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Abstract—In this paper, we introduce a new probability mass function by discretizing the contin-
uous failure model of the generalized odd Lindley–Weibull distribution, which is called the discrete
generalized odd Lindley–Weibull (DGOL-W) distribution. This new probability mass function is
characterized by a very flexible probability function: reverse J-shape, right-skewed shape, left-
skewed shape, and close to symmetric shape. The proposed distribution has five special models,
i.e., the discrete generalized odd Lindley-exponential, discrete generalized odd Lindley–Rayleigh,
discrete odd Lindley–Weibull, discrete odd Lindley-exponential, and discrete odd Lindley–Rayleigh
distributions. Some properties of the proposed distribution are introduced. The maximum likelihood
estimation is used to estimate the unknown parameters of the DGOL-W distribution. Applications
are illustrated, which show that the model is suited for use in various data sets, i.e., the mean and
variance of the count data are equal, over-dispersion count data, and under-dispersion count data.
Based on the results, we have shown that the DGOL-W distribution provides a better fit compared
to the Poisson, discrete Lindley and four sub-models of DGOL-W distribution for count data.
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1. INTRODUCTION

In the field of reliability theory, modeling of lifetime data is very important. Statistical distributions
such as exponential, lognormal, Weibull, Lindley, Rayleigh, etc., are available for modeling lifetime data.
However, in many practical areas, these distributions do not provide adequate fit in modeling data, and
there is a clear need for the extended version of the distributions (Ahmad et al. (2018) [1]). Recently,
Afify et al. (2019) [2] proposed the generalized odd Lindley–Weibull (GOL-W) distribution, which is
a new class of the generalized odd Lindley-G family of distribution. The GOL-W distribution has the
probability density function (pdf) and the cumulative density function (cdf) as follows:
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where 0 < pλ = exp(−λ) < 1 and α, β, λ, θ > 0. The GOL-W distribution has four special models.
That is, if θ = 1 and θ = 2 then the GOL-W distribution reduces to the generalized odd Lindley-
exponential and generalized odd Lindley-Rayleigh distributions, respectively. When α = 1 the GOL-W
distribution reduces to the odd Lindley-exponential distribution for θ = 1 and the odd Lindley–Rayleigh
distribution for θ = 2.

Generally, one associates the lifetime of a product with continuous non-negative lifetime distribu-
tions, however, in practice, the lifetime can be best described through non-negative integer-valued
random variables. Although continuous lifetime distributions are playing their roles in reliability analysis
very well, in certain scenarios, when measured data is discrete and realized from a continuous setup,
an alternative is needed. For this purpose, researchers developed the discretized version of continuous
lifetime distributions. This development is generally based on discrete lifetime phenomena that are
expressed through grouping or finite precision measurement of continuous-time phenomena. Therefore,
the inference is based on observed discrete values that are only indicative of the intervals to the which
unobserved continuous variable belongs, but not its true values. Hence, this is a case where one makes
use of a discretization of the underlying continuous variable. For this purpose, the discretized version of
continuous lifetime distributions was developed. This development is generally based on discrete lifetime
phenomena that are expressed through grouping or finite precision measurement of continuous-time
phenomena. In survival analysis, the survival function may be a function of a count random variable
that is a discrete version of the underlying continuous random variable. From these examples, it is clear
that the continuous lifetime may not necessarily always be measured on a continuous scale, but may
often be counted as discrete random variables (see Ahmad et al. (2018) [1], Chakraborty (2015) [3]).
The characterization of a probability distribution plays an important role in statistics and mathematical
sciences. Many researchers developed a new distributions (Ahsanullah et al. (2015) [4]).

Let X be a random variable that has a lifetime distribution on [0,∞) with the pdf g(x) and the
cdf G(x); one can construct a discrete counterpart supported on the set of integers 0, 1, 2, . . . , whose
probability mass function (pmf) is (see Roy (2003), [5], Roy (2004) [6], and Alamatsaz et al. (2016) [7])
given by:

f(x) = P (X = x) = SG(x)− SG(x+ 1), x = 0, 1, 2, . . . , (1.3)

where S(x) is a survival function of the lifetime distribution; that is, S(x) = P (X > x) = 1−G(x).

In Section 2 of this article, a new discretization of a continuous distribution, the GOL-W distribution,
is proposed. Properties and application of the proposed distribution are discussed in Sections 3 and 4,
respectively. A conclusion is presented in Section 5.

2. A NEW DISCRETIZATION OF A CONTINUOUS DISTRIBUTION

In this section, we provide a new discretization of the GOL-W distribution called the discrete
generalized odd Lindley–Weibull (DGOL-W) distribution. From the cdf in equation (1.2), we have
the survival function of the GOL-W distribution (see Afify et al. (2019) [2]), i.e.,

SGOL-W(x) =

[
1 +

β

1 + β

(1− px
θ

λ )
α

1− (1− px
θ

λ )
α

]
exp

{
−β

(1− px
θ

λ )
α

1− (1− px
θ

λ )
α

}
; x > 0. (2.1)

As a result of the equation (2.1) we have Definition 1, which is presents the pmf of the DGOL-W
distribution.

Definition 1. Let X be a DGOL-W distributed random variable with the parameters α, β, λ, and θ,
denoted as X ∼ DGOL-W(α, β, λ, θ). The pmf of X is then defined by
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Fig. 1. The pmf plot of the DGOL-W distribution with the specified parameters of α, β, λ, and θ.
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where x = 0, 1, 2, . . . and 0 < pλ = exp(−λ) < 1.

Figure 1 illustrates the pmf behaviors of the DGOL-W distribution for several values of α, β, λ
and θ. The DGOL-W pmf has several behaviors such as the reverse J-shape (see Figure 1 (a)–(c)), the
unimodality (see Figure 1 (d)–(i)), the right-skewed shape (see Figure 1 (a)–(d), (f)–(g)), and the left-
skewed shape (see Figure 1 (i)). Figure 1 (e), (h) shows the DGOL-W pmf that is close to a symmetric
distribution. In addition, the mode of the distribution shifts towards the right when α increases.

Based on F (x) = P (X ≤ x) = 1− SG(x) + P (X = x) (see Alamatsaz et al. (2016) [7], Jayakumar
and Babu (2019) [8]), we have the cdf of the DGOL-W distribution in equation (2.3),
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where x = 0, 1, 2, . . .. Some cdf plots of X are shown in Figure 2.

We have five special models of the DGOL-W distribution as follows.
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Fig. 2. The cdf plot of the DGOL-W distribution with the specified parameters of α, β, λ, and θ.

2.1. The Discrete Generalized Odd Lindley-Exponential (DGOL-E) Distribution
If X ∼ DGOL-W(α, β, λ, θ) with the pmf in equation (2.2), where θ = 1 then the DGOL-W

distribution reduces to the DGOL-E distribution with the pmf

fDGOL-E(x) =
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where x = 0, 1, 2, . . . and α, β, λ > 0.

2.2. The Discrete Generalized odd Lindley-Rayleigh (DGOL-R) Distribution
The DGOL-W(α, β, λ, θ) distribution reduces to the DGOL-R distribution for θ = 2. We have the

pmf of the DGOL-R distribution as follows
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where x = 0, 1, 2, . . ., and α, β, λ > 0.
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2.3. The Discrete Odd Lindley–Weibull (DOL-W) Distribution

The DGOL-W distribution with the parameters α, β, λ and θ where α = 1 reduces to the DOL-W
distribution with the pmf

fDOL-W(x) =
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where x = 0, 1, 2, . . . , and β, λ, θ > 0.

2.4. The Discrete Odd Lindley-exponential (DOL-E) Distribution

Let X ∼ DGOL-W(α, β, λ, θ) for α = θ = 1, we obtain the DOL-E distribution with the positive
parameters β and λ. The pmf of the DOL-E distribution is
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2.5. The Discrete Odd Lindley–Rayleigh (DOL-R) Distribution

Let X ∼DGOL-W(α, β, λ, θ) forα = 1 and θ = 2, we have the DOL-R distribution with the positive
parameters β and λ. The pmf of DOL-R is given by

fDOL-R(x) =
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3. CHARACTERISTIC PROPERTIES OF THE DGOL-W DISTRIBUTION

3.1. Quantile Function

Let X be a random variable that Weibull distribution with positive parameters λ and θ. Then, the
quantile function of X is

GWeibull(x) = 1− exp−λxθ
and G−1

Weibull(u) =

[
− 1

λ
log(1− u)

]1/θ
.

If X is a GOL-W random variable, then the quantile function is

QGOL-W(u) = G−1
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, (3.1)

where W (z) is the negative branch of the Lambert function. The branches of this function are defined
by z = W [z exp(z)]. It is a two-valued function on the interval [−1/ exp(1), 0 ). For W (z) ≤ −1, the
function is denoted W−1(z) and is called the negative branch. For W (z) > −1, the function is called the
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principal branch of the W function. The Lambert function cannot be expressed in terms of elementary
functions (see Afify et al. (2019) [2]).

From the cdf of the DGOL-W distribution in equation (2.3), the quantile function of the DGOL-
W distribution denoted by QF (u) can be obtained by inverting its distribution function of it. When
u is on [0,1] then FDGOL-W(Q(u)) = u. The quantile function of the DGOL-W distribution, i.e.,
QDGOL-W(u) = QF(u) is given by

QF(u) =

⎢⎢⎢⎣
{
− 1

λ
log
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− 1

⎥⎥⎥⎦ , (3.2)

where �·� is the floor function.
To generate a random variable X from the DGOL-W(α, β, λ, θ), which is based on generating

random data by inverting equation (3.2), one can use the following algorithm:
(1) Set the values of α, β, λ and θ.
(2) Set the sample size of n.
(3) Generate Ui according to the uniform distribution on interval (0,1) where i = 1, 2, . . . , n.

(4) Make the transformation Xi =

⌊{
− 1

λ log

[
1−

(
β+W−1[−(1−u)(β+1) exp(−β−1)]+1
W−1[−(1−u)(β+1) exp(−β−1)]+1

)1/α]}1/θ

− 1

⌋
.

3.2. Order Statistics
Let X1,X2, . . . ,Xn be n independent and identically distributed (iid) random variables, i.e., Xi ∼

DGOL-W(α, β, λ, θ), each with cdf and pmf in equations (2.3) and (2.2), respectively. Let X(1) ≤
X(2) ≤ · · · ≤ X(n) denote these random variables rearranged in non-descending order of magnitude.
Then, the pmf of the rth order statistic can always be expressed as
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, (3.3)

where x = 0, 1, 2, . . . and r = 1, 2, . . . , n.

3.3. Index of Dispersion
The index of dispersion (ID) for any distribution indicates whether the distribution is over-dispersed

(ID > 1) or under-dispersed (ID < 1) (see Chakraborty and Chakravarty, 2012 [9]). The ID for any
distribution is defined as the ratio between variance to mean. From the first and second moments of the
distribution in equation (2.2), the mean and variance of the DGOL-W distribution are given:

E(X) =
∑
X

xpx(α, β, λ, θ) and V(X) =
∑
X

x2px(α, β, λ, θ) − E2(X); x = 0, 1, 2, . . . ,

where px(α, β, λ, θ) is the pmf as in equation (2.2). The above expressions are infinite series and cannot
be written in closed forms. However, the value of the mean, variance, and ID are shown in Table 1 for
examples under some specified values of parameters α, β, λ, and θ from Fig. 1.
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Table 1. The mean, variance and ID values of the DGOL-W distribution for different value of α, β, λ, and θ

Figure α β λ θ E(X) V(X) ID

1a 2.75 5 1 1.35 0.1843 0.1503 0.8157

1b 0.75 0.6 1 0.95 0.4762 0.3144 0.6602

1c 2 2 0.5 0.5 3.3984 12.1689 3.5807

1d 0.75 0.6 0.5 0.95 1.4660 1.3198 0.9003

1e 5 2 0.5 0.95 2.9429 1.5600 0.5301

1f 2.5 3 0.2 0.8 5.7382 12.9131 2.2504

1g 2.5 2 0.3 0.95 3.2420 3.2373 0.9986

1h 25 2 0.3 1 9.8865 4.1936 0.4242

1i 10 0.2 0.3 0.95 15.9686 10.9512 0.6858

3.4. The Parameter Estimation of the DGOL-W Distribution

In this section, we present the maximum likelihood estimation (MLE) of the parameters for the
DGOL-W distribution. Let X1,X2, . . . ,Xn be n iid random variables with DGOL-W(α, β, λ, θ)
distribution, then the likelihood function of the DGOL-W distribution is given by:
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The corresponding log-likelihood equation is

�(α, β, λ, θ) =

n∑
i=1

log
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λ )
α
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λ )
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⎠
⎫
⎬
⎭ .

To estimate the unknown parameters α, β, λ and θ, we take the partial derivatives of the log-likelihood
function �(α, β, λ, θ) with respect to α, β, λ and θ and equate them to zero, i.e.

∂�(α, β, λ, θ)

∂α
= 0,

∂�(α, β, λ, θ)

∂β
= 0,

∂�(α, β, λ, θ)

∂λ
= 0,

∂�(α, β, λ, θ)

∂θ
= 0. (3.4)

The equations (3.4) cannot be solved in closed form. We obtain the solutions of the maximum
likelihood estimators (MLEs) of α, β, λ and θ from the equation (3.4) by using the numerical method
of the four-dimensional Newton-Raphson type procedure. Solving the score equations simultaneously
using the nlm function in the statistical software package R (R Development Core Team (2018) [10]) is
used to estimate the parameters.

4. APPLICATIONS

In this section, the DGOL-W distribution is applied to three real data sets. The first data set (Data
I) is the number of deaths due to horse kicks (X) in the Prussian army between 1875 and 1894 (see
Klugman et al. (2012) [11]). The mean, variance, and ID values of Y are 0.6100, 0.6100 and 1.0016,
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Table 2. Comparisons of the observed and expected values of Data I, and criteria values of each distribution

X Observed
Expected frequency

frequency Poisson DL DOL-R DOL-E DOL-W DGOL-R DGOL-E DGOL-W

0 109 108.67 119.42 85.12 110.37 110.16 113.10 110.82 109.02

1 65 66.29 52.46 93.17 62.47 62.52 56.91 60.78 65.42

2 22 20.22 19.01 20.37 22.43 22.78 25.61 24.00 20.83

3 3 4.11 6.29 1.31 4.35 4.19 4.26 4.18 4.15

4 1 0.63 1.97 0.03 0.37 0.34 0.11 0.23 0.53

MLEs

μ̂ 0.6100 − − − − − − −
α̂ − − − − − 0.0081 0.0119 11.6588

β̂ − − 693.7769 2.7067 0.7331 0.0452 0.0244 1.0149

λ̂ − 1.3647 0.0008 0.3285 1.0628 0.0524 0.3994 3.0187

θ̂ − − − − 0.6136 − − 0.2899

−2L̂ 206.1067 209.9637 217.0148 206.3491 206.3639 208.0777 206.8113 206.0931

AIC 414.2134 421.9274 438.0296 416.6982 418.7278 422.1554 419.6226 420.1862

BIC 417.5117 425.2257 444.6262 423.2948 428.6228 432.0504 429.5176 433.3795

K-S 0.0048 0.0521 0.1194 0.0069 0.0066 0.0204 0.0120 0.0036

Table 3. Comparison of the observed and expected values of Data III, and criteria values of each distribution

Y Observed
Expected frequency

frequency Poisson DL DOL-R DOL-E DOL-W DGOL-R DGOL-E DGOL-W

0 46 57.76 72.18 46.86 53.46 48.23 54.58 51.91 46.70

1 76 57.39 43.89 71.85 59.30 68.22 54.15 59.44 73.27

2 24 28.51 22.12 31.11 35.15 31.62 38.90 36.73 28.06

3 9 9.44 10.19 5.69 7.72 7.05 8.23 7.62 6.65

4 1 2.35 4.45 0.47 0.36 0.82 0.13 0.29 1.15

MLEs

μ̂ 0.9936 − − − − − − −
α̂ − − − − − 0.0005 0.0070 55.3489

β̂ − − 358.0744 1.0320 0.0044 0.0016 0.0072 5.5369

λ̂ − 1.0318 0.0010 0.5319 5.5417 0.0777 0.5437 3.0603

θ̂ − − − − 0.2099 − − 0.2562

−2L̂ 191.9362 206.8300 188.4519 191.6568 188.2743 195.5790 192.0915 187.3904

AIC 385.8724 415.6600 380.9038 387.3136 382.5486 397.1580 390.1830 382.7808

BIC 388.9223 418.7099 387.0035 393.4133 391.6982 406.3076 399.3326 394.9802

K-S 0.0754 0.1678 0.0245 0.0592 0.0355 0.0851 0.0682 0.0130

respectively (200 observations). Since the mean and variance of Data I are equal, we can use a Poisson
distribution to fit the data.

The second data set (Data II) is the number of strikes (Y ) in the UK coal mining industries (156
observations) in four successive week periods during 1948-1959 (see Ridout and Besbeas (2004) [12]).
The mean, variance, and ID values of Y are 0.9936, 0.7419 and 0.7467, respectively. Since the ID value
of Data II is less than 1, Y should be modeled by an under-dispersed distribution for count data.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 41 No. 6 2020



DISCRETE GENERALIZED ODD LINDLEY–WEIBULL DISTRIBUTION 953

Table 4. Comparison of the observed and expected values of Data III, and criteria values of each distribution

Z Observed
Expected frequency

frequency Poisson DL DOL-R DOL-E DOL-W DGOL-R DGOL-E DGOL-W

0 3541 3277.13 3356.31 594.52 1399.98 3577.61 783.07 3577.61 3545.42

1 599 970.03 839.14 1431.34 1518.06 513.11 849.95 513.11 582.61

2 176 143.56 171.73 1430.12 1057.22 200.73 1099.96 200.73 177.17

3 48 14.17 32.01 762.23 378.60 76.79 1050.61 76.79 61.78

4 20 1.05 5.65 176.60 50.58 26.78 537.23 26.78 23.23

5 12 0.06 0.96 11.11 1.56 8.23 83.82 8.23 9.19

6 5 0.00 0.16 0.08 0.01 2.17 1.37 2.17 3.77

7 1 0.00 0.03 0.00 0.00 0.48 0.00 0.48 1.59

8 4 0.00 0.00 0.00 0.00 0.09 0.00 0.09 0.69

MLEs

μ̂ 0.2960 − − − − − − −
α̂ − − − − 0.0571 0.0607 0.0069 19.6439

β̂ − − 5.0002 1.1385 3.9702 0.1340 0.0468 0.2203

λ̂ − 1.9413 0.0341 0.4497 0.1335 0.0461 0.1149 5.5717

θ̂ − − − − − − 0.0991

−2L̂ 3304.51 3117.35 8402.32 5489.91 3009.77 7711.52 3031.42 3009.10

AIC 6611.02 6236.71 16808.64 10983.81 6025.54 15429.05 6068.85 6026.21

BIC 6617.41 6243.10 16821.42 10996.60 6044.71 15448.22 6088.02 6051.77

K-S 0.0599 0.0419 0.6687 0.4859 0.0035 0.6260 0.0112 0.0027

The third data set is the number of hospital stays (Z) for individuals age 66 and over (4406
observations), this data set was obtained from the National Medical Expenditure Survey in 1987 and
1988 (see Flynn et al. (2009) [13] and Deb and Trivedi (1997) [14]). The mean, variance, and ID values
of Z are 0.2960, 0.5571 and 1.8824, respectively. Since the ID value of Data II is more than 1, Z should
be modeled by an over-dispersed distribution for count data.

To estimate the parameters of each distribution, we compare the proposed DGOL-W model works
in comparison to the other models, such as the Poisson distribution, discrete Lindley (DL) distribution
(Gómez-Déniz, Emilio and Calderı́n-Ojeda, Enrique (2011) [12]) and the sub-models of the DGOL-W
distributions by using the minimum values of the criterion such how as the AIC (Akaike information
criterion) and the BIC (Bayesian information criterion) as indicators of the relative quality of the
statistical models for the given set of data. Given a collection of models for the data, these criteria
estimate the quality of each model, relative to each of the other models.

Suppose that we have a statistical model of some data. Let k be the number of estimated parameters
in the model, and n be the sample size. Let L̂(ω̃) be the maximum value of the likelihood function for the
models. Then the AIC and BIC values of the model are the following:

AIC = −2L̂(ω̃) + 2k and BIC = −2L̂(ω̃) + k log n. (4.1)

Testing of the Kolmogorov–Smirnov (K-S) test is used to compare fitting distributions, where the
smaller values of these statistics give the best fit for the data. If the hypothesized distribution is
F0(x), and the empirical (sample) cumulative distribution function is Fn(x), where Fn(x) is based on
n independent and identically distributed ordered observations X(i), where X(1) ≤ X(2) ≤ · · · ≤ X(n) is
defined as Fn(x) =

1
n

∑n
i=1 I(−∞,x)[X(i)], where I(−∞,x)[X(i)] is the indicator function, which is equal
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(a) Empirical and fitted distributions plot for Data I (b) DGOL-W P-P Plot for data I
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Fig. 3. The empirical and fitted distribution plots and the DGOL-W P-P plot for Data I.
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(a) Empirical and fitted distributions plot for Data II (b) DGOL-W P-P Plot for data II
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Fig. 4. The empirical and fitted distribution plots and the DGOL-W P-P plot for Data II.

to 1 if X(i) ≤ x and equal to 0 otherwise. The values of the K-S test are

K-S = max |Fn(x)− F0(x)|. (4.2)

From the results in Tables 2–4, for the goodness of fit K-S test the DGOL-W distribution gives
a smaller value of the test statistics compared to the other distributions, i.e., Poisson, DL, DGOL-E,
DGOL-R, DOL-W, DOL-E, and DOL-R. Note that the smaller K-S value gives better fit for the data.
Thus, the DGOL-W distribution is the best model to fit these data sets (see Figures 3, 4, and 5).

5. DISCUSSION AND CONCLUSION

Modeling count data is one of the most important issues in statistical research. In this paper, we
introduce a new probability mass function (pmf) by discretizing the continuous failure model of the
generalized odd Lindley–Weibull distribution, which is called the discrete generalized odd Lindley–
Weibull (DGOL-W) distribution. The pmf behaviors have various shapes, i.e., inverse J-shape, right-
skewed shape, left-skewed shape, and close to symmetric shape. The proposed DGOL-W distribution
has five sub-models: the discrete generalized odd Lindley-exponential (DGOL-E), discrete generalized
odd Lindley–Rayleigh (DGOL-R), discrete odd Lindley–Weibull (DOL-W), discrete odd Lindley-
exponential (DOL-E), and discrete odd Lindley–Rayleigh (DOL-R) distributions. Some properties of
the proposed distribution are introduced. The maximum likelihood estimation (MLE) is used to estimate
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(a) Empirical and fitted distributions plot for Data III (b) DGOL-W P-P Plot for data III
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Fig. 5. The empirical and fitted distribution plots and the DGOL-W P-P plot for Data III.

the unknown parameters of the DGOL-E distribution. Applications are illustrated, which show that the
model is suitable for application in various data sets, i.e., the mean and variance of the count data are
equal, under-dispersion count data, and over-dispersion count data. Based on the results, we have
shown that the DGOL-W distribution provides a better fit compared to the Poisson, discrete Lindley
(DL) and the four sub-models for count data.
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