fixed n ≥ 1, let

Yni = −nα I (Xi < −nα) + Xi I (|Xi | ≤ nα) + nα I (Xi > nα), i = 1, 2, . . .

and Tn =∑n
i=1 Yni for each n ≥ 1. By (4.1), we have for any ε > 0,

P

(∣
∣
∣
∣

Sn

nα
− Tn

nα

∣
∣
∣
∣ > ε

)

≤ P (Sn �= Tn) ≤ P

(
n⋃

i=1

(Xi �= Yni )

)

≤
n∑

i=1

P
(|Xi | > nα

) = n P
(|X | > nα

) → 0, n → ∞,

which implies

Sn

nα
− Tn

nα

P−→ 0. (4.3)

Hence, in order to prove (4.2), we only need to show that

Tn

nα
− ETn

nα

P−→ 0. (4.4)
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By (4.1) and Toeplitz’s lemma, we have

∑n
k=1 k2α−2 · k P(|X | > kα)
∑n

k=1 k2α−2
→ 0, n → ∞. (4.5)

Note that

n∑

k=1

k2α−2 
 n2α−1, for α > 1/2. (4.6)

Combining (4.5) and (4.6), we have

n−2α+1
n∑

k=1

k2α−1 P(|X | > kα) → 0, n → ∞. (4.7)

By Lemma 2.3, (4.1) and (4.7), it follows that

P
(|Tn − ETn| > εnα

) 
 n−2α E |Tn − ETn|2 
 n−2α
n∑

i=1

EY 2
ni


 n−2α+1
[

E X2 I (|X | ≤ nα) + n2α P
(|X | > nα

)]

= n−2α+1 E X2 I (|X | ≤ nα) + n P
(|X | > nα

)

= n−2α+1
n∑

k=1

E X2 I ((k − 1)α < |X | ≤ kα) + n P
(|X | > nα

)

≤ n−2α+1
n∑

k=1

k2α
[
P
(|X | > (k − 1)α

)− P
(|X | > kα

)]+ n P
(|X | > nα

)

=n−2α+1

[
n−1∑

k=1

(
(k + 1)2α−k2α

)
P(|X | > kα) + P(|X | > 0)−n2α P(|X | > nα)

]

+n P
(|X | > nα

)


 n−2α+1

[
n∑

k=1

k2α−1 P(|X | > kα) + 1

]

+ n P
(|X | > nα

)

→ 0, n → ∞.

This completes the proof of the theorem. ��
Remark 4.1 When α = 1 and {X, Xn, n ≥ 1} is a sequence of independent and
identically distributed random variables, Theorem 4.1 is the weak law of large numbers
due to Feller (1946). Hence, Theorem 4.1 extends the sufficient part of the Feller’s weak
law of large numbers for independent and identically distributed random variables to
the case of NSD random variables.
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