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Abstract—Two-parameter Birnbaum–Saunders distribution has been widely studied in Reliability
Theory due to its important Engineering applications. This article proposes a novel confidence
intervals construction for the shape and scale parameters of the Birnbaum–Saunders distribution.
We apply the following two methods: The generalized pivotal approach and the percentile bootstrap
approach. The Monte Carlo simulations are used to evaluate the performance of the confidence
intervals. We compare the coverage probability and average width of the proposed confidence
intervals with already known. Simulation results have shown that the proposed confidence intervals
perform well in terms of coverage probability and average length for various sample sizes. The
illustrative example and some concluding remarks are finally presented.
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1. INTRODUCTION

The two-parameter Birnbaum–Saunders distribution was originally proposed by Birnbaum and
Saunders [1] in 1969 as a lifetime distribution for fatigue failure caused under cyclic loading. This
distribution is widely used as a lifetime distribution in the case when the failure is due to the development
and growth of a dominant crack. The Birnbaum–Saunders distribution has been normally applied
to reliability studies. This distribution has many interesting properties. For example, as a lifetime
distribution it is positively skewed (asymmetry to the right) and a failure rate with upside-down bathtub
shape [2, 3].

Because of important Engineering applications, many authors have considered estimation of its
parameters. For the maximum likelihood estimation (MLE) we refer to Birnbaum and Saunders [1]
and Englehardt et al. [4]. Moment estimations for the original parametrization of the Birnbaum–
Saunders distribution were presented by Leiva et al. [5] and Balakrishnan et al. [6]. Note that the moment
estimators may not always exist. In all of these cases, it is not possible to find explicit expressions for
its estimators, so that numerical procedures must be used. For this reason, Ng et al. [7] introduced a
modified moment (MME) method for estimating the parameters by an application of the bias-reduction
method. From and Li [8] showed several estimation methods for the Birnbaum–Saunders distribution.
Recent works on improving inference for this distribution are due to Lemonte et al. [9] and Cysneiros et
al. [10]. We also refer to the article Ahmed et al. [11], where a new parametrization of the Birnbaum–
Saunders distribution has been introduced and three types of the parameter estimation have been
investigated: MLE, Method of Moments and Regression-Quantile.
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Fig. 1. Comparison of the Birnbaum–Saunders for some values α with β = 1.

It is well known that a point estimation has a disadvantage providing as a result only a single number
and saying too much about the accuracy of the estimation. Contrary to this, a confidence interval
provides additional information about the variability of the estimate. Therefore, an interval estimate
provides more information about a population characteristic than does a point estimate. However, there
are few researches that have investigated confidence intervals for parameters of the Birnbaum–Saunders
distribution. For example, Ng et al. [7] and [12] proposed interval estimations based on the MLE’s and
MME’s. The asymptotic distributions of the MLEs have been derived and have been used to construct
asymptotic confidence intervals for the unknown parameters.

Therefore, in this article we are interested in new methods for a construction of confidence intervals
for the shape and scale parameters of the Birnbaum–Saunders distribution. The first method of
confidence interval construction is based on the generalized pivotal approach (GPA). The second method
of confidence interval construction is based on the percentile bootstrap approach (PBA). Monte Carlo
simulations have been carried out to examine the performance of the proposed methods comparing to
MLE and MME methods.

The rest of this paper is organized as follows. In Section 2, we describe briefly the properties of
Birnbaum–Saunders distribution. The methods of interval estimation for parameters are presented in
Section 3. In Section 4, we provide Monte Carlo simulation results evaluating the performance of all
methods. Finally, some concluding remarks are made in Section 5.

2. THE TWO-PARAMETER BIRNBAUM–SAUNDERS DISTRIBUTION

A continuous random variable T is said to have two-parameter Birnbaum–Saunders distribution
(notation T ∼ BS(α, β)), if its probability density function is given by (see [1]):

fT (t;α, β) =
1

2αβ
√
2π

[(
β

t

)1/2

+

(
β

t

)3/2
]
exp

[
− 1

2α2

(
t

β
+

β

t
− 2

)]
,

where t > 0, α > 0 and β > 0.
The parameters α and β are the shape and scale parameters, respectively. The density of this

distribution is skewed to the right. Nevertheless, the asymmetry of the distribution decreases with α.
The Birnbaum–Saunders density for some values α with β = 1 is shown in Fig. 1.

The cumulative distribution function of the Birnbaum–Saunders distribution is:

FT (t;α, β) = Φ

[
1

α

{(
t

β

)1/2

−
(
t

β

)1/2
}]

, t > 0, α > 0 and β > 0, (1)

where Φ (·) is the standard normal distribution function.
If T ∼ BS(α, β) then the following monotone transformation

Z =
1

α

[(
T

β

)1/2

−
(
T

β

)−1/2
]
, (2)
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or

T = β
(
1 + 2Z2 + 2Z

(
1 + Z2

)1/2)
;

transforms T to the normally distributed random variable Z with mean zero and variance α2

4 . This fact
easily follows from (1). Using the above transformation, and knowing moments of the standard normal
random variable we can find moments of the Birnbaum–Saunders random variable T . Namely, for an
integer r the following formulae have been derived in [13] and [14]:

E (T r) = βr
r∑

j=0

(
2r

2j

) j∑
i=0

(
i

j

)
(2r − 2j + 2i)!

2r−j+i (r − j + i)!

(α
2

)2r−2j+2i
. (3)

From (3), the expected value, variance, and coefficients of skewness and kurtosis can be easily obtained
as

E (T ) = β

(
1 +

1

2
α2

)
, Var (T ) = (αβ)2

(
1 +

5

4
α2

)
,

γ =
16α2

(
11α2 + 6

)
(5α2 + 3)3

, κ = 3 +
6α2
(
93α2 + 41

)
(5α2 + 4)2

.

The coefficient of variation of T given by

CV (T ) = τ =

√
V ar (T )

E (T )
=

√
(αβ)2

(
1 + 5

4α
2
)

β
(
1 + 1

2α
2
) = α

(√
5α2 + 4

α2 + 2

)
,

which does not depend on the scale parameter β.

3. METHODS OF INTERVAL ESTIMATION FOR THE SHAPE
AND SCALE PARAMETERS

The methods compared in this study fall into the following five categories. First two are based on the
maximum likelihood estimators, next two are based on the moment estimators. These are the methods of
confidence interval construction that have been known before. We suggest two new methods namely the
approach based on the generalized pivotal method and the approach based on the percentile bootstrap
method. Now we describe all 6 methods in more detail.

In the following we assume that T = {T1, . . . , Tn} is a random sample of size n from BS(α, β) and
t = {t1, . . . , tn} are the observed values. The sample mean and harmonic mean are

T̄ =
1

n

n∑
i=1

Ti and H =

[
1

n

n∑
i=1

T−1
i

]−1

, respectively.

The sample mean and harmonic mean based on the observed values are

s =
1

n

n∑
i=1

ti and r =

[
1

n

n∑
i=1

t−1
i

]−1

, respectively.

3.1. Confidence Intervals Based on Maximum Likelihood (ML) Approach

This method of estimation of parameters α and β was suggested by Ng et al. [7] and can be described
as follows. The ML estimator of β denoted as β̂, is the positive root of the equation

β2 − β(2H +K(β)) +H[T̄ +K(β)] = 0,

where

K(x) =

[
1

n

n∑
i=1

(x+ Ti)
−1

]−1

, x ≥ 0.
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Once the MLE of β is obtained, then the MLE of α can then be obtained as

α̂ =

[
T̄

β̂
+

β̂

H
− 2

]1/2
. (4)

The joint distribution of α̂ and β̂ is bivariate normal,⎛
⎝α̂

β̂

⎞
⎠ ∼ N

⎡
⎣
⎛
⎝α

β

⎞
⎠ ,

⎛
⎝α2

2n 0

0 β2

n(0.25+α−2+I(α))

⎞
⎠
⎤
⎦ ,

where

I (α) = 2

∞∫
0

{
(1 + g (αx))−1 − 1/2

}2
dΦ(x),

with

g (y) = 1 +
y2

2
+ y

(
1 +

y2

4

)1/2

.

Note that α̂ and β̂ are asymptotically independent.

Ng et al. [12] proposed the (1− ν) 100% two-sided confidence intervals for α and β based on the
maximum likelihood approach as

CI(α)ML = [αL, αU ] =

[
α̂

(
zν/2√
2n

+ 1

)−1

, α̂

(
z1−ν/2√

2n
+ 1

)−1
]

and

CI(β)ML = [βL, βU ] =

⎡
⎣β̂
(

zν/2√
nh1(α̂)

+ 1

)−1

, β̂

(
z1−ν/2√
nh1(α̂)

+ 1

)−1
⎤
⎦ ,

where h1(x) = 0.25 + x−2 + I(x). By zν we denote the νth quantile of the standard normal distribution.

3.2. Confidence Intervals Based on Modified Maximum Likelihood (MML) Approach

The maximum likelihood estimator of α is biased, especially when the sample sizes are small. The
almost unbiased maximum likelihood estimators of α and β, denoted by α̂∗ and β̂∗ were proposed by Ng
et al. [7] as:

α̂∗ =

(
n

n− 1

)
α̂ and β̂∗ =

(
1 +

(α̂∗)2

4n

)
β̂.

These are the bias-corrected estimators. Ng et al. [12] proposed the (1− ν) 100% two-sided confidence
intervals for α and β based on the almost unbiased maximum likelihood estimators as

CI(α)MML = [αL, αU ] =

[
α̂∗
(√

n

2

zν/2

(n− 1)
+ 1

)−1

, α̂∗
(√

n

2

z1−ν/2

(n− 1)
+ 1

)−1
]
,

and

CI(β)MML = [βL, βU ] =

⎡
⎣β̂∗

(
n

h1(α̂∗)

4zν/2

(4n + (α̂∗)2)
+ 1

)−1

, β̂∗

⎛
⎝ n

h1(α̂∗)

4z1−ν/2(
4n+ (α̂∗)2

) + 1

⎞
⎠

−1⎤
⎦ .
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3.3. Confidence Intervals Based on Method of Moments Estimator (ME) Approach

The method od moments estimators of α and β can be obtained by equating the sample mean and
sample variance to the their true values. The moment estimators do not exist in the case of the sample
coefficient of variation is greater than

√
5 or α > 2737.2. If the sample coefficient of variation is less than√

5, then the method of moments estimators exist. However, the method of moments estimator for β
may not be unique. The method of moments estimators of α and β are obtained as follows in [7]

α̃ =

{
2

[(
T̄

H

)1/2

− 1

]}1/2

and β̃ = (T̄H)1/2.

Ng et al. [7] proved that the joint asymptotic distribution of α̃ and β̃ is bivariate normal⎛
⎝α̃

β̃

⎞
⎠ ∼ N

⎡
⎢⎣
⎛
⎝α

β

⎞
⎠ ,

⎛
⎜⎝α2

2n 0

0 αβ2

n

(
1+ 3

4
α

(1+ 1
2
α2)

2

)
⎞
⎟⎠
⎤
⎥⎦ .

It is easy to see that the (1− ν) 100% two-sided confidence intervals for α and β based on the method of
moments approach [12] are

CI(α)ME = [αL, αU ] =

[
α̃

(
zν/2√
2n

+ 1

)−1

, α̃

(
z1−ν/2√

2n
+ 1

)−1
]
,

and

CI(β)ME = [βL, βU ] =

⎡
⎣β̃
(

zν/2√
nh2(α̃)

+ 1

)−1

, β̃

(
z1−ν/2√
nh2(α̃)

+ 1

)−1
⎤
⎦ ,

where h2(x) =
1+0.75x2

(1+0.5x2)2
.

3.4. Confidence Intervals Based on Modified Method of Moments Estimator (MME) Approach

Ng et al. [7] performed extensive Monte Carlo simulations to evaluate the performance of the method
of moments estimator. They found that the method of moments estimator is highly biased if α is large
and sample size is small. Ng et al. [12] proposed the almost unbiased method of moments estimators of
α and β, denoted by α̃∗ and β̃∗. These bias-corrected estimators are given by

α̃∗ =

(
n

n− 1

)
α̃ and β̃∗ =

(
1 +

(α̃∗)2

4n

)
β̃.

The joint distribution of α̃∗ and β̃∗ is bivariate normal⎛
⎝α̃∗

β̃∗

⎞
⎠ ∼ N

⎡
⎢⎣
⎛
⎝α

β

⎞
⎠ ,

⎛
⎜⎝ nα2

2(n−1)2
0

0
16n(αβ)2(1+0.75α2)
(4n+α2)2(1+0.25α2)2

⎞
⎟⎠
⎤
⎥⎦ ,

They proposed the (1− ν) 100% two-sided confidence intervals for α and β based on the almost
unbiased method of moments estimators are:

CI(α)MME = [αL, αU ] =

[
α̃∗
(√

n

2

zν/2

n− 1
+ 1

)−1

, α̃∗
(√

n

2

z1−ν/2

n− 1
+ 1

)−1
]
,

and

CI(β)MME = [βL, βU ] =

[
β̃∗
(√

n

h2 (α̃∗)

4zν/2

4n + α̃∗2
+ 1

)−1

, β̃∗
(√

n

h2(α̃∗)

4z1−ν/2

4n+ α̃∗2
+ 1

)−1
]
.
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3.5. Confidence Interval Based on the Generalized Pivotal (GP) Approach

Weerahandi [15] defined a generalized pivotal as a statistic that has a distribution free of unknown
parameters and an observed value of generalized pivotal does not depend on nuisance parameters. For
the general theory of this method, it has been shown that the generalized pivotal quantities are allowed
to be a function of nuisance parameters, whereas conventional pivotal quantities can only be function of
the sample and the parameter of interest. In this section, we present the GP approach for parameters of
the Birnbaum–Saunders distribution.

First let α be the parameter of interest, and β be a nuisance parameter. The procedure of the
confidence interval construction for the parameter α is as follows: the first is construct a generalized
pivotal quantity, R, based on the two sufficient statistics sample mean T̄ and harmonic mean H . Remind
that the observed versions of these statistics are denoted as s and r, respectively.

Let T = {T1, . . . , Tn} be a random sample of size n from BS(α, β) distribution. As we already
mentioned (see (2)),

Yi =

√
Ti

β
−
√

β

Ti
, i = 1, 2, . . . , n,

are independent normal N(0, α2) random variables. The sample mean and sample variance of Y s

Ȳ = Ȳ (β,T) =
1

n

n∑
i=1

Yi and S2
Y = SY (β,T) =

1

n− 1

n∑
i=1

(Yi − Ȳ )2,

are independent with

Ȳ ∼ N

(
0,

α2

n

)
,

(n− 1)S2
Y

α2
∼ χ2(n − 1).

Note that we write that Ȳ = Ȳ (β,T) and SY = SY (β,T) because we used only the values of β and T
to calculate them. This point is important for our further discussion of generalized pivotal quantity for α.

Therefore Q(β) =
√
nȲ /SY has Student’s t(n− 1) distribution with n− 1 degrees of freedom.

Again, we should write Q(β,T) instead of Q(β) only because the formula for Q(β) calculation is based
on β and T. But what is important to know that this formula is based on β and T only, it does not depend
on α.

With the help of some monotonicity properties of the function Q(β) = Q(β,T) established in
Sun [16], Wang [17] derived the pivotal quantity of β as follows

g(Q,T) =

{
max{β1, β2}, if Q ≤ 0,

min{β1, β2}, if Q > 0,

where the equation Q(β) = Q and β1, β2 are two solutions of the following equation:

[(n− 1)B2 −DQ2]β2 − 2[(n − 1)AB − (1−AB)Q2]β + (n− 1)A2 − CQ2 = 0.

In this equation we denote

A =
1

n

n∑
i=1

√
Ti, B =

1

n

n∑
i=1

1/
√

Ti, C =
1

n

n∑
i=1

(
√

Ti −A)2,

D =
1

n

n∑
i=1

(1/
√

Ti −B)2 and Q = Q(β).

Since Yi ∼ N(0, α2), we can get

V =
n∑

i=1

(
Yi − 0

α

)2

=

∑n
i=1 Y

2
i

α2
∼ χ2(n).
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Then Q(β) and V are independent. Hence

α =

√∑n
i=1 Yi(β)2

V
=

√√√√∑n
i=1

(√
Ti
β −

√
β
Ti

)2
V

=

√∑n
i=1 Ti − 2nβ + β2

∑n
i=1 T

−1
i

βV
=

√
T̄ − 2nβ + β2H−1

βV
. (5)

A generalized pivotal quantity R = h(T; t, α, β) is some function of T, possibly t, α and β as well,
because a generalized pivotal can be a function of all unknown parameters.

Using the expression of α presented in (5), the generalized pivotal for the shape parameter can be
defined as follows

Rα = h(T; t, α, β) =

√
s− 2ng(Q, t) + g(Q, t)2r−1

g(Q, t)V
, (6)

where V ∼ χ2(n) and Q ∼ t(n− 1). Note that here we consider s and r as functions of the observed
values t.

The generalized pivotal Rα = h(T; t, α, β), for interval estimation has the following two properties,
which are in the line with the required properties of a generalized pivotal outlined above.

(i) Rα = h(T; t, α, β) has a probability distribution free of unknown parameters (the observed values
s and r being treated as constants),

(ii) The observed pivotal, that is defined as robs = h(t; t, α, β) does not depend on the nuisance
parameter. This proper is imposed to guarantee that such probability statements based on a generalized
pivotal quantity will lead to confidence regions involving observed data t only.

Confidence intervals for α based on the GP approach can be constructed with the help of Rα. If
Rα(1− ν) is the 100(1− ν)th percentile of the Rα distribution, then Rα(1− ν) is the (1− ν)100% upper
confidence limit for α. Thus,

CI (α)GP = [αL, αU ] = [Rα(ν/2), Rα(1− ν/2)]

is a (1− ν) 100% two-sided GP confidence interval for the shape parameter α of the Birnbaum–
Saunders distribution.

In the next section we conduct a simulation study to evaluate the accuracy properties of this method of
confidence intervals construction. In order to understand the performance of the GP confidence interval,
we estimate its coverage probability by Algorithm 1.

Algorithm 1. Fix values of n (sample size), α, β (parameters to be estimated), m1 (the number of
replications for the generalized pivotal computations, in our calculations we assume m1 = 5.000) and m2

(the number of replications for computation the GP confidence interval, in our calculations we assume
m2 = 10.000). The GP confidence interval can be computed by the following steps.

0. Let j = 1.
1. Simulate values t1, t2, ..., tn from BS (α, β) distribution.

2. Compute sample mean s = 1
n

∑n
i=1 ti and harmonic mean r =

[
1
n

∑n
i=1 t

−1
i

]−1
.

3. Generate T ∼ t(n− 1) and V ∼ χ2(n), independently, for computing g(Q, t) (if g(Q, t) ≤ 0 then
regenerate T ∼ t(n− 1)).

4. Compute Rα following (6).
5. Repeat Steps 3–4 a total of m1 times and obtain an array of Rα’s.
6. Rank this array of Rα’s from smallest to largest.
7. If the 100(1 − ν/2)th percentile of Rα’s is greater than α and the 100(ν/2)th percentile Rα’s is

smaller than α, set Kj = 1, otherwise set Kj = 0 for j = 1, 2, . . . ,m2.
8. Let j be j + 1. Repeat Steps 1–7 a total of m2 times and obtain an array of Kj ’s.

The value 1
m2

∑m2
i=1 Kj is an estimate of the coverage probability of two-sided GP (1− ν) 100%

confidence interval for the shape parameter α of the Birnbaum–Saunders distribution BS(α, β).
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The generalized pivotal for the scale parameter β can be defined as follows Rβ = g(Q, t). Confidence
intervals for β based on the GP approach can be constructed with the help of Rβ . If Rβ(1− ν) is the
(1− ν)100th percentile of the Rβ distribution, then Rβ(1− ν) is the (1− ν) 100% upper confidence limit
for β. Thus,

CI(β)GP = [βL, βU ] = [Rβ(ν/2), Rβ(1− ν/2)]

is a (1− ν) 100% two-sided GP for the scale parameters of the two-parameter Birnbaum–Saunders
distribution.

3.6. Confidence Interval Based on the Percentile Bootstrap (PB) Approach

The last, we consider the percentile bootstrap (PB) approach for constructing confidence interval for
parameters of the Birnbaum–Saunders distribution. Bootstrap methods are one type of re-sampling
approaches that can be used to reduce the bias of the MLE. The basic theory of bootstrapping was
presented by Efron and Tibshirani [18]. The bootstrap estimators for the shape and scale parameters are
calculated by using the method of Lemonte et al. [19].

The method of Lemonte et al. [19] is a strategy of bias correction of the maximum-likelihood
estimators for the parameters that index the distribution via bootstrap and can be described as follows.

Let y = (y1, y2, . . . , yn)
T be a random sample of size n, where each element is a random draw from

the random variable Y with the distribution functionF = Fθ(y) and θ̂ be an estimator of θ based on y; we
write θ̂ = s(y). Next, let B be bootstrap samples (y∗1,y∗2, . . . ,y∗B) which are generated independently
from the original sample y. The respective bootstrap replications are denoted as (θ̂∗1, θ̂∗2, . . . , θ̂∗B),
where θ̂∗b = s(y∗b) and b = 1, 2, . . . , B. The approximate bootstrap estimator is calculated by the
mean θ̂∗(.) = 1/B

∑B
b=1 θ̂

∗b. Therefore, the bootstrap bias estimates based on B replications of θ̂ are

B̂F
θ̂
(θ̂, θ) = θ̂∗(.) − s(y) for the parametric versions.

By using the idea of constant-bias-correcting (CBC) estimates by MacKinnon and Smith [20], we
arrive at the following bias-corrected estimator

θ̄∗ = s(y) − B̂F
θ̂
(θ̂, θ) = 2θ̂ − θ̂∗(.).

We have evaluated, through Monte-Carlo simulations, the performance of the maximum likelihood
estimators θ̂ = (α̂, β̂)T of the vector of parameters θ = (α, β)T of the two-parameter Birnbaum–
Saunders distribution and its bootstrap estimator θ̄∗ = (ᾱ∗, β̄∗)T .

Suppose we want to use the m bootstrap samples to form a 95% confidence interval. We shall need
to calculate the θ̄∗ number of m values to ordered value in the list of B standardized bootstrap estimates
of θ. Therefore, the percentile (1− ν) 100% bootstrap confidence interval for α are given by

CI(α)PB = [αL, αU ] =
[
ᾱ∗
(ν/2), ᾱ

∗
(1−ν/2)

]
,

where ᾱ∗
(ν/2) is the B (ν/2)th ordered value in the list of B standardized bootstrap estimates of α.

The Percentile (1− ν) 100% bootstrap confidence interval for β are given by

CI(β)PB = [βL, βU ] =
[
β̄∗
(ν/2), β̄

∗
(1−ν/2)

]
,

where β̄∗
(ν/2) is the B (ν/2)th ordered value in the list of B standardized bootstrap estimates of β.
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Table 1. Comparison of coverage probabilities and average lengths of α for the Two-parameter Birnbaum–
Saunders distribution at the 0.95 nominal level (β = 1)

n α ML MML ME MME GP PB

ALa CPb ALa CPb ALa CPb ALa CPb ALa CPb ALa CPb

5 0.1 0.039 0.912 0.044 0.957 0.035 0.943 0.039 0.961 0.032 0.964 0.044 0.945

0.5 0.196 0.922 0.224 0.955 0.071 0.942 0.190 0.958 0.186 0.955 0.217 0.943

1.0 0.462 0.925 0.526 0.954 0.143 0.940 0.365 0.948 0.749 0.954 0.416 0.943

1.5 1.178 0.930 1.330 0.950 0.236 0.943 0.523 0.946 1.112 0.953 0.597 0.944

2.0 1.745 0.937 1.988 0.943 0.345 0.921 0.670 0.945 1.486 0.953 0.764 0.954

15 0.1 0.052 0.927 0.055 0.959 0.463 0.949 0.052 0.958 0.058 0.963 0.055 0.953

0.5 0.266 0.922 0.280 0.954 0.041 0.949 0.257 0.958 0.273 0.961 0.270 0.951

1.0 0.569 0.925 0.599 0.947 0.082 0.946 0.495 0.950 0.525 0.961 0.521 0.949

1.5 1.702 0.952 1.781 0.940 0.163 0.949 0.716 0.957 0.784 0.959 0.753 0.949

2.0 3.234 0.937 3.422 0.936 0.267 0.928 0.924 0.930 1.062 0.955 0.973 0.951

30 0.1 0.058 0.926 0.060 0.955 0.402 0.946 0.058 0.967 0.041 0.952 0.060 0.955

0.5 0.296 0.937 0.304 0.952 0.533 0.937 0.286 0.959 0.194 0.951 0.294 0.951

1.0 0.622 0.942 0.638 0.953 0.043 0.935 0.552 0.951 0.373 0.951 0.567 0.951

1.5 1.751 0.950 1.814 0.950 0.086 0.931 0.800 0.945 0.558 0.951 0.822 0.952

2.0 4.390 0.902 4.469 0.943 0.171 0.921 1.036 0.942 0.761 0.958 1.065 0.947

50 0.1 0.062 0.932 0.063 0.962 0.280 0.943 0.062 0.962 0.033 0.955 0.063 0.954

0.5 0.313 0.924 0.318 0.956 0.424 0.944 0.303 0.955 0.159 0.954 0.308 0.955

1.0 0.652 0.921 0.663 0.946 0.045 0.941 0.585 0.950 0.305 0.952 0.595 0.952

1.5 1.730 0.963 1.757 0.945 0.089 0.929 0.849 0.944 0.457 0.950 0.863 0.946

2.0 5.282 0.935 5.360 0.943 0.179 0.916 1.101 0.936 0.624 0.956 1.119 0.950

100 0.1 0.065 0.930 0.066 0.963 0.294 0.944 0.065 0.976 0.026 0.954 0.066 0.950

0.5 0.331 0.926 0.334 0.957 0.442 0.947 0.321 0.969 0.123 0.953 0.323 0.953

1.0 0.687 0.937 0.693 0.951 0.589 0.945 0.620 0.954 0.237 0.952 0.625 0.952

1.5 1.718 0.937 1.736 0.947 0.048 0.946 0.899 0.948 0.355 0.950 0.907 0.954

2.0 6.700 0.915 6.707 0.940 0.095 0.947 1.168 0.934 0.486 0.959 1.178 0.949

500 0.1 0.072 0.930 0.072 0.958 0.190 0.949 0.072 0.959 0.018 0.958 0.072 0.952

0.5 0.363 0.933 0.364 0.958 0.313 0.947 0.352 0.951 0.087 0.953 0.353 0.950

1.0 0.751 0.929 0.752 0.951 0.473 0.948 0.681 0.949 0.168 0.952 0.682 0.958

1.5 1.839 0.920 1.840 0.949 0.632 0.942 0.989 0.947 0.252 0.950 0.990 0.950

2.0 11.905 0.931 11.956 0.946 0.748 0.933 1.285 0.936 0.345 0.950 1.286 0.953

4. SIMULATION STUDIES AND RESULTS

The simulation studies are carried out to evaluate coverage probabilities and average widths of each
confidence interval. The sample sizes are chosen to be n = 5, 15, 30, 50, 100, 500, the values of
the shape parameter are α = 0.1, 0.5, 1.0, 1.5, 2.0, the scale parameter β is kept fixed at 1.0, the
nominal values are 0.95 and 0.99, the number of replications is 10.000. For the generalized pivotal
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Table 2. Comparison of coverage probabilities and average lengths of α for the Two-parameter Birnbaum–
Saunders distribution at the 0.99 nominal level (β = 1)

n α ML MML ME MME GP PB

ALa CPb ALa CPb ALa CPb ALa CPb ALa CPb ALa CPb

5 0.1 0.165 0.972 0.348 0.993 0.165 0.878 0.126 0.984 0.347 0.988 0.304 0.988

0.5 0.835 0.974 1.762 0.991 0.810 0.893 0.620 0.940 1.708 0.982 1.491 0.972

1.0 1.968 0.978 4.145 0.986 1.557 0.892 1.196 0.996 3.280 0.993 2.878 0.915

1.5 5.017 0.983 10.478 0.985 2.228 0.892 1.702 0.880 4.707 0.993 4.097 0.980

2.0 7.435 0.983 15.661 0.981 2.856 0.873 2.184 0.940 6.023 0.985 5.256 0.919

15 0.1 0.110 0.945 0.123 0.996 0.110 0.985 0.075 0.989 0.123 0.988 0.098 0.991

0.5 0.562 0.953 0.627 0.995 0.543 0.978 0.365 0.991 0.605 0.982 0.477 0.980

1.0 1.203 0.959 1.344 0.992 1.047 0.966 0.708 0.953 1.169 0.980 0.926 0.995

1.5 3.599 0.962 3.996 0.992 1.513 0.906 1.025 0.918 1.690 0.984 1.341 0.987

2.0 6.838 0.989 7.676 0.988 1.954 0.890 1.307 0.979 2.182 0.994 1.708 0.976

30 0.1 0.098 0.947 0.102 0.995 0.097 0.982 0.049 0.984 0.102 0.995 0.055 0.991

0.5 0.496 0.950 0.520 0.991 0.480 0.976 0.242 0.969 0.502 0.982 0.272 0.986

1.0 1.043 0.951 1.090 0.984 0.927 0.983 0.469 0.997 0.970 0.992 0.525 0.989

1.5 2.938 0.964 3.100 0.987 1.343 0.985 0.677 0.978 1.405 0.992 0.759 0.989

2.0 7.364 0.978 7.639 0.984 1.738 0.986 0.874 0.962 1.820 0.988 0.980 0.997

50 0.1 0.092 0.971 0.094 0.995 0.092 0.981 0.039 0.985 0.094 0.986 0.042 0.990

0.5 0.465 0.974 0.477 0.991 0.450 0.989 0.194 0.987 0.462 0.994 0.209 0.994

1.0 0.970 0.977 0.995 0.995 0.871 0.966 0.375 0.967 0.893 0.985 0.403 0.991

1.5 2.573 0.974 2.635 0.991 1.262 0.969 0.542 0.999 1.294 0.989 0.583 0.984

2.0 7.857 0.984 8.040 0.989 1.637 0.995 0.705 0.979 1.679 0.985 0.758 0.979

100 0.1 0.086 0.970 0.087 0.994 0.086 0.981 0.030 0.984 0.087 0.994 0.031 0.989

0.5 0.438 0.972 0.442 0.990 0.424 0.978 0.148 0.980 0.429 0.986 0.154 0.989

1.0 0.908 0.972 0.918 0.990 0.819 0.983 0.285 0.975 0.829 0.985 0.297 0.991

1.5 2.271 0.977 2.301 0.993 1.189 0.997 0.413 0.991 1.203 0.985 0.431 0.995

2.0 8.857 0.981 8.891 0.993 1.543 0.996 0.536 0.966 1.561 0.984 0.559 0.999

500 0.1 0.078 0.960 0.078 0.991 0.078 0.980 0.021 0.985 0.078 0.996 0.021 0.990

0.5 0.397 0.969 0.397 0.985 0.384 0.981 0.103 0.986 0.385 0.991 0.105 0.991

1.0 0.820 0.978 0.821 0.985 0.744 0.981 0.199 0.989 0.744 0.978 0.203 0.992

1.5 2.008 0.978 2.009 0.986 1.079 0.980 0.290 0.987 1.081 0.997 0.296 0.990

2.0 12.996 0.980 13.053 0.985 1.403 0.971 0.375 0.988 1.404 0.997 0.383 0.995

computations 5.000 pivotal quantities are used. For each simulation, the number of bootstrap samples
B is 5.000. All computer simulations are studied by using written functions inR statistical programming
environment [21]. Generally speaking, we prefer a confidence interval with a coverage probability close
to the nominal coverage level and a shorter width.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 40 No. 8 2019



1174 JANTAKOON, VOLODIN

Table 3. Comparison of coverage probabilities and average lengths of β = 1 for the Two-parameter Birnbaum–
Saunders distribution at the 0.95 nominal level

n α ML MML ME MME GP PB

ALa CPb ALa CPb ALa CPb ALa CPb ALa CPb ALa CPb

5 0.1 0.071 0.928 0.223 0.949 0.068 0.951 0.635 0.949 0.069 0.949 0.078 0.952

0.5 0.400 0.897 1.140 0.958 0.350 0.896 0.671 0.941 0.333 0.937 0.380 0.958

1.0 1.787 0.957 5.279 0.923 1.619 0.918 0.743 0.912 0.639 0.914 0.728 0.974

1.5 7.052 0.962 20.201 0.923 6.196 0.899 0.836 0.945 0.930 0.937 1.063 0.981

2.0 9.593 0.849 27.622 0.996 8.472 0.928 0.945 0.995 1.220 0.987 1.387 0.982

15 0.1 0.076 0.929 0.081 0.952 0.073 0.950 0.641 0.950 0.073 0.950 0.076 0.950

0.5 0.402 0.914 0.427 0.949 0.383 0.966 0.682 0.945 0.354 0.948 0.373 0.951

1.0 1.124 0.891 1.193 0.946 1.070 0.929 0.763 0.953 0.684 0.955 0.718 0.957

1.5 7.980 0.897 8.713 0.986 7.818 0.939 0.867 0.948 0.997 0.925 1.047 0.959

2.0 15.200 0.959 15.911 0.922 14.277 0.922 1.002 0.943 1.308 0.943 1.374 0.960

30 0.1 0.076 0.931 0.050 0.951 0.074 0.950 0.643 0.950 0.074 0.948 0.076 0.950

0.5 0.401 0.922 0.264 0.949 0.390 0.952 0.686 0.948 0.361 0.949 0.370 0.950

1.0 0.997 0.935 0.658 0.951 0.972 0.934 0.771 0.950 0.695 0.951 0.715 0.959

1.5 6.603 0.935 4.386 0.952 6.474 0.938 0.880 0.949 1.014 0.958 1.042 0.955

2.0 19.048 0.921 12.983 0.952 19.164 0.937 1.024 0.954 1.328 0.969 1.366 0.957

50 0.1 0.075 0.930 0.036 0.950 0.074 0.950 0.689 0.950 0.074 0.950 0.075 0.950

0.5 0.394 0.933 0.189 0.953 0.387 0.955 0.779 0.952 0.363 0.949 0.369 0.950

1.0 0.938 0.923 0.451 0.946 0.925 0.958 0.894 0.951 0.701 0.951 0.713 0.949

1.5 4.618 0.927 2.281 0.947 4.679 0.946 1.042 0.947 1.022 0.957 1.039 0.947

2.0 22.560 0.917 10.767 0.955 22.083 0.962 0.648 0.944 1.338 0.955 1.361 0.955

100 0.1 0.075 0.930 0.024 0.950 0.074 0.949 0.695 0.950 0.074 0.950 0.075 0.950

0.5 0.387 0.929 0.124 0.949 0.384 0.949 0.790 0.949 0.365 0.949 0.368 0.948

1.0 0.886 0.926 0.283 0.951 0.878 0.954 0.913 0.951 0.705 0.952 0.711 0.950

1.5 2.990 0.924 0.961 0.957 2.986 0.952 1.073 0.952 1.028 0.948 1.036 0.952

2.0 28.218 0.920 9.274 0.955 28.822 0.955 0.648 0.955 1.343 0.943 1.355 0.946

500 0.1 0.075 0.930 0.007 0.950 0.075 0.950 0.696 0.950 0.075 0.950 0.075 0.950

0.5 0.381 0.930 0.035 0.950 0.381 0.950 0.793 0.951 0.367 0.949 0.368 0.950

1.0 0.813 0.925 0.074 0.950 0.812 0.947 0.918 0.951 0.710 0.949 0.711 0.950

1.5 2.128 0.934 0.195 0.950 2.126 0.947 1.080 0.950 1.032 0.952 1.033 0.951

2.0 49.079 0.931 4.444 0.947 48.484 0.954 0.635 0.953 1.345 0.951 1.346 0.958

In the following, the notation “a” is used when the average width of a confidence interval is reported
and “b” is used for the actual coverage probability.

In Tables 1 and 2 we presented the average width and coverage probabilities of 95% and 99%
confidence intervals for α. From these tables, we readily observe that the coverage probabilities of the
ML and ME are considerably smaller than the nominal levels, particularly when the shape parameter
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Table 4. Comparison of coverage probabilities and average lengths of β = 1 for the Two-parameter Birnbaum–
Saunders distribution at the 0.99 nominal level

n α ML MML ME MME GP PB

ALa CPb ALa CPb ALa CPb ALa CPb ALa CPb ALa CPb

5 0.1 0.616 0.986 0.537 0.990 0.292 0.988 0.679 0.989 0.292 0.991 0.615 0.992

0.5 3.153 0.972 2.753 0.976 1.490 0.972 0.762 0.998 1.421 0.981 2.996 0.993

1.0 14.082 0.934 12.295 0.996 6.899 0.915 0.931 0.994 2.721 0.991 5.733 0.993

1.5 55.558 0.884 48.506 0.968 26.397 0.980 1.169 0.948 3.960 0.995 8.374 0.995

2.0 75.578 0.834 65.985 0.976 36.094 0.919 1.500 0.914 5.198 0.936 10.927 0.996

15 0.1 0.172 0.978 0.095 0.991 0.154 0.991 0.664 0.990 0.153 0.992 0.171 0.990

0.5 0.902 0.993 0.500 0.997 0.809 0.980 0.727 0.988 0.749 0.985 0.836 0.991

1.0 2.522 0.996 1.398 0.991 2.263 0.995 0.855 0.989 1.446 0.977 1.611 0.993

1.5 17.904 0.964 9.924 0.969 16.531 0.987 1.026 0.998 2.108 0.997 2.349 0.991

2.0 34.102 0.972 18.902 0.999 30.188 0.976 1.260 0.943 2.766 0.996 3.083 0.998

30 0.1 0.129 0.980 0.054 0.990 0.124 0.991 0.660 0.990 0.123 0.989 0.129 0.990

0.5 0.685 0.977 0.284 0.985 0.654 0.986 0.720 0.986 0.605 0.984 0.633 0.994

1.0 1.704 0.980 0.707 0.995 1.630 0.989 0.841 0.978 1.166 0.984 1.221 0.986

1.5 11.285 0.981 4.682 0.988 10.860 0.989 0.999 0.986 1.702 0.982 1.781 0.981

2.0 32.555 0.989 13.507 0.983 32.147 0.997 1.219 0.974 2.228 0.992 2.334 0.998

50 0.1 0.113 0.980 0.038 0.990 0.110 0.990 0.713 0.990 0.110 0.990 0.113 0.991

0.5 0.591 0.981 0.197 0.991 0.576 0.994 0.827 0.986 0.540 0.991 0.554 0.992

1.0 1.407 0.975 0.469 0.984 1.375 0.991 0.977 0.985 1.043 0.986 1.069 0.988

1.5 6.927 0.979 2.309 0.994 6.961 0.984 1.175 0.980 1.520 0.991 1.559 0.988

2.0 33.840 0.994 11.280 0.988 32.850 0.979 0.653 0.997 1.990 0.998 2.041 0.985

100 0.1 0.400 0.980 0.024 0.990 0.498 0.989 0.705 0.990 0.098 0.990 0.099 0.990

0.5 0.514 0.980 0.126 0.988 0.507 0.989 0.811 0.990 0.483 0.991 0.488 0.990

1.0 1.175 0.984 0.289 0.987 1.161 0.991 0.949 0.991 0.932 0.991 0.943 0.990

1.5 3.964 0.972 0.974 0.992 3.947 0.995 1.132 0.992 1.359 0.989 1.373 0.990

2.0 37.405 0.959 9.187 0.984 38.097 0.999 0.652 0.997 1.775 0.987 1.796 0.996

500 0.1 0.382 0.980 0.007 0.990 0.382 0.990 0.704 0.990 0.081 0.990 0.082 0.990

0.5 0.416 0.979 0.035 0.990 0.416 0.991 0.808 0.990 0.401 0.990 0.401 0.990

1.0 0.888 0.979 0.075 0.991 0.887 0.992 0.943 0.988 0.775 0.992 0.776 0.990

1.5 2.323 0.980 0.195 0.991 2.321 0.990 1.121 0.992 1.127 0.989 1.128 0.993

2.0 53.583 0.978 4.504 0.991 52.928 0.995 0.679 0.986 1.468 0.993 1.470 0.991

α is small. However, the average width of the ME is smaller than that of the ML, especially when the
shape parameter α is large. The widths of each confidence interval seem to be related to the values of
α. The performance of the MML and MME are both better than ML and ME in terms of coverage
probabilities. The average widths of the MML and MME have similar values and change in the same
direction when the parameters and sample sizes change. Moreover, the MME yields the length width
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Table 5. Interval estimations of α and β at the 0.95 nominal level

Methods Parameters

α β

ML (0.138, 0.203) (131.781, 131.856)

MML (0.139, 0.205) (131.772, 131.846)

ME (0.023, 0.317) (131.782, 131.856)

MME (0.140, 0.205) (131.462, 132.157)

GP (0.159, 0.185) (131.761, 131.835)

PB (0.139, 0.205) (131.766, 131.831)

shorter than MML. In respect to coverage probabilities, the GP approach appears to be the clear winner.
The coverage probability of the GP approach is generally closer to the nominal level than that of the PB
approach. The average width of the GP approach is smaller than that of the PB approach, especially
when the sample sizes are large.

The average widths and coverage probabilities of 95% and 99% confidence intervals for β are reported
in Tables 3 and 4, respectively. From the simulation results, it is clear that the average widths of the ML
and the ME are both short if n and α are small. The performance of the MML and MME are almost
identical for different sample sizes, if the shape parameter α is not too large. The average width of the
GP approach is as smaller than that of the PB approach, especially when the sample sizes are large. The
PB approach works very well in all case for both the parameters even for small samples. The performance
of the GP approach and PB approach are almost identical for different shape parameters and the large
sample sizes. The PB approach performs better than all other methods in terms of coverage probabilities.

5. ILLUSTRATIVE EXAMPLES
To illustrate the computation of proposed confidence intervals in this paper, we use the data by

Birnbaum and Saunders [14] on the fatigue life of 6061-T6 aluminium coupons cut parallel to the
direction of rolling and oscillated at 18 cycles per second. The data set consists of 101 observations
with maximum stress per cycle 31000 psi.

By this information on the fatigue lifetimes, we compute the 95% confidence interval for α and β
using all 6 methods. The results are presented in Table 5. The confidence interval for α using the GP
approach provides the shortest width among all methods. For the scale parameter β, the PB confidence
interval is the winner with the shortest width of interval as 0.065.

6. CONCLUSION
The aim of this article is to propose the GP and the PB approaches for confidence interval estimation

of the shape and scale parameters of the Birnbaum–Saunders distribution. These methods are compared
with the ML, the MML, the ME, and the MME approaches, which were presented by Ng et al. [7]
and [12]. The performances of these confidence intervals were assessed in terms of coverage probabilities
and average widths through simulation studies. The simulation study indicates that the proposed
confidence intervals perform well in terms of coverage probabilities and average widths. For most
cases, coverage probabilities of the proposed methods are equal or above the nominal values and these
confidence intervals are also short confidence intervals in comparison with all other methods. The GP
approach provides the shorter average width, especially, when the sample size is small. In this case, we
suggest the GP approach for the confidence interval construction for the shape parameter α and the PB
approach for the scale parameter β confidence interval.
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