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Abstract—The aim of this article is to develop a new linear model for count data. The main idea is in
an application of a new generalized linear model framework, which we call the Negative Binomial-
Sushila linear model. The Negative Binomial-Sushila distribution has been proposed recently and
applied to count data. This distribution is constructed as a mixture of the Negative Binomial and
Sushila distributions. The mixed distribution is a flexible alternative to the Poisson distribution
when over-dispersed count data is analyzed. The parameters of this distribution are estimated using
a Bayesian approach with R2jags package of the R language. The Negative Binomial-Sushila linear
model is applied to fit two real data sets with an over-dispersion and its performance is compared with
the performance of some traditional models. The results show that the Negative Binomial-Sushila
generalized linear model fits the data sets better than the traditional generalized models for these
data sets.
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1. INTRODUCTION

The Poisson distribution is the most popular model for count data analysis. However, the Poisson
distribution has one of the essential property: the equality of its mean and variance. If such a character-
istic is not conformed by the data we are planning to model, then the test statistics derived based on the
Poisson distribution are not suitable [1]. Obviously, the difference between the variance and the mean
occurs when the variance of data is significantly larger or smaller than its expectation. This phenomenon
is called over-dispersion or under-dispersion, respectively. In practical applications, the problem of
over-dispersion has commonly occurred, thus, many researchers attempt to resolve the problem by using
a mixture of some distributions, for example, to mix the Poisson and Negative Binomial. Some recent
studies about mixed distributions for modeling over-dispersed data are the Poisson-Gamma or Negative
Binomial (NB) [2], Poisson-Lognormal (PL) [3], Negative Binomial-Inverse Gaussian (NB-IG) [4],
Negative Binomial-Lindley (NB-L) [5] and Negative Binomial-Generalized Exponential (NB-GE) [6]
distributions.

The statistical analysis of count data in the discrete univariate parametric distribution framework has
a long and rich history, see, for example [7]. One of the most commonly used statistical analyses tools
is a regression model and obviously, for count data, it has been considered in literature. In regression
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analysis of event counts, the response (dependent) variable of interest is a non-negative integer (count
data), which is explained or analyzed in terms of a set of covariates (independent variables). This
linear regression model has been applied to count data and is known as the Poisson regression, NB
regression, mixed Poisson regression, and mixed NB regression in literature. See, for example [8]. The
linear regression model described above is also called generalized linear model (GLM).

The GLM generalizes ordinary regression models into two ways: It allows the response variable to
have a specific distribution other than the normal one, and it allows to model some function of the mean.
Both advantages of GLM are important for categorical data [9]. The GLMs have become very popular
because of their generality in a wide variety of applications and its flexibility for a distribution of the
response variable or link function. In addition, the GML theory, as a part of the Regression Analysis, is
one of the most important parts of the contemporary Statistical Inference and is of crucial importance
for an Analysis of Variance, and Categorical Data modeling [10].

Recently, several mixed distributions have been proposed to describe the behavior of count response
variable with some explanatory variables in a linear form. Some of these include the mixed NB and mixed
Poisson regression [11], the Generalized Waring regression [12], mixed Poisson-Inverse Gaussian
regression, Poisson-Weighted Exponential regression [13], and Generalized Poisson-Lindley linear
model [14]. These works are based on the GLM with the application of the frequentist approach,
namely with the maximum likelihood estimation of the model parameters. Moreover, some the new
mixed NB models are based on the Bayesian estimation of parameters. For example, NB-L generalized
linear model was presented in [15] and NB-GE generalized linear model were proposed in [16]. The
main difference between the frequentist statistical theory and the Bayesian approach is that the latter
considers parameters as random variables that are characterized by a prior distribution. The advantages
of the Bayesian approach are well known and include a choice of prior beliefs, avoidance of asymptotic
approximation and practical estimation of function of parameters [9, 10].

In this article we suggest a new mixed NB model based on so-called the Negative Binomial-Sushila
(NB-S) distribution. The NB-S distribution has been recently introduced in [17]. It is a new mixed
NB distribution obtained by mixing the Negative Binomial with the Sushila distributions [19]. In some
cases, the NB-S distribution can be regarded as an alternative model for count data, especially for the
over-dispersion phenomena. Since, the NB-S distribution has not been considered in the regression
model, we are interested in extending the NB-S distribution to GLM in order to obtain the NB-S linear
model.

The objective of this research is to propose the NB-S distribution to the GLM for counts. Further-
more, the model parameters are estimated using a Bayesian approach. Alternatively, Markov Chain
Monte Carlo (MCMC) technique can be implemented for the model parameter estimation by using
Bayesian software, such as JAGS. Moreover, the comparison of GLMs based on Poisson, NB, and
NB-S distributions on two real data sets is presented. The NB-S GLM is an alternative model to study
the relationship between a count response and a set of covariates.

The content of the aritcle is as follows. In Section 2, we describe the Negative Binomial-Sushila
distribution. The derivation of NB-S linear model is discussed in Section 3. The Bayesian implementa-
tion and criteria for model comparison are presented in Section 4. The applications of Poisson, NB and
NB-S models for two real data is shown in Section 5. Afterward, the summary of model performance is
discussed in Section 6, and some of conclusions are drawn in Section 7.

2. THE NEGATIVE BINOMIAL-SUSHILA DISTRIBUTION

The Negative Binomial-Sushila distribution is defined as a mixture of the Negative Binomial and
Sushila distributions. It was first proposed and presented in [17], where also some its basis properties
including special cases and the factorial moments are discussed. The Negative Binomial-Sushila
distribution is one of the mixed Negative Binomial distributions which provides a flexible model for over-
dispersed count data analysis. Before discussing the Negative Binomial-Sushila distribution, we will
refer to some characteristics of the Negative Binomial and Sushila distributions themselves.

Initially, the Negative Binomial statistical model can be derived as a mixture of the Poisson and
Gamma distributions or as a series of Bernoulli trails. The probability mass function (pmf) of the NB
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distribution for the number of observed y failures before the rth success in a sequence of Bernoulli trails
is expressed as follows:

P{Y = yi} = g(Y = yi; p, r) =

(
r + yi − 1

yi

)
pr(1− p)yi ,

where yi = 0, 1, 2, . . . , 0 < p < 1, r > 0, and i = 1, . . . , n. Now consider a sequence of random variables
{Yi, 1 ≤ i ≤ n} with the NB distribution with possibly different parameters pi. That is,

P{Yi = yi} = g(Y = yi; pi, r) =

(
r + yi − 1

yi

)
pri (1− pi)

yi , (1)

where yi = 0, 1, 2, . . . , 0 < pi < 1, r > 0, and i = 1, . . . , n.

Now, we re-parameterize parameters pi and r as pi =
φ

μi + φ
and r = φ. Then we obtain the most

common implementation of the NB distribution as the NB2 model [24]. It has a pmf

g(Yi = yi;μi, φ) =
Γ(φ+ yi)

Γ(φ)Γ(yi + 1)

(
φ

μi + φ

)φ( μi

μi + φ

)yi

, (2)

where yi = 0, 1, 2, . . . , μi ≥ 0, φ > 0 and Γ(t) =
∞∫
0

yt−1e−ydy, t > 0 is the complete gamma function.

Note that sometimes parameter φ is considered as the inverse of the dispersion parameter ω, that
is, ω = 1/φ. It is simple to derive from (2), the mean and variance are given by E(Yi) = μi and
V ar(Yi) = μi + μ2

i /φ. Let Yi be the NB random variable with parameter μi and inverse dispersion
parameter φi, written as Yi ∼ NB(μi, φ).

In 2013, the Sushila distribution as a mixture of the Exponential
(
θ
α

)
and Gamma

(
2, θ

α

)
distributions

and φ is the inverse of the dispersion parameter ω, that is ω = φ−1 with φ > 0 is introduced in [19] and
some of its properties are discussed. The Sushila distribution has two parameters α and θ and is denoted
as Sushila(α, θ). It can be seen that the Lindley distribution is a special case of this distribution when
α = 1. The probability density function (pdf) of the Sushila distribution is expressed as

f(Zi = zi;α, θ) =
θ2

α(θ + 1)

(
1 +

zi
α

)
exp

(
− θ

α
zi

)
, (3)

where zi > 0, θ > 0 and α > 0. If a random variable Z has the Sushila(α, θ) distribution, then its
moment generating function is given by (see [17])

MZ(t) =
θ2

(θ + 1)

(θ − αt+ 1)

(θ − αt)2
,

where t < (θ + 1)/α; its mean and variance of Sushila distribution (see [19]) are

E(Z) =
α(θ + 2)

θ(θ + 1)
and V ar(Z) =

α2(θ2 + 4θ + 2)

θ2(θ + 1)2
. (4)

Article [17] has recently proposed a compound NB distribution by re-parametrization of pi in (1) as
pi = e−λi , where λi have Sushila distribution. This distribution is called Negative Binomial-Sushila
(NB-S) distribution and its pmf is obtained in the following form:

P{Yi = yi} = p(Yi = yi; r, α, θ) =
θ2

θ + 1

(
r + yi − 1

yi

) yi∑
j=0

(
yi
j

)
(−1)j

θ + α(r + j) + 1

(θ + α(r + j))2
,

where yi = 0, 1, 2, . . . , for r > 0, α > 0, and θ > 0. Some characteristics of the NB-S distribution were
derived in [17] and, for example, its mean and variance are

E(Yi) =
r

δ1
(δ2 − δ1), V ar(Yi) =

r2δ3
δ1

+
rδ3
δ1

− r2δ22
δ21

− 2rδ2
δ1

+ r,

where δ1 =
θ + 1

θ2
, δ2 =

−α+ θ + 1

(α− θ)2
and δ3 =

−2α+ θ + 1

(θ − 2α)2
, θ �= kα; k = 1, 2. See [17] for more details.
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3. THE NEGATIVE BINOMIAL-SUSHILA LINEAR MODEL

In the previous section we discussed the NB-S distribution which has been recently introduced
to analyze count data, especially in the presence of the over-dispersion. In some cases, the NB-S
distribution can be more flexible than Poisson and NB distributions [17]. In this section, we extend
the NB-S distribution to GLM to obtain the NB-S linear model for count data.

The GLM is a generalization and extension of the linear regression model and it has been widely
discussed in the literature. It is a tool for establishing the relationship between the count variables
and covariates. We consider the NB-S distribution as link function to connect linear combination
of explanatory variables to the response variable and then specify a function of expected value of the
response variable. Hence, the mean of count response, μi = E(Yi), is actually positive. Therefore,
the logarithm of the mean can be considered as the link function, g(μi) = log μi, that relates μi to the
predictors as a linear function (see [18]): g(μi) = log μi = β1 + β2x1 + · · ·+ βk+1xk. We can re-express
the above relation as μi = exp(xT

i β), where xT
i is the ith row of a n× (k + 1) design matrix X, and

β = [β1, . . . , βk+1]
T is a (k + 1)× 1 vector of unknown regression coefficients to be estimated.

The aforementioned framework of GLM can be applied for deriving the NB-S linear model. The
mixture of NB and Sushila distributions is given as

p(Yi = yi;μi, φ, α, θ) =

∞∫
0

NB(y; zμi, φ)Sushila(z;α, θ)dz.

The mean response μi is similar to the one described in (2) and z follows the Sushila distribution.
Based on (2), and (3), the pmf of the NB-S distribution can be re-written as

p(Yi = yi;μi, φ, α, θ) =
Γ(φ+ yi)

Γ(φ)Γ(yi + 1)

θ2

α(θ + 1)

∞∫
0

(
φ

zμi + φ

)φ( zμi

zμi + φ

)yi (
1 +

z

α

)
e−

θ
α
zdz,

where yi = 0, 1, 2, . . . , μi ≥ 0 and φ > 0 is inverse of the dispersion parameter.

The response variable Yi is assumed to follow the NB-S distribution, represented as Yi ∼ NB −
S(μi, φ, α, θ). The mean of response can then be calculated using the conditional expectation as follows:

E(Yi) = μi × E(z) = μi ×
α(θ + 2)

θ(θ + 1)
,

where E(z) is the mean of the Sushila distribution given in (4). For the NB-S GLM, let Yi be a response
variable and xT

i be the set of covariates. The conditional distribution of Yi given xT
i is assumed to follow

the NB-S(μi, φ, α, θ) distribution, express as Yi|xT
i ∼ NB-S(μi, φ, α, θ), μi = ex

T
i β. The pmf of Yi|xT

i
can be written in the linear model form with a log-link function as

f(yi|xT
i ) =

Γ(φ+ yi)

Γ(φ)Γ(yi + 1)

θ2

α(θ + 1)

∞∫
0

(
φ

zex
T
i β + φ

)φ
(

zex
T
i β

zex
T
i β + φ

)yi (
1 +

z

α

)
e−

θ
α
zdz. (5)

Therefore, the mean response of observation Yi is dependent on vector of independent variables xT
i and

can be expressed in the form of exponential link function

E(Yi|xT
i ) = μi ×

α(θ + 2)

θ(θ + 1)
= ex

T
i β × α(θ + 2)

θ(θ + 1)
, i = 1, . . . , n. (6)

Let y = [y1, . . . , yn]
T be the n× 1 vector of response, and γ = [φ, α, θ,βT ]T be the vector of

parameters. Therefore, the likelihood function of γ associated with (y,X) is given by

L(γ|y,X) =

n∏
i=1

f(yi|xT
i ,γ) =

n∏
i=1

Γ(φ+ yi)

Γ(φ)Γ(yi + 1)

θ2

α(θ + 1)
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×
∞∫
0

(
φ

zex
T
i β + φ

)φ
(

zex
T
i β

zex
T
i β + φ

)yi (
1 +

z

α

)
e−

θ
α
zdz. (7)

The vector of unknown parameters γ can be customarily estimated using the maximum likelihood
method. Alternatively, all parameters can also be estimated using Bayesian approach, which allows the
consideration of prior information into estimation. The practical advantages of the Bayesian approach
are its flexibility and generality as this allows it to cope with complex problems [20].

4. BAYESIAN APPROACH

In this part, we implement the Bayesian approach using MCMC technique for NB-S linear model,
which involves in hierarchical model of NB-S, prior distribution, joint posterior density, and MCMC
algorithm. The details are provided as follows.

4.1. Hierarchical Model of NB-S

As shown in previous section, the likelihood function for NB-S model does not have a closed form.
The parametrization based on (5) can be determined by using the hierarchical representation to implicit
both in the integrand and in the definition of the Sushila distribution itself. Thus, the NB-S distribution
is conditional upon the unobserved site-specific frailty term z, that explains additional heterogeneity, [15,
16] can be re-written as p(Yi = yi;μi, φ, |z) = NB(yi;φ, zμi), where z ∼ Sushila(z; θ, α). Conse-
quently, the above form can be thought as the generalized linear mixed model where the mixed effect
or the frailty term z follows the Sushila distribution and is mixture of the exponential and gamma
distributions. The hierarchical representation of this distribution can then be applied. The Sushila
distribution, a two-parameter continuous distribution, was proposed by [19] denoted as

z ∼

1

1 + θ
Gamma(2, θ/α) +

θ

θ + 1
Gamma(1, θ/α).

In the hierarchical representation concept, Sushila distribution would be

z ∼ Gamma(1 + ε, θ/α) and ε ∼ Bernoulli(1/(1 + θ)).

The entire multilevel models can be written hierarchically as

p(Yi = yi;μi, φ, |z) = NB(y;φ; zμi); μi = exp (xT
i β), z ∼ Gamma(z; 1 + ε, θ/α),

ε ∼ Bernoulli(ε; 1/(1 + θ)).

4.2. Prior Distributions and joint posterior density

The prior distributions of all unknown parameters (β, φ, α, andθ) are considered in Bayesian ap-
proach. In this study, we assume the prior distributions on β to have normal distribution. The gamma
distribution is assumed as the priors for φ, α and θ, given as

β ∼ N(b0,Sβ), φ ∼ Gamma(aφ, bφ), α ∼ Gamma(aα, bα), θ ∼ Gamma(aθ, bθ),

where aφ > 0, bφ > 0, aα > 0, bα > 0, aθ > 0, and bθ > 0 are known.
Suppose that b0 is a p× 1 fixed hyper-parameter vector and Sβ is p× p; p = k + 1 known

nonnegative-specific matrix. Each parameter is supposed to be independently distributed, and the joint
prior distribution of all unknown parameters can be written as

π(γ) = π(β)π(φ)π(α)π(θ). (8)

Now, we combine the likelihood function in (7) and the prior distribution in (8) to derive for the posterior
distribution as follows:

π(γ|y,X) ∝
n∏

i=1

f(yi|xT
i ,γ)π(β)π(φ)π(α)π(θ). (9)
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For the NB-S model, the full conditional posterior distributions for each parameter of γ derived from (9)
are obtained as

π(β|y,X, φ, α, θ) ∝
n∏

i=1

f(yi|xT
i ,γ)π(β), π(φ|y,X,β, α, θ) ∝

n∏
i=1

f(yi|xT
i ,γ)π(φ),

π(α|y,X,β, φ, θ) ∝
n∏

i=1

f(yi|xT
i ,γ)π(α), π(θ|y,X,β, φ, α) ∝

n∏
i=1

f(yi|xT
i ,γ)π(θ).

In this study, the model parameters can be easily obtained from Bayesian method using MCMC
algorithm to produce the posterior inference for each parameter. Based on these prior densities, we
generated three parallel independent MCMC chains for 30,000 iterations in each parameter, discarding
the first 15,000 iterations as a burn-in for computation. One of the foremost packages used in Bayesian
modeling is JAGS. It is an acronym for Just Another Gibbs Sampler. It can be run through the R
environment [8]. In this paper, the expected posterior of parameters are calculated using function jags
in R2jags package on CRAN of the R language [21].

In addition, three criteria which are the deviance, the deviance information criterion (DIC) and the
effective number of parameters (pD), are considered for model comparison. The DIC is regarded as
generalization of the Akaike’s information criterion and Bayesian information criterion. It is often used
as a goodness-of-fit (GOF) measure when the Bayesian approach is used. The DIC is beneficial
to Bayesian model comparison problems where the posterior distributions of the model have been
obtained by MCMC simulation [22]. This criterion is based on deviance, D(γ), defined as D(γ) =
−2 log f(y|γ), where f(y|γ) is the likelihood function, the conditional joint probability density function
of the observations is given the unknown parameters.

The DIC, proposed by [22], consists of two model components: a Bayesian measure of model fit
and a measure of model complexity. The DIC is defined as DIC = D̄(γ) + pD, where the first term
is the posterior mean of the deviance, D̄(γ), given by D̄(γ) = E[−2 log f(y|γ)], and the second term
is an alternative measure of effective number of parameters [23], pD, defined as half of the variance of
deviance: pD = V ar(D(γ))/2. This is the definition of pD used in the R2jags package [21]. DIC and
pD are especially useful for comparison of hierarchical models [23].

The pD measure should be close to the actual number of parameters [23]. Also, the pD can indicate
the variance of the deviance in the model [20]. For other measures, the model with the smallest values
would be the best.

5. APPLICATION

In this section, two real data sets are utilized to check the performance of the NB-S GLM. The
results of GLM based on NB-S as an alternative to Poisson and NB are compared using three criteria:
deviance, DIC and pD.

5.1. Doctor Visits Data Set

We consider the first data set, doctor visits [24], which provides the number of doctor visits during
two weeks time period for a single-adult from the Australian Health Survey 1977 to 1978 (5190
observations). This data set were discussed by [25] in the demand for health services. For the first
application, the response is the number of doctor visits, (visits), which is modeled by the covariates,
including gender (gender), age in years (age), annual income in tens of thousands of dollars (income),
the number of illness in 2 past weeks (illness), the number of days of reduced activity in 2 weeks due to
illness or injury (reduced), the general health questionnaire score (health), private insurance indicator
(private), government health insurance due to low income (freepoor), government health insurance
due to old age, disability or veteran status (freerepat), a chronic condition not limiting (ncronic) and a
chronic condition limiting activity (lchron).

The percentage of zeros in observed response, visits, is 93.98%. Also, this data set indicates over-
dispersion problem with mean 0.302 and variance 0.637 (index of dispersion 2.111).
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5.2. Squirrel Data Set

We consider the second data set, Squirrel (nuts), which included 52 observations were obtained
from COUNT package in R language [21]. The data set comes from [26]. As originally reported by [27],
this study recorded information about red squirrel behavior and forest attributes across various plots in
Scotland’s Abernathy Forest. The response variable is the number of cones (cones) stripped by red
squirrels per plot. The explanatory variables consist of standardized number of trees per plot (sntrees),
standardized mean tree height per plot (sheight) and standardized percentage of canopy cover per plot
(scover). The stripped cone count was only considered when the mean diameter of trees was under 0.6
meters.

The percentage of zero in the number of cones is 96.2% and the index of dispersion is 23.153,
indicating that there is a high percentage of zeros and over-dispersion with mean 17.923 and variance
414.974.

The histograms of response variables are evident with right-skewed distributions from the first and
the second data sets and are illustrated in Figure 1, accompanying by summary statistics as shown in
Table 1 and Table 2, respectively.

The distribution of responses in two data sets are examined by the Poisson, NB, and NB-S
distributions. The GOF analysis based on Kolmogorov–Smirnov (KS) test statistic for discrete random
variable [28] is shown in Table 3. It is shown that the p-value of the NB-S distribution is clearly the
largest compared to two competitive distributions. Thus, the NB-S distribution is assumed for two data
sets.

5.3. Results

This section presents the modeling results of GLM based on NB-S, which is compared to the Poisson
and NB counterparts, applied to two data sets that described in previous section. The efficiency of the
three models are investigated based on deviance, DIC and pD. The closeness of pD to actual number
parameters and the smallest values of deviance and DIC indicate the best fitted performance.

The NB-S model needs to be adjusted with the mean of Sushila distribution, which is presented
in (6). This is the same as the adjustment of the intercept of the NB-GE model as [16].

For the Bayesian approach, monitoring and reporting the convergence of the algorithm is essential
for constructing results from the posterior distribution of interest. The convergent monitoring of this
study is described by the posterior density plots, which illustrate smoothed distributions of the parameter
values sampled in each chain [10].

By considering the Poisson, NB, and NB-S models for doctor visits and squirrel data sets, the
posterior means (mean), standard error (s.e.) and 95% credible intervals (Cr.I.) of the model parameters
after fitting the NB-S and the competing Poisson and NB models are presented in Tables 4 and 5
respectively.
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Fig. 1. (a) Histogram of the number of doctor visits in the doctor visits data set and (b) Histogram of the number of
cones in the squirrel data set.
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Fig. 2. Density plots for parameters φ, α, θ and β1, β2, . . . , β12, respectively from the NB-S linear model of doctor
visits data set.
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set.
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Table 1. Summary statistics for the doctor visits data set (n = 5190)

Variables Min Max Median

visits (response) 0 9 0

age (divided by 100) 0.19 0.72 0.32

income 0 1.5 0.55

illness 0 5 1

reduced 0 14 0

health 0 12 0

gender (1=female, 0=male) − − −
private (1=yes, 0=no) − − −
freepoor (1=yes, 0=no) − − −
freerepat (1=yes, 0=no) − − −
ncronic (1=yes, 0=no) − − −
lchron(1=yes, 0=no) − − −

Table 2. Summary statistics for the squirrel data set (n = 52)

Variables Min Max Median

cones (response) 0 91 11

sntrees −1.087 4.033 −0.366

sheight −3.031 1.665 0.150

scover −3.987 0.942 0.356

Table 3. The GOF analysis of the number of doctor visits in Doctor visits data set and the number of cones in
Squirrel Data

GOF
Doctor visits data Squirrel data

Poisson NB NB-S Poisson NB NB-S

KS test statistics 0.058 0.013 0.009 0.483 0.310 0.078

p-value < 0.0001 0.343 0.812 < 0.0001 < 0.0001 0.909

For doctor visits data, we formulate predictive model of the number of doctor visits related to 11
covariates. The performance of the models displayed in Table 6. The results indicate that the deviance
and DIC values of the NB-S linear model are the smallest and the estimate of pD for the NB-S model
is close to the implicit number of parameters in the model. Furthermore, the pD is pointed out that the
variance of deviance for NB-S model is the smallest. All models have the same sign of predicted values.
Therefore, NB-S model can be the alternative model to predict the number of doctor visits data. The
predictive model can be written as:

μ̂i = exp(0.859 + 0.220genderi + 0.327agei − 1.53incomei + 0.216illnessi

+ 0.14reducedi + 0.038healthi + 0.118privatei − 0.504freepoori
+ 0.152freerepati + 0.199Nchronici + 0.185lchronici)× 1.1257.

For Squirrel data, The estimated parameters, s.e and Cr.I. are presented in Table 5. The performance

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 40 No. 1 2019



BAYESIAN INFERENCE FOR THE NEGATIVE BINOMIAL-SUSHILA LINEAR MODEL 51

Table 4. Summary results with mean, s.e. and Cr.I. from the posterior distribution under Poisson, NB, and NB-S
models for the doctor visits data set

Parameter
Poisson NB NB-S

mean (s.e.) Cr.I. mean (s.e.) Cr.I. mean (s.e.) Cr.I.

Intercept(β1) −2.014 (−2.139, −1.891) −2.113 (−2.266, −1.961) 1.999 (−2.189, −1.812)

(1.46 ×10−3) (1.06 ×10−3) (1.34 ×10−3)

gender(β2) 0.160 (0.070, 0.249) 0.191 (−0.058, 0.319) −0.220 (0.081, 0.360)

(6.53 ×10−4) (9.41 ×10−4) (9.83 ×10−4)

age(β3) 0.134 (−0.032, 0.294) 0.190 (−0.201, 0.588) 0.327 (−0.090, 0.747)

(1.15 ×10−3) (2.74 ×10−3) (2.95 ×10−3)

income(β4) −0.119 (−0.239, 0.001) −0.249 (−0.426, −0.075) −0.153 (−0.357, 0.047)

(8.96 ×10−3) (1.24 ×10−3) (1.44 ×10−3)

illness(β5) 0.188 (0.155, 0.223) 0.208 (−0.426, −0.075) 0.216 (0.167, 0.263)

(2.56 ×10−4) (3.31 ×10−4) (3.43 ×10−4)

reduced(β6) 0.130 (0.121, 0.140) 0.144 (0.161, 0.256) 0.144 (0.130, 0.159)

(1.13 ×10−4) (1.09 ×10−4) (1.07 ×10−4)

health(β7) 0.027 (0.007, 0.046) 0.036 (0.129, 0.159) 0.038 (0.011, 0.064)

(1.50 ×10−4) (1.89 ×10−4) (1.90 ×10−4)

private(β8) 0.088 (−0.013, 0.189) 0.105 (0.009, 0.063) 0.118 (−0.044, 0.290)

(7.27 ×10−4) (1.14 ×10−3) (1.12 ×10−3)

freepoor(β9) −0.138 (−0.295, 0.019) −0.588 (−1.007, −0.187) −0.504 (−0.913, −0.111)

(1.11 ×10−3) (2.82 ×10−3) (2.85 ×10−3)

freerepat(β10) 0.097 (−0.022, 0.216) 0.137 (−0.093, 0.369) 0.152 (−0.078, 0.386)

(8.36 ×10−4) (1.61 ×10−3) (1.62 ×10−3)

nchronic(β11) 0.063 (−0.037, 0.161) 0.098 (−0.054, 0.252) 0.099 (−0.056, 0.254)

(7.01 ×10−4) (1.10 ×10−3) (1.11 ×10−3)

lchronic(β12) 0.090 (−0.026, 0.207) 0.185 (−0.025, 0.382) 0.185 (−0.028, 0.389)

(8.19 ×10−4) (1.40 ×10−3) (1.47 ×10−3)

φ − − 0.939 (0.774, 1.146) 0.924 (0.763, 1.111)

(1.34×10−3) (1.23 ×10−3)

α − − − − 0.856 (0.071, 3.113)

(1.11 ×10−2)

θ − − − − 1.119 (0.131, 3.227)

(1.12 ×10−2)

of the model fittings is shown in Table 7 and the results show that the deviance and DIC clearly present
the adequacy of NB-S model. The pD of NB-S model is closer to the actual number of parameters in
the model compared to other models. As a result, the comparison of the model fittings on the squirrel
data indicate that the NB-S model can be used to predicted the number of cones in this data set. The
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Table 5. Summary results with mean, s.e. and Cr.I. from the posterior distribution under Poisson, NB, and NB-S
models for the squirrel data set

Parameter
Poisson NB NB-S

mean (s.e.) Cr.I. mean (s.e.) C.I. mean (s.e.) Cr.I.

Intercept(β1) 2.727 (2.641, 2.815) 2.454 (2.173, 2.714) 0.126 (−0.744, 0.940)

(7.46 ×10−3) (1.90 ×10−2) (6.05 ×10−2)

sntrees(β2) 0.243 (0.187, 0.301) 0.264 (−0.002, 0.551) 0.258 (−0.028, 0.572)

(4.09 ×10−3) (1.98×10−2) (2.08×10−2)

snheight(β3) 0.390 (0.046, 0.477) 0.208 (−0.073, 0.478) 0.203 (−0.094, 0.487)

(6.40 ×10−3) (1.95 ×10−2) (2.06 ×10−2)

scover(β4) 0.775 (0.641, 0.904) 0.539 (0.206, 0.862) 0.511 (0.169, 0.850)

(1.17 ×10−2) (2.32 ×10−2) (2.42 ×10−2)

φ − − 0.937 (0.588, 1.376) 0.978 (0.628, 1.425)

(2.76 ×10−2) (2.86 ×10−2)

α − − − − 1.635 (0.176, 4.758)

(1.71 ×10−1)

θ − − − − 0.297 (0.021, 1.049)

(3.89 ×10−2)

Table 6. The performance of the models for the doctor visits data set

Criterion Poisson NB NB-S

Deviance 6741.97 6411.83 6410.79

DIC 66886.24 6426.08 6424.73

pD 60144.26 14.25 13.93

Table 7. The performance of the models for the squirrel data set

Criterion Poisson NB NB-S

Deviance 956.110 394.970 392.404

DIC 1673.275 405.061 397.063

pD 681.165 10.091 4.659

predicted model can be given as:

μ̂i = exp(0.126 + 0.258sntreesi + 0.258sheighti + 0.203scoveri)× 9.753.

The posterior density plots of all parameters in the NB-S model for doctor visits and squirrel data sets
are illustrated in Fig. 2 and 3, respectively.

The results reveal that the density plots of all parameters in three chains of both data sets overlap well
after burn-in period. Therefore, the NB-S model can fit both data sets in context of Bayesian estimation
framework.
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6. DISCUSSION

Since, the NB-S model is a new model for GLM framework, it has never been implemented to predict
the count phenomenon with related covariates. There are some interesting findings that are necessary
to be discussed. First, the parametrization of the NB-S model in this study is slightly different from that
proposed by [17]. However, it is related to the NB-L GLM in [15] and the NB-GE GLM in [16]. The
authors discussed the problems of the parametrization including a non-linear of the mean response, non-
invertible function of the covariates and the parameters. On the contrary, the parametrization suggested
in this study is easily explained (See more details in [15] and [16]). [15] discussed some problems about
this parametrization in GLM framework of NB-L model which are the main concepts of this study.
The authors also suggested some methods to solve the problem, using the dispersion parameter (ω)
instead of the inverse dispersion parameter (φ), the underlying hierarchical illustration of the model, and
the adjusted mean of response. The adjustment is denoted by E(Yi) = μi × E(z) and then applied to
the NB-S model. Furthermore, the GOF for the responses of two real data is performed prior to model
fitting. Lastly, the processing time for MCMC of NB-S model is slightly longer than the NB and Poisson
models because it entails additional parameters which will be supportive of the fitted model.

7. CONCLUSION

Our article describes the utilization of GLM to develop the NB-S linear model. The parameter
estimation is obtained via the Bayesian approach using MCMC method and its measurement can be
easily carried out with the Bayesian Software package, namely JAGS, which can be run through R
language.The prior and likelihood information are also discussed. We apply the NB-S linear model to
two real data sets: doctor visits and squirrel data sets, and compare or results with traditional Poisson
and NB models. This selection is supported by focus measurements: deviance DIC and pD. These
measurements are considered in the assessment and comparison of models in this article. As a result,
the DIC and pD are particularly useful for comparing hierarchical models, as discussed in [23]. For a
comparison of the models, the deviances and DICs for models show that the best fit is the NB-S model,
followed by the NB and finally the Poisson models. The pD values of the NB-S model are close to the
true numbers of parameters and imply that the variance of deviance of the NB-S model are the smallest
variance for the two data sets. To sum up, the NB-S model seems to outperform other models in this
study. It can be an alternative model to study a relationship between an over-dispersed count response
variable and a set of covariates. We hope that the NB-S GLM may proffer a feasible alternative to the
traditional Poisson and NB GLMs for analyzes of count data. For future work, we will study simulation
of the proposed model to analyze the performance of the NB-S linear model.
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