
ISSN 1995-0802, Lobachevskii Journal of Mathematics, 2020, Vol. 41, No. 3, pp. 308–319. c© Pleiades Publishing, Ltd., 2020.

The Length-Biased Weighted Lindley Distribution
with Applications

Yupapin Atikankul1*, Ampai Thongteeraparp1**,
Winai Bodhisuwan1***, and A. Volodin2****

(Submitted by A. M. Elizarov)
1Department of Statistics, Kasetsart University, Bangkok, 10903 Thailand

2Department of Mathematics and Statistics, University of Regina,
Regina, Saskatchewan, S4S 0A2 Canada

Received October 10, 2019; revised October 25, 2019; accepted November 23, 2019

Abstract—In this paper, we propose a new length-biased distribution, which is a special case
of weighted distributions. We derive some mathematical properties of the proposed distribution,
including moment generating function, characteristic function and moments, and discuss parameter
estimation by the method of moments and maximum likelihood estimation. We assess estimators
via simulation, and show the potential of the proposed distribution by fitting it with some real-life
data sets.
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1. INTRODUCTION

When observations are recorded from random process, the probability of recorded observations are
not equal. Although it is incorrect to use the original distribution to describe these observations,
weighted distributions can be applied in this situation. The concept of weighted distributions was
proposed by Fisher [1]. Later, Rao [2] introduced discrete weighted distributions for sampling with
probabilities of selection depend on the proportion of their units.

If X is a non-negative random variable with the probability density function (pdf) f(x), then the
corresponding weighted distribution is

fw(x) =
w(x)f(x)

E(w(X))
,

where w(x) is a non-negative weighted function and E(w(X)) < ∞.
Patil and Ord [3] presented a size-biased distribution that is a special case of the weighted distri-

bution. The weighted function of a size-biased distribution is w(x) = xc, where c = 1 is named length
biased and c = 2 is named as area biased distributions. Thus, the pdf of the length-biased distribution is
given by

fl(x) =
xf(x)

E(X)
. (1)
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Many length-biased distributions have been proposed in the literature; we review some here. Das
and Roy [4] studied the length-biased weighted generalized Rayleigh distribution for the monthly mean
minimum temperature data They also studied the length-biased weighted Weibull distribution in [5] for
rainfall data in India. Ratnaparkhi and Naik–Nimbalkar [6] analysed oil field exploration data by the
length-biased lognormal distribution. Khadim and Hussein [7] introduced the length-biased weighted
Exponential and Rayleigh distributions for industrial data. Nanuwong and Bodhisuwan [8] applied the
length biased beta-Pareto distribution for fire insurance data in Norway. Seenoi et al. [9] analysed data on
the distance between cracks in a pipe by the length-biased exponentiated inverted Weibull distribution.
Modi and Gill [10] studied the length-biased weighted Maxwell distribution and its properties. Ahmad
et al. [11] proposed the length-biased weighted Lomax distribution for remission times of bladder cancer
patients. Saghir et al. [12] introduced the length-biased weighted exponentiated inverted Weibull
distribution for lifetime data. Ayesha [13] studied the length-biased (size-biased) Lindley distribution
and its properties. Rather and Subramanian [14] investigated the length-biased Sushila distribution
for waiting times of bank customers. Numerous length-biased distributions have been established for
lifetime data; they provide a better fit than the original distributions.

The Lindley distribution was investigated by Lindley [15] in the context of Bayesian statistics.
Ghitany et al. [16] found that the Lindley distribution is more flexible than the exponential distribution.
In recent years, generalizations of the Lindley distribution have been widely used for lifetime data
analysis. Asgharzadeh et al. [17] introduced a two parameter generalization of the Lindley distribution,
called the new weighted Lindley (NWL) distribution. It is a mixture of the weighted exponential
and weighted gamma distributions and a negative mixture of two Lindley distributions with different
parameters. The Lindley and weighted Lindley distributions are included as sub-models. Moreover, the
Lindley distribution and various generalizations of the Lindley distribution were compared to the NWL
distribution. It has provided a better fit than competitive distributions.

In this paper, we propose a new length-biased distribution, called the length-biased weigthed Lindley
(LBWL) distribution. It has been developed from the NWL distribution. The rest of this paper is
organized as follows, In Section 2 the proposed distribution is introduced. In Section 3 reliability
measures and mathematical properties are derived. Parameter estimation is obtained in Section 4.
In Section 5 the performance of parameter estimation procedures are evaluated by a simulation study.
In Section 6 the proposed distribution is applied to two real-life data sets and compared with other
distributions. Conclusions are discussed in Section 7.

2. THE LENGTH-BIASED WEIGHTED LINDLEY DISTRIBUTION

In this section, the probability density function (pdf) and the cumulative distribution function (cdf) of
the LBWL distribution are presented.

Definition 1. A random variableX is said to have the length-biased weighted Lindley (LBWL)
distribution, if the pdf of X is

fl(x) =
θ3(1 + α)3

(1 + α)3(θ + 2)− (1 + α)θ − 2
x(1 + x)(1− e−θαx)e−θx, (2)

for x > 0, θ > 0, α > 0.
Note that it is a length-biased distribution to the NWL distribution. Really, the pdf of the NWL

distribution is written as

f(x) =
θ2(1 + α)2

θα(1 + α) + α(2 + α)
(1 + x)(1− e−θαx)e−θx, (3)

for x > 0, θ > 0, α > 0. The mean of the NWL distribution is

E(X) =
(1 + α)3(θ + 2)− (1 + α)θ − 2

θ(1 + α)[θα(1 + α) + α(2 + α)]
. (4)

The LBWL distribution can be obtained by substituting (3) and (4) in (1).
Figure 1 shows various pdf plots of the LBWL distribution with some parameter values. The location

mode of the LBWL distribution decreases as θ and α increase.
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Fig. 1. Some pdf plots of the LBWL distribution with different parameter values.
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Fig. 2. Some cdf plots of the LBWL distribution with different parameter values.

The corresponding cumulative distribution function of X is obtained by

Fl(x) = 1

− [(α+ 1)((α + 1)2(θx(θx+ θ + 2) + θ + 2)eαθx − θ(x((α+ 1)θ(x+ 1) + 2) + 1))− 2]e−(α+1)θx

(1 + α)3(θ + 2)− (1 + α)θ − 2
,

for x > 0, θ > 0, α > 0.
The cumulative distribution function (cdf) plots of the NWL distribution for different parameter values

are displayed in Fig. 2.

3. RELIABILITY MEASURES AND MATHEMATICAL PROPERTIES

In this section, we present reliability measures and mathematical properties of the LBWL distribution,
such as the survival function, hazard function, moment generating function, characteristic function and
moments.

3.1. Reliability Measures

Here, the survival function, known as the reliability function; and the hazard function, known as the
failure rate of the LBWL distribution are presented.

Since the survival function can been obtained by Sl(x) = 1− Fl(x), the survival function of X is
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Fig. 3. Some survival function plots of the LBWL distribution with different parameter values.
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Fig. 4. Some hazard function plots of the LBWL distribution with different parameter values.

Sl(x)

=
[(α+ 1)((α + 1)2(θx(θx+ θ + 2) + θ + 2)eαθx − θ(x((α+ 1)θ(x+ 1) + 2) + 1))− 2]e−(α+1)θx

(1 + α)3(θ + 2)− (1 + α)θ − 2
.

The hazard function is given by hl(x) = fl(x)/Sl(x). Hence, the hazard function of X is

hl(x) =
θ3(1 + α)3x(1 + x)(1 − e−θαx)

[(α+ 1)((α + 1)2(θx(θx+ θ + 2) + θ + 2)eαθx − θ(x((α+ 1)θ(x+ 1) + 2) + 1))− 2]e−αθx
.

To study the shape of hazard function; let η(x) = −d log f(x)

dx
, then

dη(x)

dx
=

α2θ2eαθx

(eαθx − 1)2
+

2x2 + 2x+ 1

x2(x+ 1)2
> 0.

Thus, h(x) is an increasing function.
The survival function plot of the LBWL distribution is shown in Fig. 3, whereas Fig. 4 displays the

hazard function plot. Fig. 4 indicates that the hazard function is increasing as θ and α increase.

3.2. Moment Generating Function, Characteristic Function and Moments

In this subsection, we present the moment generating function, characteristic function and moments.
They can be used for estimation.
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Theorem 1. Let X be a LBWL random variable with parameters (θ, α). Then the moment
generating function of X is

M(t) =
θ3(1 + α)3

(1 + α)3(θ + 2)− (1 + α)θ − 2

[θ − t+ 2

(θ − t)3
− θ(1 + α)− t+ 2

(θ(1 + α)− t)3

]
.

Proof. Let X ∼ LBWL(θ, α), then the moment generating function of X is obtained by

M(t) = E(etX ) =

∞∫

0

etx
θ3(1 + α)3

(1 + α)3(θ + 2)− (1 + α)θ − 2
x(1 + x)(1 − e−θαx)e−θxdx

=
θ3(1 + α)3

(1 + α)3(θ + 2)− (1 + α)θ − 2

∞∫

0

x(1 + x)(1 − e−θαx)e(t−θ)xdx

=
θ3(1 + α)3

(1 + α)3(θ + 2)− (1 + α)θ − 2

[
θ − t+ 2

(θ − t)3
− θ(1 + α)− t+ 2

(θ(1 + α)− t)3

]
.

�

Similarly, the characteristic function of X is

ϕ(t) =
θ3(1 + α)3

(1 + α)3(θ + 2)− (1 + α)θ − 2

[
θ − it+ 2

(θ − it)3
− θ(1 + α)− it+ 2

(θ(1 + α)− it)3

]
.

The kthmoment about the origin of the LBWL distribution is written as

E(Xk) =
(k + 1)!

[
(1 + α)k+3(θ + k + 2)− θ(1 + α)− k − 2

]
θk(1 + α)k [(1 + α)3(θ + 2)− (1 + α)θ − 2]

.

Thus, the first four moments about the origin for X are

E(X) = μ =
2
[
(1 + α)4(θ + 3)− θ(1 + α)− 3

]
θ(1 + α) [(1 + α)3(θ + 2)− (1 + α)θ − 2]

,

E(X2) = μ′
2 =

6
[
(1 + α)5(θ + 4)− θ(1 + α)− 4

]
θ2(1 + α)2 [(1 + α)3(θ + 2)− (1 + α)θ − 2]

,

E(X3) = μ′
3 =

24
[
(1 + α)6(θ + 5)− θ(1 + α)− 5

]
θ3(1 + α)3 [(1 + α)3(θ + 2)− (1 + α)θ − 2]

,

E(X4) = μ′
4 =

120
[
(1 + α)7(θ + 6)− θ(1 + α)− 6

]
θ4(1 + α)4 [(1 + α)3(θ + 2)− (1 + α)θ − 2]

.

The kth moment about the mean of X is μk = E(X − μ)k =

k∑
j=0

(
k

j

)
(−1)k−jμ′

jμ
k−j . Therefore, the

variance of the LBWL distribution is

V (X) =
2(3δ((α + 1)5(θ + 4)− (α+ 1)θ − 4)− 2((α + 1)4(−(θ + 3)) + (α+ 1)θ + 3)2)

(α+ 1)2θ2δ2
,

where δ = (1 + α)3(θ + 2)− (1 + α)θ − 2.
Figure 5 shows plots of the mean and variance of the proposed distribution against the parameters

(θ, α). As θ and α increase, the mean and variance decrease.
Figure 6 displays the skewness and kurtosis plots of the LBWL distribution. The skewness and

kurtosis are increasing as θ and α increase.

4. PARAMETER ESTIMATION
The parameter estimators of the LBWL distribution are obtained in this section. In this paper,

two parameter estimation methods including the method of moments (MoM) and maximum likelihood
estimation (MLE), have been used.
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Fig. 5. Mean and variance of the LBWL distribution.
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Fig. 6. Skewness and kurtosis of the LBWL distribution.

4.1. Method of Moments

Let X1,X2, . . . ,Xn be a random sample from a LBWL distribution with parameters (θ, α). The
estimates from the MoM are obtained by solving the first two population moments equal to first two
sample moments. Hence, we get

n∑
i=1

xi

n
=

2
[
(1 + α)4(θ + 3)− θ(1 + α)− 3

]
θ(1 + α) [(1 + α)3(θ + 2)− (1 + α)θ − 2]

and

n∑
i=1

x2i

n
=

6
[
(1 + α)5(θ + 4)− θ(1 + α)− 4

]
θ2(1 + α)2 [(1 + α)3(θ + 2)− (1 + α)θ − 2]

.

Since the above equations are too complicated; in this paper we have applied the gmm package [22] from
the R statistical software [19] to solve them.
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4.2. Maximum Likelihood Estimation

Let X1,X2, . . . ,Xn be a random sample from a LBWL distribution with parameters (θ, α). The
likelihood function of the LBNL distribution is

L(θ, α) =
n∏

i=1

θ3(1 + α)3

(1 + α)3(θ + 2)− (1 + α)θ − 2
x(1 + x)(1− e−θαx)e−θx.

The log-likelihood function is given by

logL(θ, α) = 3n log(θ) + 3n log(1 + α)− n log
(
(1 + α)3(θ + 2)− (1 + α)θ − 2

)

+

n∑
i=1

log(xi) +

n∑
i=1

log(1 + xi) +

n∑
i=1

log(1− e−αθxi)− θ

n∑
i=1

x.

The score functions are

∂ logL(θ, α)

∂θ
=

3n

θ
−

n
(
(α+ 1)3 − α− 1

)
(α+ 1)3(θ + 2)− (α+ 1)θ − 2

−
n∑

i=1

xi
(
eαxiθ − α− 1

)
eαxiθ − 1

and

∂ logL(θ, α)

∂α
=

3n

α+ 1
− n

(
3(θ + 2)(1 + α)2 − θ

(θ + 2)(α + 1)3 − θ(α+ 1)− 2

)
+

n∑
i=1

θxi
eαθxi − 1

.

They can be solved by numerical methods. In this paper, we have used optimx package [18] from the R
statistical software [19] to obtain the maximum likelihood estimates of the LBWL distribution.

As n → ∞, the distribution of
√
n(θ̂ − θ, α̂− α) is an asymptotically bivariate normal distribution

with zero mean. The variances and covariances of maximum likelihood estimators are calculated by
the elements of the inverse of the Fisher information matrix. Although the Fisher information matrix
is complicated to obtain, we can replace the Fisher information matrix with the observed information
matrix. The observed information matrix of the maximum likelihood estimators of the parameters are
defined as

J(θ, α) =

⎛
⎝J11 J12

J21 J22

⎞
⎠ .

Thus, the asymptotic variances and covariances of the maximum likelihood estimators of the parameters
are expressed as

V (θ̂) =
J22
Δ

, Cov(θ̂, α̂) =
−J12
Δ

and V (α̂) =
J11
Δ

,

where J11 = −∂2 logL(θ,α)
∂θ2

, J12 = J21 = −∂2 logL(θ,α)
∂θ∂α , J22 = −∂2 logL(θ,α)

∂α2 and where Δ is the determi-
nant of matrix J .

The second partial derivative of the log-likelihood with respect to each parameters are

∂2 logL(θ, α)

∂θ2
= −3n

θ2
+

n
(
(α+ 1)3 − α− 1

)2
((α + 1)3(θ + 2)− (α+ 1)θ − 2)2

−
n∑

i=1

α2x2i eαxiθ

(eαxiθ − 1)
2 ,

∂2 logL(θ, α)

∂α2
= − 3n

(α+ 1)2
+

n(3(θ + 2)(1 + α)2 − θ)2

((θ + 2)(α + 1)3 − θ(α+ 1)− 2)2

− 6(θ + 2)n(α+ 1)

(θ + 2)(α + 1)3 − θ(α+ 1)− 2
−

n∑
i=1

θ2x2i eαθxi

(eαθxi − 1)
2 ,

∂2 logL(θ, α)

∂θ∂α
= − 2n(2α + 3)

((θ + 2)α2 + (3θ + 6)α + 2θ + 6)2
−

n∑
i=1

x
(
(αθxi − 1) eαθxi + 1

)

(eαθxi − 1)
2 .
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The asymptotic 100(1 − ν)% confidence intervals (CI) for the parameters with the significance level
ν, are given as

θ̂ ± zν/2

√
̂V (θ̂) and α̂± zν/2

√
̂V (α̂),

where ̂V (θ̂) and ̂V (α̂) are the maximum likelihood estimators of V (θ̂) and V (α̂), respectively ; zν/2 is
the upper ν/2 quantile of the standard normal distribution.

5. SIMULATION STUDY

To evaluate the performance of the two parameter estimation procedures, the MoM and MLE, we
generate random samples from the LBWL distribution by using quantile function. We have considered
θ = 0.5, 1 and α = 0.5, 1 for the different sample sizes, n = 20, 50, 100, and 200. The simulation study
has been processed for 1,000 iterations. The following measures have been calculated to assess the
performance of the parameter estimation methods.

1. Average root mean square error (RMSE)

√√√√√
1,000∑
i=1

(θ̂i − θ)2

1,000 .

2. Average bias

1,000∑
i=1

(θ̂i − θ)

1,000 .

The same measure have beem applied for the paramter α. The simulated results are shown in Tables 1
and 2.

Tables 1 and 2 show good performance of the MLE for both parameters, θ and α, while the
performance of the MoM is quite poor for α.

Table 1. Average RMSE (average bias) of the simulated MoM and MLE estimates for θ

n θ

α

0.5 1

MOM MLE MOM MLE

20

0.5

0.0900 (0.0055) 0.1005 (0.0334) 0.1030 (0.0282) 0.1183 (0.0545)

50 0.0624 (−0.0114) 0.0775 (0.0243) 0.0648 (0.0082) 0.0894 (0.0385)

100 0.0520 (−0.0185) 0.0678 (0.0217) 0.0490 (−0.0004) 0.0735 (0.0295)

200 0.0447 (−0.0237) 0.0592 (0.0206) 0.0387 (−0.0046) 0.0592 (0.0225)

20

1

0.2059 (0.0569) 0.2047 (0.0676) 0.2445 (0.1047) 0.2439 (0.1118)

50 0.1411 (0.0223) 0.1578 (0.0492) 0.1631 (0.0542) 0.1830 (0.0796)

100 0.1166 (0.0110) 0.1386 (0.044) 0.1257 (0.0345) 0.1497 (0.0596)

200 0.0933 (0.0045) 0.1200 (0.0417) 0.0964 (0.0202) 0.1208 (0.0457)
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Table 2. Average RMSE (average bias) of the simulated MoM and MLE estimates for α

n θ

α

0.5 1

MoM MLE MoM MLE

20

0.5

27.8374 (4.7637) 0.0985 (0.0312) 58.2676 (11.9018) 0.4581 (−0.4463)

50 6.5318 (1.5031) 0.0510 (−0.0003) 36.9753 (4.9648) 0.5375 (−0.5364)

100 8.0247 (1.381) 0.0656 (0.0194) 13.8029 (2.6145) 0.4759 (−0.4715)

200 3.0277 (1.073) 0.0583 (0.0203) 9.8293 (1.733) 0.4812 (−0.4781)

20

1

786.3471 (52.493) 0.5960 (0.5648) 189.6021 (47.5014) 0.2390 (0.1116)

50 97.1535 (9.9133) 0.3666 (0.3609) 240.1302 (30.827) 0.1288 (−0.0723)

100 33.3622 (3.4095) 0.5647 (0.5484) 90.0789 (11.5268) 0.1442 (0.0572)

200 11.1476 (0.9822) 0.5564 (0.5450) 23.1019 (2.6924) 0.0860 (−0.0032)

Table 3. Distance between cracks in a pipe

30.94 18.51 16.62 51.56 22.85 22.38 19.08 49.56

17.12 10.67 25.43 10.24 27.47 14.7 14.1 29.93

27.98 36.02 19.4 14.97 22.57 12.26 18.14 18.84

Table 4. Endurance of deep groove ball bearings

17.88 28.92 33.00 41.52 42.12 45.60 48.8 51.84

51.96 54.12 55.56 67.80 68.44 68.64 68.88 84.12

93.12 98.64 105.12 105.84 127.92 128.04 173.4

6. APPLICATION

In this section, the proposed distribution is compared with three distributions, the Lindley distribu-
tion [15], the size-biased Lindley distribution [13] and the new weighted Lindley distribution [17]. Two
real-life data sets have been considered in this paper. The first data set is the distance between cracks
in a pipe, taken from [21]. The second data set is the number of million revolutions before failure for
each one of the 23 ball bearings in endurance test of deep groove ball bearings [23]. These data sets are
presented in Tables 3 and 4, respectively.

The following figures are the total time on test (TTT). They have been applied to show the shape of
the hazard function of both data sets.

Figure 7 shows the TTT plots for two data sets. The hazard functions of both data sets have an
increasing shape. Therefore, both data sets can been described by the LBWL distribution.

To carry out the model selection, we consider the smallest negative log-likelihood, smallest Akaike
Information Criterion (AIC), smallest Bayesian Information Criterion (BIC) and largest p-value from
the Anderson–Darling (AD) test and Kolmogorov–Smirnov (KS) test. The results are shown in Table
5 and Table 6 for the first and second data sets, respectively.

Table 5 shows that the LBWL distribution has the largest p-value based on the AD and KS tests
and the smallest negative log-likelihood, AIC and BIC. Among all these distributions, the Lindley
distribution is the least efficient distribution.
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Table 5. Parameter estimates, confidence interval, negative log-likelihood, AIC, BIC, AD statistics and KS
statistics of all fitted distributions for distance between cracks in a pipe data

Distribution
Estimates

(se)
95%CI

Negative

log-

likelihood

AIC BIC

AD

statistics

(p-value)

KS

statistics

(p-value)

Lindley
θ̂ = 0.084

(0.015)
(0.06, 0.107) 92.883 187.767 188.945

1.967

(0.096)

0.24

(0.106)

SBL
θ̂ = 0.128

(0.012)
(0.098, 0.158) 89.398 180.796 181.974

0.973

(0.371)

0.162

(0.506)

NWL

θ̂ = 0.128

(0.044)

α̂ = 0.005

(0.656)

(0.041, 0.214)

(−1.282, 1.291)

89.398 182.796 185.152
0.973

(0.371)

0.162

(0.506)

LBWL

θ̂ = 0.172

(0.073)

α̂ = 0.001

(0.832)

(0.028, 0.316)

(−1.63, 1.632)

87.793 179.586 181.942
0.548

(0.697)

0.112

(0.890)

Table 6. Parameter estimates, confidence interval, negative log-likelihood, AIC, BIC, AD statistics and KS
statistics of all fitted distributions for data on the endurance of deep groove ball bearings

Distribution
Estimates

(se)
95%CI

Negative

log-

likelihood

AIC BIC

AD

statistics

(p-value)

KS

statistics

(p-value)

Lindley
θ̂ = 0.027

(0.004)
(0.019, 0.035) 115.736 233.471 234.607

0.932

(0.394)

0.193

(0.318)

SBL
θ̂ = 0.041

(0.005)
(0.032, 0.051) 113.578 229.156 230.292

0.311

(0.929)

0.121

(0.849)

NWL

θ̂ = 0.041

(0.018)

α̂ = 0.009

(0.870)

(0.005, 0.077)

(0, 1.714)

113.578 231.156 233.427
0.311

(0.929)

0.121

(0.849)

LBWL

θ̂ = 0.049

(0.033)

α̂ = 0.3

(2.4)

(0, 0.113)

(0, 5.003)

113.03 230.059 232.33
0.206

(0.989)

0.12

(0.856)

Table 6 indicates that the LBWL distribution also has the largest p-value based on the AD and KS
tests and the smallest negative log-likelihood, whereas the SBL distribution has the smallest AIC and
BIC because it only has one parameter. The Lindley distribution provides a worst fit than others.
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Fig. 7. TTT plots of distance between cracks in a pipe (left) and endurance of deep groove ball bearings (right).
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Fig. 8. Histogram and fitted pdfs of the distance between cracks in a pipe (left) and endurance of deep groove ball
bearings (right).

The empirical histogram and fitted density of four distributions are displayed in Figure 8. The fitted
density of LBWL distribution is closest to the empirical histogram for both data sets.

In addition, when α → 0, the NWL distribution becomes the SBL distribution. For these two data
sets, α̂ of the NWL distribution is close to zero; therefore, the performance of the NWL and SBL
distributions are similar.

7. CONCLUSION

In this paper, we introduce a new length-biased distribution, which we call the length biased
weighted Lindley distribution. Some important mathematical properties including moment generating
function, characteristic function and moments have been investigated. The estimation of parameters
has been discussed by the method of moments and maximum likelihood estimation. The variance
and covariance matrix of the maximum likelihood estimates is applied for constructing the aymptotic
confidence intervals. Finally, some practical data sets were considered to illustrate the efficacy of the
LBWL distribution. The criteria for the selected model are the negative log-likelihood, AIC, BIC and
p-value based on the Anderson–Darling and Kolmogorov–Smirnov tests.

The results indicate that the LBWL distribution provides a satisfactory fit in both data sets. Thus, it
is an alternative distribution for lifetime data.
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