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Abstract—A new Topp–Leone generated family of distributions, which we call the Topp–Leone
Discrete Laplace (TL−DL) distribution, is proposed. It has a shape parameter α > 0 and a
scale parameter 0 < p < 1. The TL−DL is an alternative distribution for discrete data that have
an asymmetric distribution. Some mathematical properties of the proposed distribution are also
derived. Namely, we present the quantile function and the moments for the TL−DL distribution.
The Maximum Likelihood procedure is applied for parameter estimation. An application study
is presented using real data. We use two data sets for this part of the analysis to illustrate the
applications of the TL−DL distribution. For the first data set, the change of the stock price in
comparison with the closing price for the previous day is considered. The second data set provides
information about the comparison of production cycle times of employees before and after the
improvement a slippery production line in the degreasing alkaline process by increasing the pressure
of the nozzle. The TL−DL distribution is applied to a real life data and it fits data more efficiently
than the Discrete Laplace (DL) and Discrete Normal (DN ) distributions.
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1. INTRODUCTION

The characterization of a probability distribution plays an important role in statistics and mathe-
matical sciences. Before a model based on a particular probability distribution can be applied to fit real
world data, it is essential to confirm whether the given probability distribution satisfies the underlying
requirements of its characterization. Probability distributions are commonly used to describe real world
phenomena. Their theory is widely studied and new distributions are developed. Many classes of
distributions have been developed and applied to describe data in numerous fields of research, such as
biology, economics, forestry, genetics, medicine, psychology, reliability, etc; for example see Alzaatreh et
al. (2013) [1] and Ahsanullah and Shakil (2014) [2].

Eugene et al. (2002) [3] presented how to develop a new generalized class of distributions, which
they called the beta-G distribution, based on the generated distribution of the beta distribution.
Subsequently, some well-known G-distributions, for which G is a parent distribution, were developed;
these include the exponential [16], Weibull [5], and gamma [6] distributions.

Recently, Alzaatreh et al. (2013) [1] and Kong et al. (2007) [6], proposed the technique of using the
quantile function to construct a new distribution, the T −X family, where T is a continuous random

*E-mail: thanasate_stat@hotmail.com
**E-mail: fsciwnb@ku.ac.th

***E-mail: fscimnp@ku.ac.th
****E-mail: andrei.volodin@uregina.ca

# Corresponding author.

298



THE TOPP–LEONE DISCRETE LAPLACE DISTRIBUTION AND ITS APPLICATIONS 299

variable from the generator distribution and X is a parent distribution, which can be a continuous
or discrete distribution. When X is continuous distribution, the resulting T −X distribution family
is a continuous distribution, too. Similarly, when X is a discrete distribution, the resulting T −X
distribution family is a discrete, too.

The Topp–Leone (TL) distribution was proposed by Topp and Leone (1955) [7]. The distribution is
constructed for empirical data with a J-shaped histogram such as power tool failures, and automatic
calculating machine failure. Many authors proposed TL−G distributions such as the TL generalized
exponential [8] and the TL exponential [9] distributions.

The Topp–Leone generator (TL−G) of distributions was investigated only for the continuous case
until Rezaei et al. (2017) applied a discrete parent distribution to the T −X family of distributions [10].
Namely, the T -geometric family containing the discrete analogues of continuous distributions. Alza-
atreh et al. (2013) [1] defined this method as the discrete analogue of continuous distributions and
suggested that their proposed distribution can be performed in the various fields of discrete data.
Consequently, we propose the T −X distribution family, where T has TL distribution and X has a
discrete distribution.

Discrete distributions are useful in many applications, such as the difference between the self-
reported and true number of visits to a doctor, the difference in chromosomal counts in healthy and
diseased individuals, the difference in the counts of retail outlets before and after particular periods,
counts for economical indicators of a country development, stock price change data, and currency
exchange rates during financial transactions [11].

The theory and applications of discrete distributions have been widely studied and the literature on
discrete distributions taking values in the set of integer numbers is exceptionally large. Examples of
discrete distributions that can be applied for the asymptotic analysis of a data set are: the Discrete
Normal (DN ) distribution [11], the Discrete Laplace (DL) [12], and the Discrete Analogue of a Laplace
(double exponential) distributions [13].

The Discrete Laplace distribution is closely connected with the Geometric distribution. Namely, the
distribution of a discrete Laplace random variable is equal to the distribution of the difference of two
independent and identically distributed geometric random variables. For applications of the Geometric
distribution we note that the hydro climatic episodes such as droughts, floods, warm spells and cold
spells are commonly quantified in terms of their duration and magnitude. The durations of episodes
above and below the reference level, known as positive and negative episodes, respectively, are frequently
modeled by the Geometric distribution (see [12]).

This article is organized as follows. In Section 2, we introduce some preliminary results that are
important for our discussion. In Section 3, the new TL−G distribution family, namely, the Topp–Leone
Discrete Laplace distribution is proposed. Some probability properties of the proposed distribution are
discussed, and the maximum likelihood method is used to estimate the unknown parameters of the
Topp–Leone Discrete Laplace distribution. Finally, an application study of the proposed distribution is
illustrated.

2. PRELIMINARY RESULTS

Here, we introduce and give examples of a discrete distribution such as the DN distribution [11] and
the DL distribution [12].

2.1. The DN Distribution

We say that a random variable X has the DN distribution with parameters μ and σ, denoted as
X ∼ DN(μ, σ), if its probability mass function (pmf) is

g(x;μ, σ) = P (X = x) = Φ

(
x+ 1− μ

σ

)
− Φ

(
x− μ

σ

)
;x ∈ I, (2.1)

where I = {. . . ,−2,−1, 0, 1, 2, . . . },−∞ < μ < ∞, σ > 0, and Φ(·) is the standard normal cumulative
distribution function (cdf). The pmf plots of the DN distribution in (2.1) are shown in Figure 1.
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Fig. 1. The probability mass function plots of DN distribution with the specified parameters of μ and σ.

2.2. The DL Distribution

The DL distribution was proposed by Inusah and Kozubowski (2003) [13]. We say that a random
variable X has the DL distribution with the parameter p, denoted as X ∼ DL(p), if its pmf is

gDL(x; p) = P (X = x) =
1− p

1 + p
p|x|;x ∈ I, (2.2)

where I = {. . . ,−2,−1, 0, 1, 2, . . . } and 0 < p < 1. The associated cdf of X is

GDL(x; p) =

{
p−x

1+p ; x = −1,−2, . . .

1− px+1

1+p ; x = 0, 1, 2, . . .
(2.3)

Some plots of the DL’s pmf from (2.2) are shown in Figure 2.

The moment generating function of the DL distribution (2.2) is

MDL(t; p) =
(1− p)2

(1− p exp(t))(1− p exp(−t))
; log(p) < t < − log(p).

The mean and variance of the DL distribution are, respectively

μDL =
2p

(1− p)(1 + p)
and σ2

DL =
2p

(1− p)2
.

Since the DL distribution is a symmetric discrete distribution with cdf (2.3), we have the quantile
function of the DL distribution, i.e.,

QDL(u; p) =

⎧⎨
⎩
−
⌊
log(1+p)+log(u)

log(p)

⌋
; 0 ≤ u < 0.5,⌊

log(1+p)+log(1−u)
log(p)

⌋
− 1; 0.5 ≤ u ≤ 1,

(2.4)

where �·� is the floor function, that is the greatest interger less than or equal to the argument.
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Fig. 2. Some pmf plots of the DL-distribution with the specified parameter p.

2.3. The TL−G Family of Distributions

In order to define and investigate the TL−G family of distributions, the TL distribution should be
introduced. We say that a random variable T has the TL distribution with the parameter α > 0, denoted
as T ∼ TL(α), if its pdf and cdf respectively are

f(t;α) = 2αtα−1(1− t)(2 − t)α−1 and F (t;α) = tα(2− t)α,

where 0 < t < 1 and α > 0.
Note that in general TL distribution can be defined with a support [0, b] for b < ∞ (see [1, 9, 10, 14,

15]). In this article we focus primarily on the TL distribution with support [0, 1] to avoid any additional
function for creating a new generated family of distributions.

The quantile function of the TL distribution is (see [16])

Q(u;α) = F−1(u;α) = 1−
√

1− u1/α, (2.5)

where 0 ≤ u ≤ 1.
The TL−G family of distributions, that is the creating a new family of distributions, requires two

principal components: a generator and a parent distribution. The probability density function of the
generator is transformed into a new pmf through the cdf G(x; θ) of the parent distribution with the
parameter θ as follows. Let T be a TL distributed random variable with the parameter α (generator)
and X be a discrete random variable (parent distribution with the parameter of θ) that has the cdf of
G(x; θ). The cdf of the TL−G distribution is defined as

F (x;α, θ) = Gα(x; θ) (2−G(x; θ))α ,

where α > 0 is a shape parameter (see [9, 10, 16]).
If QG(u; θ) is the quantile function of a parent distribution, then according to (2.5), the quantile

function of the TL−G distributed random variable X is:

QX(u) = QG

(
1−

√
1− u1/α

)
, (2.6)

where 0 ≤ u ≤ 1.
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The moments of the TL−G distribution can be computed by the probability weighted moments of
order (s, r) of the parent distribution. The (s, r) probability weighted moment of X is

E [XsGr(X)] = τs,r =

∞∫
−∞

xsGr(x)g(x)dx =

1∫
0

Qs
G(u)u

rdx,

where −∞ < s < ∞. In the case when parameter α is a positive integer, the moments of TL−G
distribution can be calculated by the formula:

E(Xs) =
α∑

i=1

(
α

i

)
2α−i(α+ i)τs,α+i−1, (2.7)

see Topp and Leone (1955) [7]; Vicaria et al. (2008) [17].

3. RESULTS AND DISCUSSION

3.1. A New TL−G Distribution

In this section, we propose the Topp–Leone Discrete Laplace TL−DL distribution. We consider
DL distribution as the generator. We present the pmf and cdf of the proposed distribution in Theorem 1.

Theorem 1. Let X be a random variable which has the Topp–Leone Discrete Laplace (TL−
DL) distribution with parameters α > 0 and 0 < p < 1, denoted as X ∼ TL−DL(α, p). The cdf
of X is

FTL−DL(x;α, p) =

⎧⎨
⎩
(
p−x

1+p

)α (
2− p−x

1+p

)α
; x = −1,−2, . . . ,(

1− px+1

1+p

)α (
1 + px+1

1+p

)α
; x = 0, 1, 2, . . . .

The pmf of X is

fTL−DL(x;α, p) =

⎧⎨
⎩
(
p−1−x

1+p

)α (
2− p−1−x

1+p

)α
−

(
p−x

1+p

)α (
2− p−x

1+p

)α
; x = −1,−2, . . . ,(

1− p2(x+2)

(1+p)2

)α
−

(
1− p2(x+1)

(1+p)2

)α
; x = 0, 1, 2, . . . .

The plots of pmf TL−DL distribution are shown in Figure 3.

From the TL−G quantile function (2.6) and the DL quantile function (2.4), we have the quantile
function of the TL−DL distribution:

QTL−DL(u;α, p) =

⎧⎪⎪⎨
⎪⎪⎩
−
⌊
log(1−

√
1−u1/α)+log(1+p)
log(p)

⌋
; 0 ≤ u < 0.5,⌊

log(1−
√

1−u1/α)+log(1+p)
log(p)

⌋
− 1; 0.5 ≤ u ≤ 1,

where �·� is the floor function. In the case when α is a positive integer, moments of the TL−DL
distribution can be calculated by formula (2.7) with

τs,α+i−1 =

∫ 0.5

0

{
− log(1 + p) + log(1 −

√
1− u1/α)

log(p)

}s

uα+i−1du

+

{∫ 1

0.5

log(
√

1− u1/α) + log(1 + p)

log(p)
− 1

}s

uα+i−1du.
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Table 1. Comparison of the observed and expected values of the change of the stock price compared to the closing
price of the previous day

Class Observed frequency
Expected frequency

DN DL TL – DL

< −6 4 5.61 9.61 7.08

−6 2 3.42 3.33 3.16

−5 8 4.85 4.47 4.44

−4 9 6.51 6.02 6.15

−3 10 8.27 8.1 8.35

−2 12 9.95 10.91 11.05

−1 9 11.33 14.68 14.14

0 14 12.23 19.75 17.27

1 19 12.49 14.68 14.51

2 7 12.07 10.91 11.65

3 10 11.05 8.1 9.09

4 9 9.58 6.02 6.95

5 4 7.87 4.47 5.25

6 6 6.12 3.33 3.92

7 4 4.5 2.47 2.91

8 2 3.14 1.84 2.15

9 3 2.07 1.36 1.58

> 9 2 2.94 3.95 4.35

Parameter estimates μ̂ = 0.3852 p̂ = 0.7431 p̂ = 0.8543

σ̂ = 4.2705 α̂ = 2.6247

D value of KS test 0.0970 0.0672 0.0373

log(L) 387.5391 391.5113 388.7429

AIC 779.0782 785.0226 781.4858

BIC 779.3324 785.1497 781.7400

3.2. Parameter Estimation of the TL−DL Distribution

Here we present the maximum likelihood estimation (MLE) of the parameters for the TL−DL
distribution. The likelihood function of the TL−DL(α, p) distribution is given by:

L(α, p) =

n∏
i=1

{
I(xi<0)

[(
p−1−xi

1 + p

)α (
2− p−1−xi

1 + p

)α

−
(

p−xi

1 + p

)α (
2− p−xi

1 + p

)α]

+ I(xi≥0)

[(
1− p2(xi+2)

(1 + p)2

)α

−
(
1− p2(xi+1)

(1 + p)2

)α]}
.

The corresponding log-likelihood function is

logL(α, p;x) =

n∑
i=1

{
I(xi<0)

[
log

((
p−1−xi

1 + p

)α(
2− p−1−xi

1 + p

)α

−
(

p−xi

1 + p

)α (
2− p−xi

1 + p

)α)]
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Table 2. Comparison of the observed and expected values of the production cycle times (unit: seconds) of 133
employees before and after improvement of the production line

Time Observed frequency Expected frequency

difference (number of employees) DN DL TL – DL

< −5 10 6.08 10.98 7.47

−5 4 4.07 4.22 3.83

−4 6 5.87 5.84 5.60

−3 8 7.92 8.08 8.00

−2 11 10.01 11.18 11.11

−1 14 11.85 15.48 14.84

0 17 13.13 21.43 18.75

1 15 13.62 15.48 15.69

2 12 13.23 11.18 12.42

3 9 12.03 8.08 9.49

4 7 10.24 5.84 7.09

5 5 8.16 4.22 5.22

6 4 6.09 3.05 3.80

7 3 4.25 2.20 2.75

8 2 2.78 1.59 1.98

9 2 1.70 1.15 1.42

> 9 4 1.98 2.99 3.53

Parameter estimates μ̂ = 0.3852 p̂ = 0.7431 p̂ = 0.8543

σ̂ = 4.2705 α̂ = 2.6247

D value of KS test 0.0902 0.0556 0.0226

log(L) 369.1972 373.4848 370.2500

AIC 742.3944 748.9696 744.5000

BIC 742.6421 749.0935 744.7477

+ I(xi≥0)

[
log

((
1− p2(xi+2)

(1 + p)2

)α

−
(
1− p2(xi+1)

(1 + p)2

)α)]}
.

To estimate the unknown parameters θ and α, we take the partial derivatives of the log-likelihood
function logL(α, p;x) with respect to α and p and equate them to zero. That is, the score equations
are ∂ logL(α,p;x)

∂α = 0, ∂ logL(α,p;x)
∂p = 0.

It is not possible to solve these equations in closed form. Therefore, a simple iterative numerical
procedure to approximate the MLE solutions can be used. The MLE solutions α̂ and p̂ can be obtained
by solving the score equations simultaneously using the nlm function in the statistical software package
R [18].
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Fig. 3. Some pmf plots of the TL−DL distribution for the specified parameters α and p.

4. APPLICATIONS STUDY

We used two data sets for this part of the analysis to illustrate the applications of the TL−DL
distribution. For the first data set, the change of the stock price (unit: Baht) data is recorded (Table 4).
The data provide the change of the stock price in comparison with the closing price for the previous
day. It was obtained from the Petroleum Authority of Thailand Public Company Limited (PTT) and
was recorded for a period from April 1, 2014 to October 20, 2014. It can be seen on the official
website of the Stock Exchange of Thailand (SET) PTT Public Company Limited (see [19]). The second
data set provides information about the comparison of production cycle times (unit: seconds) of 133
employees [20] before and after the improvement a slippery production line in the degreasing alkaline
process by increasing the pressure of the nozzle from 0.3 mpa to 0.4 mpa (Table 4).

We used the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC)
for the comparison of the considered distributions in order to decide which one fits our data better.
Given a collection of models for the data, these criteria estimate the quality of each model, relative
to each of the other models. Suppose that we have a statistical model of some data. Let k be the
number of estimated parameters in the model, and n be the sample size. Let L be the maximum
value of the likelihood function for the model. Then the AIC and BIC values of the model are:
AIC = −2 log(L) + 2k, and BIC = −2 log(L) + k log(n). Moreover, the KS (Kolmogorov–Smirnov)
test can be modified to serve as a goodness of fit test for the application study. The empirical distribution
function Fn(x) based on n independent and identically distributed ordered observations Xi is defined
as Fn(x) =

1
n

∑n
i=1 I(−∞,x)(Xi), where I(−∞,x)(Xi) is the indicator function, which is equal to 1 if

Xi ≤ x and equal to 0 otherwise. The KS statistic for a given cumulative distribution function F (x)
is D = sup

x
|Fn(x)− F (x)|, where supremum is taken over all real numbers x.

From the results in Table 1 and Table 2, the AIC and BIC values for the DN distribution is smaller
than for the TL−DL and DL distributions, respectively. When the K-S test is considered, the
TL−DL distribution has a K-S value close to zero. The TL−DL distribution has a K-S value
less than the corresponding values for the DL and DN distributions. Thus, the observed values of
the two data sets have a better fit by the TL−DL distribution than by the DL and DN distributions
(see Figure 4).
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Fig. 4. Empirical and fitted distributions of the DN , DL, and TL−DL distributions for two data sets.

5. CONCLUSION

In this article, we propose the Topp–Leone Discrete Laplace (TL−DL) distribution, which is a
new T −G distribution where T is distributed according to the Topp–Leone (TL) distribution and G
is distributed according to the Discrete Laplace (DL) distribution. The TL−DL distribution has two
parameters: the shape parameter α > 0 and the scale parameter 0 < p < 1. The maximum likelihood
estimation procedure is applied to estimate the TL−DL parameters. Examples from two real data sets
show the efficiency of the distribution for model fitting. We can conclude that the TL−DL distribution
is a flexible alternative for an analysis of the discrete data.
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