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Abstract

In this note we present new results on a complete convergence for arrays of rowwise independent random variables that

generalize the results of Hu et al. [2003. Complete convergence for arrays of rowwise independent random variables.

Comm. Korean Math. Soc. 18, 375–383], Kuczmaszewska [2004. On some conditions for complete convergence for arrays.

Statist. Probab. Lett. 66, 399–405], and Sung et al. [2005. More on complete convergence for arrays. Statist. Probab. Lett.

71, 303–311]. Additional results that deal with complete convergence for rowwise dependent arrays are given.

r 2006 Elsevier B.V. All rights reserved.

MSC: Primary 60F15; 60G50

Keywords: Arrays; Rowwise independence; Sums of independent random variables; Complete convergence
1. Introduction

The concept of complete convergence of a sequence of random variables was introduced by Hsu
and Robbins (1947) as follows. A sequence fUn; nX1g of random variables converges completely to the
constant y if

X1
n¼1

PfjUn � yj4�go1 for all �40.

The first results concerning the complete convergence were due to Hsu and Robbins (1947) and Erdös (1949).
The paper Hu et al. (1998) unifies and extends the ideas of previously obtained results on complete
convergence. In the main results of Hu et al. (1998), no assumptions are made concerning the existence of
e front matter r 2006 Elsevier B.V. All rights reserved.
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expected values or absolute moments of the random variables. The proof of Hu et al. (1998) is mistakenly
based on the fact that the assumptions of their theorem (cf. Corollary 1) imply convergence in probability of
the corresponding partial sums. Counterexamples to this proof were presented in Hu and Volodin (2000) and
Hu et al. (2003).

Many attempts to solve this problem led to weaker variants of this theorem. Hu et al. (2003) gave a first
partial solution to this question (cf. Corollary 2). Next partial solution was given by Kuczmaszewska (2004)
(cf. Corollary 4) and the question was solved completely in Sung et al. (2005) (cf. Corollary 1), where the result
is proved as stated in Hu et al. (1998). The proof of Sung et al. is different from those of Hu et al. (1998) in the
sense that it does not use a symmetrization procedure.

The initial objective of our investigation that lead to the present paper was to find a proof of the main
result of Hu et al. (1998) that is based on the symmetrization procedure. But it appears that a more
general result can be proved, cf. Theorem 1. As it is shown in corollaries, the main results of Hu et al.
(1998, 2003), Kuczmaszewska (2004), and Sung et al. (2005) can be derived simply from the main result of this
paper.
2. Main results

With the preliminaries accounted for we can now state and prove our main results. In the following we let
fX nk; 1pkpmn; nX1g be an array of rowwise independent random variables defined on a probability space
ðO;F;PÞ, fmn; nX1g be a sequence of positive integers such that limn!1mn ¼ 1, and fcn; nX1g be a sequence
of positive constants. For an event A 2F we denote I ½A� the indicator function. We should note that all the
results of this paper remain true in the case mn ¼ 1 for some/all nX1, provided the series

P1
k¼1 X nk converges

almost surely. Certainly, we should consider sup instead of max in the case of infinite sums.
Theorem 1. Let fX nk; 1pkpmn; nX1g and fcn; nX1g satisfy the following conditions:
(i)

P1

n¼1 cn

Pmn

k¼1 PfjX nkj4ego1 for all e40,

(ii)
 there exist j40, d40 and pX1 such that

X1
n¼1

cn E
Xmn

k¼1

½X nkI ½jX nkjpd� � EðX nkI ½jX nkjpd�Þ�

�����
�����
p !j

o1.
Then

X1
n¼1

cnP max
1pmpmn

Xm

k¼1

½X nk � EðX nkI ½jX nkjpd�Þ�

�����
�����4e

( )
o1 (2.1)

for any e40.

Proof. The conclusion of the theorem is obvious if
P1

n¼1cno1. For nX1 and 1pk; mpmn let

Y nk ¼ X nkI ½jX nkjpd�; Tm ¼
Xm

k¼1

Y nk; Sm ¼
Xm

k¼1

X nk,

A ¼
\mn

k¼1

fX nk ¼ Y nkg; B ¼
[mn

k¼1

fX nkaY nkg.
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Note that

P max
1pmpmn

jSm � ETmj4e
� �

¼ P max
1pmpmn

jTm � ETmj4e
� �

\ A

� �

þ P max
1pmpmn

jSm � ETmj4e
� �

\ B

� �

pP max
1pmpmn

jTm � ETmj4e
� �

þ
Xmn

k¼1

PfjX nkj4dg.

By (i) it is enough to prove that for all e40

X1
n¼1

cnP max
1pmpmn

jTm � ETmj4e
� �

o1.

For any nX1, the random variables Vm ¼ jTm � ETmj
p; 1pmpmn, form a submartingale with

filtration Fm ¼ sðY n1; . . . ;Y nmÞ, m ¼ 1; . . . ;mn, and hence EV 1p � � �pEV mn
. Here sðY n1; . . . ;Y nmÞ

is the sigma-algebra generated by Y n1; . . . ;Y nm. Consider a partition of the set of natural numbers
N into two parts

N0 ¼ fn : EV mn
pep=2pþ1g and N00 ¼ fn : EV mn

4ep=2pþ1g.

Applying (ii) we obtain

X
n2N00

cnp
X
n2N00

cnðEV mn
=ðep=2pþ1ÞÞ

j
¼

2ðpþ1Þj

epj

X
n2N00

cnðEV mn
Þ
jo1.

Hence it is enough to show that for all e40

X
n2N0

cnP max
1pmpmn

jTm � ETmj4e
� �

o1. (2.2)

By Markov inequality

PfjTm � ETmj4ð2EV mÞ
1=p
g ¼ PfV m42EV mgp1

2

and hence jmedTm � ETmjpð2EV mÞ
1=p. Therefore

max
1pmpmn

jmedTm � ETmjp max
1pmpmn

ð2EV mÞ
1=p
¼ ð2EV mn

Þ
1=ppe=2

for all n 2 N0. From here and (2.2) it follows that it is enough to prove

X
n2N0

cnP max
1pmpmn

jTm �medTmj4e=2
� �

o1. (2.3)

Denote fY 0nk; 1pkpmn; nX1g rowwise independent random variables which are independent copies of
fY nk; 1pkpmn; nX1g; that is Y 0nk and Y nk have the same distribution and independent for all
1pkpmn; nX1. Then random variables fY nk � Y 0nk; 1pkpmn; nX1g are rowwise independent and
symmetrically distributed. By the symmetrization inequality and by Lévy inequality (Loève, 1977 18.1B
and C) we obtain

P max
1pmpmn

jTm �medTmj4e=2
� �

p2P max
1pmpmn

Xm

k¼1

ðY nk � Y 0nkÞ

�����
�����4e=2

( )

p4P
Xmn

k¼1

ðY nk � Y 0nkÞ

�����
�����4e=2

( )
. ð2:4Þ
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Choose an integer lX1 such that jp2l . Then by the iterated Hoffmann-Jøregensen inequality (Jain, 1975)
there exist positive constants Cl and Dl such that

P
Xmn

k¼1

ðY nk � Y 0nkÞ

�����
�����4e=2

( )
pClP max

1pkpmn

jY nk � Y 0nkj4e=ð2 � 3lÞ

� �

þDl P
Xmn

k¼1

ðY nk � Y 0nkÞ

�����
�����4e=ð2 � 3lÞ

( ) !j

. ð2:5Þ

By Markov inequality and using the fact that EY nk ¼ EY 0nk we have

P
Xmn

k¼1

ðY nk � Y 0nkÞ

�����
�����4e=ð2 � 3lÞ

( )
p

2p3lp

ep
E
Xmn

k¼1

ðY nk � Y 0nkÞ

�����
�����
p

¼
2p3lp

ep
E
Xmn

k¼1

ðY nk � EY nk þ EY 0nk � Y 0nkÞ

�����
�����
p

p
22p3lp

ep
E
Xmn

k¼1

ðY nk � EY nkÞ

�����
�����
p

þ E
Xmn

k¼1

ðY 0nk � EY 0nkÞ

�����
�����
p" #

¼
22pþ13lp

ep
E
Xmn

k¼1

ðY nk � EY nkÞ

�����
�����
p

¼
22pþ13lp

ep
EV mn

. ð2:6Þ

By (2.4), (2.5), (2.6) and the assumptions of the theorem we see that (2.3) holds. &

In the next theorem we simplify condition (ii) of Theorem 1 when absolute moments of some order pX1
exist for the row sums of mean zero random variables comprising the array.

Theorem 2. Let assumption (i) is fulfilled and EX nk ¼ 0 for all 1pkpmn; nX1. Assume that for some pX1 and

some j40

X1
n¼1

cn E
Xmn

k¼1

X nk

�����
�����
p !j

o1. (2.7)

Then

X1
n¼1

cnP max
1pmpmn

Xm

k¼1

X nk

�����
�����4e

( )
o1 (2.8)

for all e40.

Proof. The proof is actually the same as that of Theorem 1. We are using the notations from the proof of
Theorem 1. For any nX1, the random variables jSmj

p, 1pmpmn where Sm ¼ X n1 þ . . .þ X nm, form a
submartingale with filtration Fm ¼ sðX n1; . . . ;X nmÞ, m ¼ 1; . . . ;mn, and hence EjS1j

pp � � �pEjSmn
jp.

Partition the set N of all natural numbers into two parts

K0 ¼ fn : EjSmn
jppep=2pþ1g and K00 ¼ fn : EjSmn

jp4ep=2pþ1g.

By (2.7) we obtain

X
n2K00

cnp
X
n2K00

cnðEjSmn
jp=ðep=2pþ1ÞÞ

j
¼

2ðpþ1Þj

epj

X
n2K00

cnðEjSmn
jpÞ

jo1.
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Hence it is sufficient to prove that for all e40

X
n2K0

cnP max
1pmpmn

Xm

k¼1

X nk

�����
�����4e

( )
o1. (2.9)

By the Markov inequality PfjSmj4ð2EjSmj
pÞ

1=p
gp 1

2
and hence

jmedSmjpð2EjSmj
pÞ

1=ppð2EjSmn
jpÞ

1=p.

Therefore max1pmpmn
jmedSmjpe=2 for all n 2 K0. From here and (2.9) it follows that it is enough to prove

that X
n2K0

cnP max
1pmpmn

jSm �medSmj4e=2
� �

o1. (2.10)

Statement (2.10) is an analog of statement (2.3) and the proof of (2.3) is applicable to a proof of (2.10). All
necessary changes can be obtained by the substitution Tm by Sm. As the result, we obtain

X
n2K0

cnP max
1pmpmn

jSm �medSmj4e=2
� �

p8Cl

X
n2K0

cn

Xmn

k¼1

PfjX nkj4e=ð4 � 3lÞg

þ
4 � 2ð2pþ1Þj3lpj

epj
Dl

X
n2K0

cnðEjSmn
jpÞ

jo1

by the assumptions of the theorem. &

Remark 1. Assumptions (ii) and (2.7) can be strengthen for p 2 ½1; 2� as follows:
(ii)0 There exist j40, d40 and p 2 ½1; 2� such that

X1
n¼1

cn

Xmn

k¼1

EjX nkI ½jX nkjpd� � EðX nkI ½jX nkjpd�Þjp
 !j

o1

and

X1
n¼1

cn

Xmn

k¼1

EjX nkj
p

 !j

o1. (2.70)

Proof. By von Bahr–Esseen inequality for the pth absolute moment of a sum of random variables (cf. for
example Hoffmann-Jørgensen, 1994, 4.32 where this inequality is called Khinchine’s inequality), there exists a
positive constant d ¼ dpX1 such that

EjTm � ETmj
ppd

Xm

k¼1

EjY nk � EY nkj
p and Ej

Xm

k¼1

X nkj
ppd

Xm

k¼1

EjX nkj
p

for any 1pmpmn; nX1. It is obvious that d ¼ dp ¼ 1 for p ¼ 1 and p ¼ 2. For p ¼ 2 assumptions (ii) and (ii)0

as well as (2.7) and ð2:7Þ0 coincide. &

Remark 2. Condition (i) in Theorem 2 can be omitted if condition (2.7) is fulfilled with j 2 ð0; 1�. Really, by the
maximal inequalities (cf. Chow and Teicher, 1997, Theorem 7.4.8)

X1
n¼1

cnP max
1pmpmn

Xm

k¼1

X nk

�����
�����4e

( )
p
X1
n¼1

cn P max
1pmpmn

Xm

k¼1

X nk

�����
�����4e

( ) !j

p
kj

p

epj

X1
n¼1

cn E
Xmn

k¼1

X nk

�����
�����
p !j

o1,

where kp ¼ 1 if p ¼ 1, and kp ¼ ðp=ðp� 1ÞÞp if p41.
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3. Corollaries

Now we present some corollaries from the main results of the paper. Corollaries 1, 2, and 4 contain as particular
cases the main results of Hu et al. (1998, 2003), Kuczmaszewska (2004) and Sung et al. (2005). Corollaries 8 and 9
show how some well known results on complete convergence can be easily derived from Theorem 2.

In the proofs of all corollaries we use the notation from the proof of Theorem 1.
The first corollary contains the main result of Hu et al. (1998) and Sung et al. (2005). Their result

corresponds to the case p ¼ 2 and jX2 in condition (ii).

Corollary 1. Let fX nk; 1pkpmn; nX1g and fcn; nX1g satisfy assumptions (i), (ii) and (iii)
Pmn

k¼1 EX nkI

½jX nkjpd� ! 0 as n!1.
Then

P1
n¼1 cnPfj

Pmn

k¼1X nkj4ego1 for all e40.

Remark 3. Note that the original assumption (ii) in Hu et al. (1998) and Sung et al. (2005) was in the form:
There exists jX2 such that

X1
n¼1

cn

Xmn

k¼1

EX 2
nkI ½jX nkjpd�

 !j

o1,

which is stronger than assumption (ii) presented here.

The second corollary contains the main result of Hu et al. (2003). Their result corresponds to the case p ¼ 2
and jX2 in condition (ii).

Corollary 2. Let fX nk; 1pkpmn; nX1g and fcn; nX1g satisfy assumptions (i), (ii) and (iv)
max1pmpmn

j
Pm

i¼1 EX niI ½jX nijpd�j ! 0 as n!1.
Then

P1
n¼1 cnPfmax1pmpmn

j
Pm

i¼1 X nij4ego1 for all e40.

Remark 4. We should mention that the original conclusion of Hu et al. (2003) was that

X1
n¼1

cnP
Xmn

k¼1

X nk

�����
�����4�

( )
o1.

Hence Corollary 2 gives actually a stronger statement than the main result of Hu et al. (2003).

Before we start with the proof of the main result of Kuczmaszewska (2004) (Corollary 4 with p ¼ 2 and jX2
in condition (ii)) we present the following corollary which is of independent interest.

Corollary 3. If assumptions (i) and (ii) are fulfilled, then

X1
n¼1

cnP max
1pmpmn

Xm

k¼1

X nk � med
Xm

k¼1

X nkI ½jX nkjpd�

 !�����
�����4e

( )
o1 (3.1)

for all e40.

Proof. According to (i), (2.2) and by the symmetrization inequality (Loève, 1977, 18.1B) we obtain

X1
n¼1

cnP max
1pmpmn

jSm �medTmj4e
� �

p4
X1
n¼1

cnP max
1pmpmn

jTm � ETmj4e=2
� �

þ
X1
n¼1

cn

Xmn

k¼1

PfjX nkj4dgo1: &

Corollary 4. Let fX nk; 1pkpmn; nX1g and fcn; nX1g satisfy assumptions (i), (ii) and

lim
n!1

med
Xmn

k¼1

X nkI ½jX nkjpd�

 !
¼ 0.

Then
P1

n¼1 cnPfj
Pmn

k¼1 X nkj4�go1 for all e40.
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Moreover, we can strengthen the conclusion of Corollary 4 in the following way.

Corollary 5. If assumptions (i) and (ii) are fulfilled and

lim
n!1

max
1pmpmn

med
Xm

k¼1

X nkI ½jX nkjpd�

 !�����
����� ¼ 0,

then (2.8) holds.

The next two corollaries deal with medians of not truncated random variables.

Corollary 6. If assumptions (i) and (ii) are fulfilled, then

X1
n¼1

cnP max
1pmpmn

Xm

k¼1

X nk � med
Xm

k¼1

X nk

 !�����
�����4e

( )
o1 (3.2)

for all e40.

Corollary 7. If assumptions (i) and (ii) are fulfilled and

lim
n!1

med
Xmn

k¼1

X nk

 !
¼ 0,

then

X1
n¼1

cnP
Xmn

k¼1

X nk

�����
�����4e

( )
o1

for all e40.

Before we start with corollaries to Theorem 2 we need to recall some well known notions.
Recall that the array fðX nk; 1pkpmnÞ; nX1g of random variables is said to be:
(1)
 stochastically dominated in the Cesàro sense by a random variable X if mno1 and there exists a constant
D40 such that

Pmn

k¼1 PfjX nkj4xgpDmnPfjX j4xg for all x40 and all n.

(2)
 stochastically dominated by a random variable X if there exists a constant D40 such that

PfjX nkj4xgpDPfjX j4xg

for all x40 and for all k and n.
First we obtain a generalization of the main result of Hu et al. (1989) (cf. also Gut, 1992, Theorem 2.1).
Furthermore, we can obtain the rate of convergence as follows.

Corollary 8. Let fðX nk; 1pkpnÞ; nX1g be an array of rowwise independent mean zero random variables which

are stochastically dominated in the Cesàro sense by a random variable X ; r41, and 1pqo2. If EjX jrqo1, then

X1
n¼1

nr�2P max
1pmpn

Xm

k¼1

X nk

�����
�����4en1=q

( )
o1

for any e40.

Proof. It is sufficient to check that the assumptions of Theorem 2 are fulfilled with cn ¼ nr�2 and X nk=n1=q for
all X nk.
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In order to show assumption (i), we note that

X1
n¼1

nr�2
Xn

k¼1

PfjX nkj4en1=qgpD
X1
n¼1

nr�1PfjX j4en1=qg

¼ D
X1
n¼1

nr�1PfjX jrq4erqnrg

¼ D
X1
n¼1

nr�1
X1
k¼n

PferqkrojX jrqperqðk þ 1Þrg

pD
X1
k¼1

krPferqkrojX jrqperqðk þ 1Þrgp
D

erq
EjX jrqo1.

For assumption (ii) let p ¼ minf2; rqg. By the integration by parts formula we obtain the inequalityPn
k¼1 EjX nkj

ppDnEjX jp. Next,

X1
n¼1

nr�2
Xn

k¼1

EjX nk=n1=qjp

 !j

p
X1
n¼1

nr�2 n

np=q
DEjX jp

� �j

¼ ðDEjX jpÞj
X1
n¼1

1

nðp=q�1Þj�rþ2
o1

for j4ðr� 1Þq=ðp� qÞ. From here and ð2:7Þ0 follows that assumption (2.7) is fulfilled. &

Secondly we present a generalization of a result of Rohatgi (1971). Recall that a double array fank; k; nX1g
of real numbers is said to be a Toeplitz sequence if limn!1 ank ¼ 0 for each k and

P
k jankjpC for each n,

where C is a positive constant.

Corollary 9. Let fX nk; k; nX1g be an array of rowwise independent mean zero random variables, stochastically

dominated by a random variable X, and let fank; k; nX1g be a Toeplitz sequence. If
I.
 maxkX1 jankj ¼ Oðn�rÞ for some r40,

II.
 EjX j1þ1=ro1, then

X1
n¼1

P sup
mX1

Xm

k¼1

ankX nk

�����
�����4e

( )
o1.
Proof. By Lemma 1 of Rohatgi (1971)

X1
n¼1

X1
k¼1

PfjankX nkj4egp
X1
n¼1

X1
k¼1

PfjankX j4ego1.

Next, let p ¼ minf2; 1þ 1=rg and q ¼ minf1; 1=rg. Then

X1
n¼1

X1
k¼1

jankj
pEjX nkj

p

 !j

p
X1
n¼1

D sup
kX1

jankj
q
X1
k¼1

jankjEjX j
p

 !j

p
X1
n¼1

ðOðn�rqÞÞ
jo1 if rqj41.

From here and ð2:7Þ0 follows that condition (2.7) is fulfilled. The corollary follows from Theorem 2 with
cn � 1. &
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4. Some additional results

In the conclusion we present two results that relax the condition of rowwise independence in an array of
random variables under the consideration. The first proposition shows that the main result of Hu et al. (1998)
and Sung et al. (2005) can be partially generalized on the case of rowwise pairwise independent array of
random variables. The second proposition shows that Theorem 1 can be partially generalized on the case of
arbitrary random variables if the centering by conditional expectations is considered.

Proposition 1. Let fX nk; 1pkpmn; nX1g be an array of rowwise pairwise independent random variables and

fcn; nX1g be a sequence of positive constants such that conditions (i) and (ii) with p ¼ 2 and j ¼ 1 are satisfied.
Then

X1
n¼1

cnP
Xmn

k¼1

½X nk � EðX nkI ½jX nkjpd�Þ�

�����
�����4e

( )
o1

for any e40.

The proof of Proposition 1 is very easy and it can be derived from the proof of Theorem 1.

Proposition 2. Let fX nk; 1pkpmn; nX1g be an array of arbitrary random variables defined on a probability

space ðO;F;PÞ and fcn; nX1g be a sequence of positive constants. For nX1 let sigma-algebras Fnk ¼

sðX n1; . . . ;X nkÞ for 1pkpmn and Fn0 ¼ fO;;g. Assume that conditions (i) and (ii)00 for some d40

X1
n¼1

cn

Xmn

k¼1

E½X nkI ½jX nkjpd� � EðX nkI ½jX nkjpd�jFnk�1Þ�
2o1

are satisfied. Here Fnk�1 ¼ sXnj , 1pjpk � 1.
Then

X1
n¼1

cnP max
1pmpmn

Xm

k¼1

½X nk � EðX nkI ½jX nkjpd�jFnk�1Þ�

�����
�����4e

( )
o1

for any e40.

Proof. Note that for every nX1 the random variables

Xm

k¼1

½Y nk � EðY nkjFnk�1Þ�; 1pmpmn,

form a martingale with filtration Fnm; 1pmpmn. By (i) and the maximal inequalities (cf. Chow and Teicher,
1997, Theorem 7.4.8)

X1
n¼1

cnP max
1pmpmn

j½X nk � EðY nkjFnk�1Þ�j4e
� �

p
X1
n¼1

cnP max
1pmpmn

j½Y nk � EðY nkjFnk�1Þ�j4e
� �

þ
X1
n¼1

cn

Xmn

k¼1

PfjX nkj4dg

p
1

e2
X1
n¼1

cn

Xmn

k¼1

Ej½Y nk � EðY nkjFnk�1Þ�
2 þ

X1
n¼1

cn

Xmn

k¼1

PfjX nkj4dgo1: &
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