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Abstract

In this note we present new results on a complete convergence for arrays of rowwise independent random variables that
generalize the results of Hu et al. [2003. Complete convergence for arrays of rowwise independent random variables.
Comm. Korean Math. Soc. 18, 375-383], Kuczmaszewska [2004. On some conditions for complete convergence for arrays.
Statist. Probab. Lett. 66, 399—405], and Sung et al. [2005. More on complete convergence for arrays. Statist. Probab. Lett.
71, 303-311]. Additional results that deal with complete convergence for rowwise dependent arrays are given.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The concept of complete convergence of a sequence of random variables was introduced by Hsu
and Robbins (1947) as follows. A sequence {U,,n>1} of random variables converges completely to the
constant 6 if

Z P{lU, — 0|>¢}<oo for all £>0.

n=1

The first results concerning the complete convergence were due to Hsu and Robbins (1947) and Erdos (1949).
The paper Hu et al. (1998) unifies and extends the ideas of previously obtained results on complete
convergence. In the main results of Hu et al. (1998), no assumptions are made concerning the existence of
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expected values or absolute moments of the random variables. The proof of Hu et al. (1998) is mistakenly
based on the fact that the assumptions of their theorem (cf. Corollary 1) imply convergence in probability of
the corresponding partial sums. Counterexamples to this proof were presented in Hu and Volodin (2000) and
Hu et al. (2003).

Many attempts to solve this problem led to weaker variants of this theorem. Hu et al. (2003) gave a first
partial solution to this question (cf. Corollary 2). Next partial solution was given by Kuczmaszewska (2004)
(cf. Corollary 4) and the question was solved completely in Sung et al. (2005) (cf. Corollary 1), where the result
is proved as stated in Hu et al. (1998). The proof of Sung et al. is different from those of Hu et al. (1998) in the
sense that it does not use a symmetrization procedure.

The initial objective of our investigation that lead to the present paper was to find a proof of the main
result of Hu et al. (1998) that is based on the symmetrization procedure. But it appears that a more
general result can be proved, cf. Theorem 1. As it is shown in corollaries, the main results of Hu et al.
(1998, 2003), Kuczmaszewska (2004), and Sung et al. (2005) can be derived simply from the main result of this

paper.

2. Main results

With the preliminaries accounted for we can now state and prove our main results. In the following we let
{ Xk, 1<k<m,,n>=1} be an array of rowwise independent random variables defined on a probability space
(Q,7,P), {m,,n>=1} be a sequence of positive integers such that lim,,_, o, m, = co, and {c,,n=>1} be a sequence
of positive constants. For an event 4 € # we denote I[A4] the indicator function. We should note that all the
results of this paper remain true in the case m, = oo for some/all n>1, provided the series >, ; X converges
almost surely. Certainly, we should consider sup instead of max in the case of infinite sums.

Theorem 1. Let { Xy, | <k<m,,n=1} and {c,,n>=1} satisfy the following conditions:

(1) Dorl en >, PUX k| >} < o0 for all >0,
(ii) there exist j>0, 0>0 and p>=1 such that

o0
Z Cn <E
n=1

my

D XX k| 0] = EQCp I X k] < 6))]

P\ J
) oo,

k=1
Then
oo m
Y Py max 1Y [Xu — EXud[|1 X <OD]|>e o <00 @1
] 1<m<m, =
for any ¢>0.

Proof. The conclusion of the theorem is obvious if Zi‘;lcn <o0o. Forn>1 and 1<k, m<m, let

m

m
Ynk = Xnk1[|Xnk| <5]a Tm = Z Ynka Sm = Z Xnka
k=1 k=1

my, my

A= (X =Yu), B=J{Xu#Yu)
k=1 k=1
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Note that

P{ max |S,, — ET,,| >8} = P{{ max |T,, — ETm|>g} N A}

I<m<m, I<m<m,

+P{{ max |S, —ETm|>8} ﬂB}

I1<m<m,

my,

<P{ max |Ty — ET | >s} + ) P{lX >0},
1<m<m, —l

By (i) it is enough to prove that for all £>0

I<m<m,

oo
chP{ max |Tm—ETm|>e}<oo.

n=I
For any n>1, the random variables V,, =|T,,— ET,’, 1<m<m,, form a submartingale with
filtration #,, =0(Yu1,..., Yum), m=1,...,m,, and hence EV<---<EV,, . Here a(Yu,..., Yum)
is the sigma-algebra generated by Y,i,..., Y,,. Consider a partition of the set of natural numbers
N into two parts

N ={n:EV, <&/2’} and N’ ={n:EV,, > /2""}.

Applying (ii) we obtain
2+

Z < Z Cn(Ean/(‘qp/szrl))i = & Z C”(Ean)j<oo'

neN” neN” neN”

Hence it is enough to show that for all >0

> cnP{ max |Tym — ET ] >s} <00. (2.2)

fres 1<m<m,

By Markov inequality

P(Ty — ET,,|>QEV,))' "} = P{V,,>2EV,} <}
and hence |med 7, — ET,,|<(QE Vm)l/‘” . Therefore

max |med T, — ET,,|<  max QEV )P = QEV,, )P <¢/2

1<m<m, sm<my

for all n € N'. From here and (2.2) it follows that it is enough to prove

Z c,,P{ max |T,, — med Tm|>£/2}<oo. (2.3)

I<m<m
neN’ ST

Denote {Y!,,1<k<my,n>1} rowwise independent random variables which are independent copies of
(Y, L<k<my,,n=1}; that is Y, and Y, have the same distribution and independent for all
l<k<my,, n=1. Then random variables {Y, — Y, 1<k<m,,n>1} are rowwise independent and
symmetrically distributed. By the symmetrization inequality and by Lévy inequality (Locve, 1977 18.1B
and C) we obtain

>8/2}

> /2}. 2.4)

P{ max |Tm—medTm|>.s/2}<2P{ max Z(Y,,k— Y
k=1

l<m<m, Il<m<m,
<4P{

my,

S (Y=Y
k=1
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Choose an integer />1 such that j<?2/. Then by the iterated Hoffmann-Joregensen inequality (Jain, 1975)
there exist positive constants C; and D; such that
1<k<m,
m, J
>e/(2-3’)}> . (2.5)

P{
+D1<P{ Z(Ynk_ Y;,k)
k=1

By Markov inequality and using the fact that EY,, = EY, we have

iy

Z (Ynk - Y;,k)
k=1

>s/2}<C1P{ max |Y, — Y;1k|>£/(2‘3l)}

my, , , 2,;3[[) my ) P
P kZI(Y"k — Y )|>e/(2-3) b < —E kZI(Y"k —-Y,
r3b | "
= 7E Z(Y,,k —EYy+EY,, - YY)
k=1
22]) 3 Ip ny ’ ny 7’
< EN (Y —EYw)| +E> (Y —EY)y)
k=1 k=1
22413l | ’
= E Y, — EY,
p” ;( i k)
22p+131p
== EVn, (2.6)

By (2.4), (2.5), (2.6) and the assumptions of the theorem we see that (2.3) holds. O

In the next theorem we simplify condition (ii) of Theorem 1 when absolute moments of some order p>1
exist for the row sums of mean zero random variables comprising the array.

Theorem 2. Let assumption (1) is fulfilled and EX ,;, = 0 for all 1 <k <m,, n=1. Assume that for some p=1 and
some j>0

00 my, PN/
> (E > X > <oo0. 2.7)
n=1 k=1

Then
o0 m
Z ¢, P{ max Xo|>ep<oo (2.8)
) 1<m<m, s

for all e>0.

Proof. The proof is actually the same as that of Theorem 1. We are using the notations from the proof of
Theorem 1. For any n>1, the random variables |S,,[’, 1<m<m, where S,, = X1 +...+ X, form a
submartingale with filtration %, =0d(Xu,...,Xmm), m=1,...,m,, and hence E|S|P<-- - <E|Spy, .
Partition the set N of all natural numbers into two parts

K = {n:E|S,,P<e’/2""} and K’ ={n:E|S,, "> /2'")}.
By (2.7) we obtain
. 2p+1)j )
D < Y alEISy, /@2 === cu(EISy,I"Y <oc.

nek” nek” nelk”
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Hence it is sufficient to prove that for all é>0

m
3 max [$° ] -of <o @
nelk’

By the Markov inequality P{|S,,| > E|S,, |1’)l/’7 1< % and hence

[med S, | < (2E|S), |p)l/p <(2EISw, |p)l/p~

Therefore max; <m<m,| med S| <¢/2 for all n € K'. From here and (2.9) it follows that it is enough to prove
that

> c,,P{ max |S,, — med S, |>£/2}<oo (2.10)

g I<m<m,
nelk

Statement (2.10) is an analog of statement (2.3) and the proof of (2.3) is applicable to a proof of (2.10). All
necessary changes can be obtained by the substitution 7, by S,,. As the result, we obtain

chP{ max |S,, —medS,, |>c/2}<8C/Z an P{ Xl >e/(4-3)

I<m<m,
neld " nel’ k=1

4 . 2@zl

D1 Y cuEISy,I"Y <00

neld’
by the assumptions of the theorem. [

Remark 1. Assumptions (ii) and (2.7) can be strengthen for p € [1,2] as follows:
(i1)" There exist j>0, >0 and p € [1,2] such that

00 my 7
Y e (Z E|X e[| X k| 0] — EQX el [| X <5]>|P) <00
n=1

k=1

and

n, J
(Z E|Xnk|1’) <o0. (2.7)

k=1

M8

Proof. By von Bahr—Esseen inequality for the pth absolute moment of a sum of random variables (cf. for
example Hoffmann-Jergensen, 1994, 4.32 where this inequality is called Khinchine’s inequality), there exists a
positive constant d = d,>1 such that
m
BT, — ET,P<dY. Bl —EYul and EIY Xul'<d> Xl

k=1 k=1 k=1
for any 1<m<m,, n>1.Itis obvious thatd = d, =1 for p = 1and p = 2. For p = 2 assumptions (ii) and (ii)’
as well as (2.7) and (2.7) coincide. [

m

oo
E c,P< max E Xl >¢
=1 I<m<m,

k=1

m

Remark 2. Condition (i) in Theorem 2 can be omitted if condition (2.7) is fulfilled with j € (0, 1]. Really, by the
maximal inequalities (cf. Chow and Teicher, 1997, Theorem 7.4.8)
00 J
} < Cn (P{lgiagxm" Z >8}>
n=1 k=1
K./
Z C

PN\ J
) <o0.
where k, =1 if p=1, and x, = (p/(p — DY if p>1.

Xnk

my

ZXnk
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3. Corollaries

Now we present some corollaries from the main results of the paper. Corollaries 1, 2, and 4 contain as particular
cases the main results of Hu et al. (1998, 2003), Kuczmaszewska (2004) and Sung et al. (2005). Corollaries 8 and 9
show how some well known results on complete convergence can be easily derived from Theorem 2.

In the proofs of all corollaries we use the notation from the proof of Theorem 1.

The first corollary contains the main result of Hu et al. (1998) and Sung et al. (2005). Their result
corresponds to the case p = 2 and j>2 in condition (ii).

Corollary 1. Let {Xy, | <k<myu,n>1} and {c,,n=1} satisfy assumptions (i), (i) and (i) > ;" EXul
[ X! <] — 0asn — oc.
Then Y 02 cn PUY i X k| > €} <00 for all e>0.

Remark 3. Note that the original assumption (ii) in Hu et al. (1998) and Sung et al. (2005) was in the form:
There exists j>2 such that

my

o J
> e (Z EX 111X ] <5]> <00,
n=1

k=1
which is stronger than assumption (ii) presented here.

The second corollary contains the main result of Hu et al. (2003). Their result corresponds to the case p = 2
and j>2 in condition (ii).

Corollary 2. Let (X, 1<k<myu,n=1} and {c,n=1} satisfy assumptions (1), (i) and (iv)
maxi<mem, | iy EXpil[| X0l <0]l = 0 as n — oo.
Then Y02, ¢y P{maxi <m<m, | iy Xnil >} <00 for all ¢>0.

Remark 4. We should mention that the original conclusion of Hu et al. (2003) was that

f: c,,P{ Z Xk >s}<oo.
n=1 k=1

Hence Corollary 2 gives actually a stronger statement than the main result of Hu et al. (2003).

Before we start with the proof of the main result of Kuczmaszewska (2004) (Corollary 4 with p = 2 and j>2
in condition (ii)) we present the following corollary which is of independent interest.

Corollary 3. If assumptions (1) and (ii) are fulfilled, then

00 m
Z CnP{ max Xnk — med (Z Xnk1[|Xnk| < 5])
T 1<m<m,

k=1
for all e>0.

m

>8}<OO (3.1)

k=1

Proof. According to (i), (2.2) and by the symmetrization inequality (Loéve, 1977, 18.1B) we obtain

o0 o0
Z c,,P{ max |S,, — med Tm|>e}<4z c,,P{ max |Tm—ETm|>s/2}

1<m<m, 1<m<m,

n=1 n=1

my,

+i cnz P{Xu|>0)<oco. O

n=1 k=1
Corollary 4. Let { X, | <k<my,,n=1} and {c,,n>=1} satisfy assumptions (1), (i1) and

nll>n;lo med (Z XnkI[IXnkléé]) =0.

k=1
Then Y 02 o P 1y X k| > €} <00 for all &> 0.
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Moreover, we can strengthen the conclusion of Corollary 4 in the following way.

Corollary 5. If assumptions (i) and (i) are fulfilled and

med (Z Xnk1[|Xnk|<5]> ‘ =0,

lim max
n—oo l<m<m, =

then (2.8) holds.
The next two corollaries deal with medians of not truncated random variables.

Corollary 6. If assumptions (i) and (1) are fulfilled, then

00
g c,P{ max
pr 1<m<m,

for all £>0.

m m
Xnk — med Z Xnk

k=1

>8}<OO (3.2)

k=1

Corollary 7. If assumptions (i) and (i) are fulfilled and

my,
lim med (Z X,,k> =0,

then
Z cnP{ Z Xk >8}<OO
n=1 k=1

Sfor all ¢>0.

Before we start with corollaries to Theorem 2 we need to recall some well known notions.
Recall that the array {(X,x, | <k<m,),n>1} of random variables is said to be:

(1) stochastically dominated in the Cesdro sense by a random variable X if m, <oo and there exists a constant
D>0 such that Y ;" P{|X x| >x}<Dm,P{|X|>x} for all x>0 and all n.
(2) stochastically dominated by a random variable X if there exists a constant D >0 such that

P{| X | >x} < DP{| X |> x}

for all x>0 and for all £ and n.

First we obtain a generalization of the main result of Hu et al. (1989) (cf. also Gut, 1992, Theorem 2.1).
Furthermore, we can obtain the rate of convergence as follows.

Corollary 8. Let {( Xk, 1 <k<n),n=1} be an array of rowwise independent mean zero random variables which
are stochastically dominated in the Cesaro sense by a random variable X,r>1, and 1 <g<2. If E|X|" <00, then

00
E n~2P{ max
1<m<n

n=1

m

Z Xk

k=1

>8n1/‘1}<oo

for any £>0.

Proof. It is sufficient to check that the assumptions of Theorem 2 are fulfilled with ¢, = n"~2 and X/ n'/4 for
all Xn/c-
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In order to show assumption (i), we note that

00 n

> Y P{X ] >en'/ ) <D

n=1 k=1

WP X | > en'/9)

gk

3
Il

W P X | > ')

|t|;
[M]e

3
Il

= Dz; n! kz Pk < | X" 1<k + 1)}
n= (=n

. ) D ]
KPR <X <e"(k + 1)} < - E|X | <oo.
&

N

<D

-~
T

For assumption (ii) let p = min{2,rq}. By the integration by parts formula we obtain the inequality
Si_i EIX P <DnE|X|P. Next,

e

n=1

n J 00 n J
EX /iy ) <30 w2 (DE|X|P)
1

nr/a
= n=1

[0¢]
; 1
= (DEXPY D s <0

for j>(r — 1)q/(p — q). From here and (2.7)’ follows that assumption (2.7) is fulfilled. [
Secondly we present a generalization of a result of Rohatgi (1971). Recall that a double array {a,;; k,n>1}
of real numbers is said to be a Toeplitz sequence if lim,_, o ayc = 0 for each k and >, |a,x| < C for each n,

where C is a positive constant.

Corollary 9. Let {X,y; k,n>=1} be an array of rowwise independent mean zero random variables, stochastically
dominated by a random variable X, and let {a,; k,n>=1} be a Toeplitz sequence. If

I. maxgs lax| = O(m™") for some r>0,
II. E|X|"" <00, then
>e} <00.

Z P{sup
Proof. By Lemma 1 of Rohatgi (1971)

n=1 m=1
o0 o0 o0 o0
SO PllauXul>e}< D > PllawX|>e} <oo.

=1 k= n=1 k=1

m

E i X nk

k=1

=

Next, let p = min{2, 1 + 1/r} and ¢ = min{1, 1/r}. Then

DA lawPEX ) <D | D suplawl® )y lawlEIXTY
k=1

n=1 \k=1 n=1 k=1

<) (0@ ")y <oo if rgj>1.
n=1

From here and (2.7)" follows that condition (2.7) is fulfilled. The corollary follows from Theorem 2 with
=1 0O
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4. Some additional results

In the conclusion we present two results that relax the condition of rowwise independence in an array of
random variables under the consideration. The first proposition shows that the main result of Hu et al. (1998)
and Sung et al. (2005) can be partially generalized on the case of rowwise pairwise independent array of
random variables. The second proposition shows that Theorem 1 can be partially generalized on the case of
arbitrary random variables if the centering by conditional expectations is considered.

Proposition 1. Let {X i, 1 <k<my,,n=1} be an array of rowwise pairwise independent random variables and
{cqn,n=1} be a sequence of positive constants such that conditions (1) and (i) with p = 2 and j = 1 are satisfied.

Then
}<oo

The proof of Proposition 1 is very easy and it can be derived from the proof of Theorem 1.

my,

> Xk = ECud[1X ) <D >
k=1

o0
Z c,,P{
n=1

for any ¢>0.

Proposition 2. Let {X,;, | <k<m,,n=1} be an array of arbitrary random variables defined on a probability
space (Q,7,P) and {c,,n=1} be a sequence of positive constants. For n=1 let sigma-algebras F . =
(Xt .- Xui) for 1 <k<my, and F ,n = {Q,#}. Assume that conditions (1) and (i1)" for some 6>0

iy

> e ZE[Xnk1[|Xnk|<5] EX (| X | <8 F 1)) <00

n=1 k=1
are satisfied. Here F _1 = 6%, 1<j<k — 1.
Then
o0 m
> P max | [N — EXCud[| X | <) F )] | > p <00
oy I<m<m, —l
for any ¢>0.

Proof. Note that for every n>1 the random variables

m

Z[Ynk _E(Ynk|=g;nk—l)]’ lgmgmm
k=1

form a martingale with filtration % ,,,, 1<m<m,. By (i) and the maximal inequalities (cf. Chow and Teicher,
1997, Theorem 7.4.8)

o0
Z CnP{ max |[Xu — ECY | F )]l >8}

1<m<m,

[ee) o0 m,
<Y e { max ([Yo — ECY okl Z - 1)]|>s}+chZP{|Xnk|>5}

n=1 tsm<m, n=1 k=1
1 [e%e) my, my,

<5D G ZEl Yok — EQY e F i) +chZP{|Xnk|>5}<oo m
7 n=l1 k=1 n=1 k=1

References

Chow, Y., Teicher, H., 1997. Probability Theory. Independence, Interchangeability, Martingales, third ed. Springer, New York.
Erdos, P., 1949. On a theorem of Hsu and Robbins. Ann. Math. Statist. 20, 286-291.
Gut, A., 1992. Complete convergence for arrays. Period. Math. Hungar. 25, 51-75.



1640 V.M. Kruglov et al. | Statistics & Probability Letters 76 (2006) 16311640

Hoffmann-Jergensen, J., 1994. Probability with a View Toward Statistics, vol. I. Chapman & Hall, New York.

Hsu, P.L., Robbins, H., 1947. Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. U.S.A. 33, 25-31.

Hu, T.-C., Volodin, A., 2000. Addendum to “A note on complete convergence for arrays”. Statist. Probab. Lett. 47, 209-211.

Hu, T.-C., Moricz, F., Taylor, R.L., 1989. Strong law of large numbers for arrays of rowwise independent random variables. Acta Math.
Acad. Sci. Hungar. 54, 153-162.

Hu, T.-C., Szynal, D., Volodin, A., 1998. A note on complete convergence for arrays. Statist. Probab. Lett. 38, 27-31.

Hu, T.-C., Ordofez Cabrera, M., Sung, S.H., Volodin, A., 2003. Complete convergence for arrays of rowwise independent random
variables. Comm. Korean Math. Soc. 18, 375-383.

Jain, N.C., 1975. Tail probabilities for sums of independent Banach space valued random variables. Z. Wahrsch. Verw. Gebiete 33,
155-166.

Kuczmaszewska, A., 2004. On some conditions for complete convergence for arrays. Statist. Probab. Lett. 66, 399—405.

Loeve, M., 1977. Probability Theory 1, fourth ed. Springer, New York.

Rohatgi, V.K., 1971. Convergence of weighted sums of independent random variables. Proc. Cambridge Philos. Soc. 69, 305-307.

Sung, S.H., Volodin, A., Hu, T.-C., 2005. More on complete convergence for arrays. Statist. Probab. Lett. 71, 303-311.



	On complete convergence for arrays
	Introduction
	Main results
	Corollaries
	Some additional results
	References


