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1. INTRODUCTION
As is well known that the Kolmogorov strong law of large numbers (SLLN) and Marcinkiewicz–

Zygmund SLLN play important roles in probability limit theory and mathematical statistics, which have
been studied by many authors. It is more interesting to consider a general case.

Jajte [4] studied a large class of summability methods defined as follows: it is said that a sequence
{Xn, n � 1} of random variables is almost surely (a.s.) summable to random variable X by the method
(h, g) if

1

g(n)

n∑

k=1

Xk

h(k)
→ 0 a.s. as n → ∞. (1)

Note that the SLLN of the form (1) embraces the Kolmogorov SLLN (g(n) = n, h(n) = 1) and the
Marcinkiewicz–Zygmund SLLN (g(n) = n1/r, h(n) = 1, 1 < r < 2).

For a sequence {Xn, n � 1} of independent and identically distributed (i.i.d.) random variables,
Jajte [4] proved that {Xn −E(XnI(|Xn| � φ(n))), n � 1} is almost surely summable to 0 by the method
(h, g) if and only if E(φ−1(|X|)) < ∞, where φ−1 is the inverse of φ, and φ, g, h are functions satisfying
the conditions of the following hypothesis.

Hypothesis A. Let g be a positive, increasing function with limx→∞ g(x) = ∞ and h a positive
function such that φ(x) = g(x)h(x) satisfies the following conditions:

(i) For some d � 0, φ is strictly increasing on [d,∞) with range [0,∞);

(ii) There exist c and a positive integer k0 such that φ(x+1)
φ(x) � c, x � k0;

(iii) There exist constants a and b such that

φ2(s)

∞∫

s

1

φ2(x)
dx � as+ b, s > d. (2)
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Inspired by Jajte [4], Jing and Liang [5] and Wang [17] extended the result of Jajte [4] to negatively
associated random variables. The result of Jajte [4] was extended to ρ̃-mixing random variables by Meng
and Lin [9] and to the random field setting by Lagodowski and Matuła [7]. Sung [16] gave some sufficient
conditions to prove the SLLN for weighted sums of random variables. Recently, the result of Jajte [4]
was studied by Miao et al. [10] and Son et al. [15] for martingale differences and negatively superadditive
dependent random vectors in Hilbert spaces, respectively. The proofs of the above results are based on
the Kolmogorov convergence criterion or the Kolmogorov three series theorem.

The main purpose of the present paper is to extend the result of Jajte [4] to the case of random
elements in Banach spaces. We provide necessary and sufficient conditions so that the SLLN for
weighted sums would hold for an arbitrary sequence of random elements without imposing any geo-
metric condition on the Banach space. Some typical applications of the main results are given.

Throughout the paper, the symbol C will denote a generic positive constant which is not necessarily
the same one in each appearance. I(A) denotes the indicator function of the event A. The definition of
stochastic domination will be used in the paper as follows.

A sequence {Xn, n � 1} of random elements is said to be strongly stochastically dominated by a
random element X if there exist positive constants c1 and c2 such that

c1P(||X|| > t) � P(||Xn|| > t) � c2P(||X|| > t) for all t � 0, n � 1. (3)

If only the right-hand side of (3) is satisfied, then the sequence {Xn, n � 1} is said to be stochastically
dominated by X. Note that (3) is, of course, automatic with X = X1 and c1 = c2 = 1 if {Xn, n � 1} is
a sequence of identically distributed random elements.

2. MAIN RESULTS

Based on Hypothesis A, we will state the main results under the following hypothesis, where
condition (2) of Jajte [4] is replaced by condition (4).

Hypothesis B. Let p � 1, let g be a positive, increasing function with limx→∞ g(x) = ∞ and h a
positive function such that φ(x) = g(x)h(x) satisfies the following conditions:

(i) For some d � 0, φ is strictly increasing on [d,∞) with range [0,∞);

(ii) There exist c and a positive integer k0 such that φ(x+1)
φ(x) � c, x � k0;

(iii) There exist constants a and b such that

φp(s)

∞∫

s

1

φp(x)
dx � as+ b, s > d. (4)

Theorem 2.1. Let p � 1, let φ be a function satisfying the conditions of Hypothesis B, and
let {Xn, n � 1} be a sequence of random elements in a real separable Banach space, which is
strongly stochastically dominated by a random element X. For n � 1, set

mn = E(XnI(||Xn|| � φ(n))); Yn =
XnI(||Xn|| � φ(n))

φ(n)
; Sn =

n∑

k=1

(Yk − EYk).

(i) If
∞∑

k=n

E||Yk − EYk||p → 0 as n → ∞ (5)

implies {Sn, n � 1} converges a.s., then the condition

E(φ−1(||X||)) < ∞ (6)

implies
∞∑

n=1

Xn −mn

φ(n)
converges a.s. (7)
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(ii) If Xn/φ(n) → 0 a.s. implies Xn/φ(n) → 0 c.c., then (7) implies (6).
Proof. (i) Assume that (6) holds. Note that

∞∑

n=1

E||Yn − EYn||p � C

∞∑

n=1

E||XnI(||Xn|| � φ(n))||p
φp(n)

� C

∞∑

n=1

E||XI(|X| � φ(n))||p
φp(n)

+ C

∞∑

n=1

P(||X|| > φ(n)). (8)

Then by (6) and the conditions of Hypothesis B, we have
∞∑

n=1

E||XI(|X| � φ(n))||p
φp(n)

= E

( ∞∑

n=1

||X||p
φp(n)

I(||X|| � φ(n))

)

= C + E

⎛

⎝
∞∑

n=k0

||X||p
φp(n)

I(||X|| � φ(n))

⎞

⎠ (k0 > d)

� C + CE

⎛

⎝||X||p
∞∑

n=k0

n+1∫

n

I(||X|| � φ(n))

φp(n+ 1)
dx

⎞

⎠

� C + CE

⎛

⎝||X||p
∞∫

k0

I(φ−1(||X||) � x)

φp(x)
dx

⎞

⎠ � C + CE
(
aφ−1(||X||) + b

)
< ∞,

and
∞∑

n=1

P (||X|| > φ(n)) < ∞. (9)

Combining (8) and (9) yields (5). So that
∞∑

n=1

(Yn − EYn) converges a.s. (10)

Now by using (9) again, we get
∞∑

n=1

P (||Xn|| > φ(n)) � C

∞∑

n=1

P (||X|| > φ(n)) < ∞.

Hence, by the Borel–Cantelli Lemma,

P (lim sup(||Xn|| > φ(n))) = 0. (11)

This implies that Yn = Xn/φ(n) for all sufficiently large n with probability one. Therefore, (7) follows
immediately from (10).

(ii) Now assume that (7) holds. We have

0 � ||mn||
φ(n)

� E(||Xn||I(||Xn|| � φ(n)))

φ(n)
→ 0 as n → ∞.

Therefore (7) implies Xn/φ(n) → 0 a.s., and so Xn/φ(n) → 0 c.c. This ensures that
∞∑

n=1

P (||Xn|| � φ(n)) < ∞.

Then we have

E(φ−1(||X||)) � C +

∞∑

n=1

P (||X|| > φ(n)) � C + C

∞∑

n=1

P (||Xn|| > φ(n)) < ∞.
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This ends the proof of theorem. �

Remark 2.2. Let p � 1, let φ be a function satisfying the conditions of Hypothesis B, and let
{Xn,Fn, n � 1} be an adapted sequence in a real separable Banach space. Assume that {Xn, n � 1} is
stochastically dominated by a random element X. We set

mn = E (XnI(||Xn|| � φ(n))|Fn−1) ;

Yn =
XnI(||Xn|| � φ(n))

φ(n)
; Sn =

n∑

k=1

(Yk − E(Yk|Fk−1)) , n � 1.

Then, by the similar arguments as above, we can show that statement (i) of Theorem 2.1 holds if (5) is
replaced by the following condition

∞∑

k=n

E||Yk − E(Yk|Fk−1)||p → 0 as n → ∞.

Theorem 2.3. Let p � 1, let φ, g, h be functions satisfying the conditions of Hypothesis B, and
let {Xn, n � 1} be a sequence of mean zero random elements in a real separable Banach space,
which is strongly stochastically dominated by a random element X. For n � 1, set

Yn =
XnI(||Xn|| � φ(n))

φ(n)
; Sn =

n∑

k=1

(Yk − EYk).

(i) If (5) implies {Sn, n � 1} converges a.s., then condition (6) implies

1

g(n)

n∑

k=1

Xk

h(k)
→ 0 a.s. as n → ∞. (12)

(ii) If Xn/φ(n) → 0 a.s. implies Xn/φ(n) → 0 c.c., then (12) implies (6).

Proof. (i) Assume that (6) holds. Then by using (11), we have
∞∑

n=1

∣∣∣∣

∣∣∣∣E
(

Xn

φ(n)
I(||Xn|| � φ(n))

)∣∣∣∣

∣∣∣∣ =
∞∑

n=1

∣∣∣∣

∣∣∣∣E
(

Xn

φ(n)
I(||Xn|| > φ(n))

)∣∣∣∣

∣∣∣∣ < ∞.

It follows from this and (7) that
∞∑

n=1

Xn

φ(n)
converges a.s. (13)

Then by the Kronecker lemma, we obtain (12).

(ii) We now assume that (12) holds. Set

σn =
1

g(n)

n∑

k=1

Xk

h(k)
=

1

g(n)

(
n−1∑

k=1

Xk

h(k)
+

Xn

h(n)

)
.

Then we have Xn
φ(n) = σn − g(n−1)

g(n) σn−1. This and (12) ensure that Xn/φ(n) → 0 a.s. Repeating the
arguments given in the end of the proof of Theorem 2.1 shows that (6) holds. �

Remark 2.4. According to the proof of Theorem 2.3, it is easy to see that this result holds if (12)
is replaced by (13). Moreover, we can also show that Theorem 2.1 still holds if (7) is replaced by the
following:

1

g(n)

n∑

k=1

Xk −mk

h(k)
→ 0 a.s. as n → ∞. (14)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 41 No. 6 2020



1000 NGUYEN VAN HUAN, VOLODIN

3. APPLICATIONS

We observe that the techniques used in the proof of the main results are relatively simple. However,
these results can be applied to many classes of dependent random sequences. In this section, we
will focus on three typical applications. The first is apparently a new result about the SLLN for
weighted sums of independent random elements in Rademacher type p Banach spaces. Before stating
Theorem 3.2, we recall the concept of Rademacher type p Banach space.

Let E be a Banach space, let {Yn, n � 1} be a symmetric Bernoulli sequence; that is, {Yn, n � 1} is
a sequence of i.i.d. random variables with P(Y1 = ±1) = 1/2. Let E∞ = E×E×E× ... and define

C(E) =
{
(v1, v2, ...) ∈ E∞ :

∞∑

n=1

Ynvn converges in probability
}
.

Then E is said to be of Rademacher type p (1 � p � 2) if there exists a positive constant C such that

E

∣∣∣∣∣

∣∣∣∣∣

∞∑

n=1

Ynvn

∣∣∣∣∣

∣∣∣∣∣

p

� C
∞∑

n=1

||vn||p for all (v1, v2, ...) ∈ C(E).

It is well known that if a real separable Banach space is of Rademacher type p for some 1 < p � 2,
then it is of Rademacher type q for all 1 � q < p. Every real separable Banach space is of Rademacher
type (at least) 1, while the Lp-spaces and �p-spaces are of Rademacher type min{2; p} for p � 1. Every
real separable Hilbert space and real separable finite-dimensional Banach space is of Rademacher type 2.
In particular, the real line R is of Rademacher type 2.

Lemma 3.1 ([14], Lemma 2.1). Let {Xn, n � 1} be a sequence of independent mean zero random
elements in a real separable Rademacher type p (1 � p � 2) Banach space. Then

E

(
max
1�k�n

∣∣∣∣∣

∣∣∣∣∣

k∑

l=1

Xl

∣∣∣∣∣

∣∣∣∣∣

p)
� C

n∑

k=1

E||Xk||p, n � 1,

where the constant C is independent of n.
Theorem 3.2. Let 1 � p � 2, let φ, g, h be functions satisfying the conditions of Hypothesis

B, and let {Xn, n � 1} be a sequence of independent random elements in a real separable
Rademacher type p Banach space. Assume that {Xn, n � 1} is strongly stochastically dominated
by a random element X. Set mn = E(XnI(||Xn|| � φ(n))), n � 1. Then (6), (7), and (14) are
equivalent to each other. If we further assume that EXn = 0 for all n � 1, then (6), (12), and
(13) are equivalent to each other.

Proof. For n � 1, set

Yn =
XnI(||Xn|| � φ(n))

φ(n)
; Sn =

n∑

k=1

(Yk − EYk).

We assume that (5) holds. Then by the Markov inequality and Lemma 3.1,

P

(
sup
k�n

||Sk − Sn|| > ε

)
= P

(
⋃

m�n

( max
n�k�m

||Sk − Sn|| > ε)

)

= lim
m→∞

P( max
n�k�m

||Sk − Sn|| > ε) � C lim
m→∞

E( max
n�k�m

||Sk − Sn||)p

� C
∞∑

k=n

E||Yk − EYk||p → 0 as n → ∞.

This implies that {Sn, n � 1} converges a.s.
On the other hand, since the sequence {Xn, n � 1} is independent, Xn/φ(n) → 0 a.s. implies

Xn/φ(n) → 0 c.c.
From the above arguments, Theorems 2.1, 2.3, and Remark 2.4 we finish the proof of theorem. �
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Remark 3.3. Let us note that the real line R is of Rademacher type p for all 1 � p � 2. Therefore, if
{Xn, n � 1} is a sequence of i.i.d. (real-valued) random variables, then Theorem 3.2 implies the main
result of Jajte [4], where condition (2) is replaced by condition (4) for some 1 � p � 2.

From Remark 2.2, by using Lemma 2.2. of Hu et al. [3] and some similar arguments as in the proof
of Theorem 3.2, we can obtain the next theorem. This result establishes the SLLN for weighted sums of
martingale differences in martingale type p Banach spaces.

A real separable Banach space E is said to be of martingale type p (1 � p � 2) if there exists a positive
constant C such that for all martingales {Xn,Fn, n � 1} with values in E,

sup
n�1

E||Xn||p � C

∞∑

n=1

E||Xn −Xn−1||p,

where X0 = 0. It follows from Hoffmann–Jørgensen and Pisier [2] characterization of Rademacher type
p Banach spaces that if a Banach space is of martingale type p, then it is of Rademacher type p. But the
notion of martingale type p is only superficially similar to that of Rademacher type p and has a geometric
characterization in terms of smoothness. For more details, the reader may refer to Pisier [11, 12].

Theorem 3.4. Let 1 � p � 2, let φ, g, h be functions satisfying the conditions of Hypothesis B,
and let {Xn,Fn, n � 1} be a martingale difference sequence in a martingale type p Banach space.
Assume that {Xn, n � 1} is stochastically dominated by a random element X. Set

mn = E (XnI(||Xn|| � φ(n))|Fn−1) ;

Yn =
XnI(||Xn|| � φ(n))

φ(n)
; Sn =

n∑

k=1

(Yk − E(Yk|Fk−1)) , n � 1.

Then the condition E(φ−1(||X||)) < ∞ implies

1

g(n)

n∑

k=1

Xk −mk

h(k)
→ 0 a.s. as n → ∞.

Remark 3.5. In the special case when {X,Xn,Fn, n � 1} is a real-valued, identically distributed
martingale differences and p = 2, from Theorem 3.4 we get Theorem 2.1 of Miao et al. [10]. Note that
there is a typo in the result of Miao et al. [10]. The condition limx→∞ g(x) = ∞ is missing, this is used
to apply the Kronecker lemma in their proof.

In the next theorem of the paper, we provide an application of the main results for the case of negative
association. This theorem generalizes Theorem 2.3 of Jing and Liang [5]. Note that the usual truncation
technique preserves the independence property. However, this technique does not preserve the negative
association property. In order to state and prove Theorem 3.8, we recall the concept of negatively
associated random variables and give the following two lemmas.

A finite family {Xk, 1 � k � n} of random variables is said to be negatively associated if for every
pair of disjoint subsets A1 and A2 of {1, 2, ..., n},

Cov (f1(Xk, k ∈ A1), f2(Xl, l ∈ A2)) � 0

whenever f1 and f2 are coordinatewise nondecreasing and the covariance exists. An infinite family
of random variables is negatively associated if every finite subfamily is negatively associated. This
concept was introduced by Alam and Saxena [1] and carefully studied by Joag-Dev and Proschan [6].

The following lemma was proved by Shao in [13, Theorem 2].
Lemma 3.6. Let 1 � p � 2, and let {Xn, n � 1} be a sequence of negatively associated mean

zero random variables. Then

E

(
max
1�k�n

∣∣∣∣∣

k∑

l=1

Xl

∣∣∣∣∣

p)
� C

n∑

k=1

E|Xk|p, n � 1,

where the constant C is independent of n.
The next lemma follows immediately from Lemma 1 of Matuła [8]. We can use this lemma to show the

relationship between almost sure convergence and complete convergence for some kinds of assumption
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on the dependence structure: independence, pairwise independence, negative association, and pairwise
negative quadrant dependence.

Lemma 3.7 (A zero-one law). Suppose that the sequence of events {An, n � 1} satisfies

P(Am ∩An) � P(Am)P(An) for all m �= n.

Then

P (lim supAn) =

{
0, when

∑∞
n=1 P(An) < ∞;

1, when
∑∞

n=1 P(An) = ∞.

Theorem 3.8. Let 1 � p � 2, let φ, g, h be functions satisfying the conditions of Hypothesis
B, and let {Xn, n � 1} be a sequence of negatively associated random variables. Assume
that {Xn, n � 1} is strongly stochastically dominated by a random variables X. Set mn =
E(XnI(|Xn| � φ(n))), n � 1. Then statements (7) and (14) are equivalent to

E(φ−1(|X|)) < ∞. (15)

If we further assume that EXn = 0 for all n � 1, then (12), (13), and (15) are equivalent to each
other.

Proof. Set

Yn =
Xn

φ(n)
I(|Xn| � φ(n)); Sn =

n∑

k=1

(Yk − EYk);

Y ∗
n = Yn + I(Xn > φ(n))− I(Xn < −φ(n)); S∗

n =
n∑

k=1

(Y ∗
k − EY ∗

k ).

We assume that
∞∑

k=n

E|Yk − EYk|p → 0 as n → ∞. (16)

Then by Lemma 3.6, for all ε > 0 and m � n � 1, we have

P( max
n�k�m

|Sk − Sn| > ε)

� P( max
n�k�m

|S∗
k − S∗

n| > ε/2) + P

(
m∑

k=n

(I(|Xk| > φ(k)) + P(|Xk| > φ(k))) > ε/2

)

� P( max
n�k�m

|S∗
k − S∗

n| > ε/2) +C
m∑

k=n

P(|Xk| > φ(k))

� CE( max
n�k�m

|S∗
k − S∗

n|)p + C
m∑

k=n

P(|Xk| > φ(k))

� C
m∑

k=n

E|Y ∗
k − EY ∗

n |p + C
m∑

k=n

P(|Xk| > φ(k))

� C
m∑

k=n

E (|Yk − EYn|+ I(|Xk| > φ(k)) + P(|Xk| > φ(k)))p +C
m∑

k=n

P(|Xk| > φ(k))

� C
m∑

k=n

E|Yk − EYn|p + C
m∑

k=n

P(|Xk| > φ(k)).

Therefore, if (15) holds, then condition (16) implies {Sn, n � 1} converges a.s.
By Theorems 2.1, 2.3, and Remark 2.4, it is sufficient to prove that Xn/φ(n) → 0 a.s. im-

plies Xn/φ(n) → 0 c.c. Indeed, assume that Xn/φ(n) → 0 a.s. Hence, X±
n /φ(n) → 0 a.s. Since
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{X±
n /φ(n), n � 1} is still a negatively associated sequence, it follows from Lemma 3.7 that X±

n /φ(n) →
0 c.c. Hence

∞∑

n=1

P

(∣∣∣∣
Xn

φ(n)

∣∣∣∣ � ε

)
�

∞∑

n=1

P

(
X+

n

φ(n)
� ε

2

)
+

∞∑

n=1

P

(
X−

n

φ(n)
� ε

2

)
< ∞ for all ε > 0.

This implies that Xn/φ(n) → 0 c.c. as n → ∞. �
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