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A Remark on Complete Convergence for Arrays of 
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ABSTRACT  We obtain complete convergence result for arrays of rowwise 
negatively associated random variables, which extend and generalize the results of 
Hu et al. (1998), Hu et al. (2003), and Sung et al. (2005).  As applications, some 
well-known results on independent random variables can be easily extended to the 
case of negatively associated random variables.

Keywords  Negatively associated random variables; Array of rowwise negatively 
associated random variables; Complete convergence.

1. Introduction

The concept of complete convergence of a sequence of random variables was 
introduced by Hsu and Robbins (1947) as follows.  A sequence { ,nU 1≥n } of random 
variables converges completely to the constant θ  if

∑
∞

=

∞<>−
1

}|{|
n

nUP εθ
 for all 0>ε .

The first results concerning the complete convergence were due to Hsu and Robbins 
(1947) and Erdös (1949).  Since then there were many authors who devoted the study to 
complete convergence for sums and weighted sums of independent random variables.  Hu 
et al. (1998) announced the general result on complete convergence for arrays of rowwise 
independent random variables, presented as Theorem A below. 
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In the following we let fXnk ; 1 � k � kn; n � 1g be an array of random variables defined

on a probability space .�;F ; P /; fkn; n � 1g be a sequence of positive integers such that

lim
n!1 kn D 1, and fcn; n � 1g be a sequence of positive constants. For an event A 2 F we

denote IfAg the indicator function. We should note that all the results of this paper remain true

in the case kn D 1 for some/all n � 1, provided the series
P1

kD1 Xnk converges almost surely.

Certainly, we should consider sup instead of max in the case of infinite sums.

Theorem A Let fXni ; 1 � i � kn; n � 1g be array of rowwise independent random variables.

Suppose that for every " > 0 and some ı > 0:

(i)
P1

nD1 cn

Pkn

iD1 PfjXni j > "g < 1,

(ii) there exists j � 2 such that

1X
nD1

cn

 
knX

iD1

EX 2
niIfjXni j � ıg

!j

< 1;

(iii)
Pkn

iD1 EXniIfjXni j � ıg ! 0 as n ! 1:

Then
1X

nD1

cnP

(
j

knX
kD1

Xnkj > "

)
< 1 for all " > 0:

The paper Hu et al. [6] unifies and extends the ideas of previously obtained results on com-

plete convergence. In the main results of Hu et al. [6], no assumptions are made concerning the

existence of expected values or absolute moments of the random variables. The proof of Hu et

al. [6] is mistakenly based on the fact that the assumptions of their theorem imply convergence

in probability of the corresponding partial sums. Counterexamples to this proof were presented

in Hu and Volodin [7] and Hu et al. [5]. We would like to stress that the both examples are the

counterexamples to the proof of Theorem A, but not to the result. At the same time, they men-

tioned that the problem whether the Theorem A is true for any positive constants fcn; n � 1g
has remained open.

Many attempts to solve this problem led to weaker variants of this theorem. Hu et al. [5]

gave a first partial solution to this question. Next partial solution was given by Kuczmaszewska

[10] and the question was solved completely in Sung et al. [18], where the result is proved as

stated in Hu et al. [6]. The approach of Sung et al. [18] is different from those of Hu et al. [6]

in the sense that it does not use the symmetrization procedure.

The next paper which, to our best knowledge, presents the most general results on com-

plete convergence for arrays of rowwise independent random variables is Kruglov et al. [9]. As

it is shown in corollaries of that paper, the main results of Hu et al. [6], Hu et al. [5], Kucz-

maszewska [10], and Sung et al. [18] can be derived easily from the first theorem of Kruglov et

al. [9].
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The proofs of the main results of Kruglov et al. [9], as well as of Hu et al. [6], Hu et al. [5],

Kuczmaszewska [10], and Sung et al. [18], make use of the well-known Hoffmann-Jørgensen’s

inequality (cf. Hoffmann-Jørgensen [3]). Hoffmann-Jørgensen’s maximal inequality is a pow-

erful tool which has now become a standard technique in proving limit theorem for independent

random variables.

The main purpose of this investigation is to extend Theorem A for the case of arrays of

rowwise negatively associated random variables. But for associated random variables, espe-

cially for negative associated random variables, it is still an open question whether Hoffmann-

Jørgensen’s maximal inequality is true or not. In order to extend Theorem A to the case of

negatively associated random variables, we need to find another way. In the paper, we use

the exponential inequality for negatively associated random variables, which is established by

Shao [15], cf. Lemma below.

Recall that a finite family of random variables fXi ; 1 � i � ng is said to be negatively asso-

ciated (abbreviated to NA in the following) if for any disjoint subsets A and B of f1; 2; � � � ; ng
and any real coordinate-wise nondecreasing functions f on RA and g on RB,

Cov
�
f .Xi ; i 2 A/; g.Xj ; j 2 B/

� � 0

whenever the covariance exists. An infinite family of random variables fXi ; i � 1g is NA if

every finite subfamily is NA.

This concept was introduced by Joag-Dev and Proschan [8]. They also pointed out and

proved in their paper that a number of well-known multivariate distributions possess the NA

property. NA random variables have wide applications in reliability theory and multivariate

statistical analysis. Recently Su et al. [17] showed that NA structure plays an important role in

risk management. Because of these reasons the notions of NA random variables have received

more and more attention in recent years. A great number of papers for NA random variables are

now in literature. We refer to Joag-Dev and Proschan [8] for fundamental properties, Newman

[14] for the central limit theorem, Matula [13] for the three series theorem, Shao and Su [16]

for the law of the iterated logarithm, Shao [15] for moment inequalities, Liu et al. [12] for the

Hàjek-Rènyi inequality and Barbour et al. [1] for the Poison approximation.

Shao [15] showed the following important exponent inequality of Kolmogorov’s type.

Lemma Let fXi ; 1 � i � ng be a sequence of NA mean zero random variables with EjXi j2 <

1 for every 1 � i � n and Bn D Pn
iD1 EX 2

i . Then for all " > 0; a > 0

P

(
max

1�k�n
j

kX
iD1

Xi j � "

)
� 2P

�
max

1�i�n
jXi j > a

�
C 4 exp

�
� "2

4.a" C Bn/

�
�

1 C 2

3
ln

�
1 C a"

Bn

���
:
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Note also that if fXi ; i � 1g is a sequence of NA random variables, then the truncation in

the usual way, for example the sequence fXiIfjXi j < ıg; i � 1g, where ı > 0, is not necessary

NA any more. We should use so-called monotone truncation (cf. the definition of random

variables Ynk in the proof of Theorem B) in order to preserve this property.

2. Main Results, Corollaries, and Remarks

Now we state the main results. The proofs will be detailed in next section.

Theorem B Let fXnk ; 1 � k � kn; n � 1g be an array of rowwise NA random variables such

that conditions (i) and (ii) are satisfied. Then

1X
nD1

cnP

(
max

1�m�kn

ˇ̌̌
ˇ̌ mX
kD1

ŒXnk � E.XnkIfjXnk j � ıg/�
ˇ̌̌
ˇ̌ > "

)
< 1

for any " > 0.

The following two corollaries of Theorem B are immediate.

Corollary 1 Let fXnk ; 1 � k � kn; n � 1g be an array of rowwise NA random variables such

that conditions (i), (ii), and (iii) are satisfied. Then

1X
nD1

cnP

(ˇ̌̌
ˇ̌ knX
kD1

Xnk

ˇ̌̌
ˇ̌ > "

)
< 1

for any " > 0.

Corollary 2. Let fXnk ; 1 � k � kn; n � 1g be an array of rowwise NA random variables such

that conditions (i), (ii), and

(iii)0 max1�m�kn
jPm

iD1 EXniIfjXni j � ıgj ! 0 as n ! 1
are satisfied. Then

1X
nD1

cnP

(
max

1�m�kn

ˇ̌̌
ˇ̌ mX
kD1

Xnk

ˇ̌̌
ˇ̌ > "

)
< 1

for any " > 0.

Similar argument as in Remark 2 of Hu et al. [6], we have

Theorem C Let fXni ; 1 � i � kn; n � 1g be an array of rowwise NA random variables with

EXnk D 0 for all n � 1 and 1 � k � kn. Let �.x/ be a real function such that for some ı > 0:

sup
x>ı

x

�.x/
< 1 and sup

0�x�ı

x2

�.x/
< 1:

Suppose that for all " > 0, conditions (i) and
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(ii)0 there exist j � 2 such that

1X
nD1

cn

 
knX

kD1

E�.jXnkj/
!j

< 1 and
knX

kD1

E�.jXnkj/ ! 0 as n ! 1

are satisfied, then
1X

nD1

cnP

(
max

1�m�kn

ˇ̌̌
ˇ̌ mX
kD1

Xnk

ˇ̌̌
ˇ̌ > "

)
< 1

for any " > 0.

Remark 1. Suppose lim infn!1 cn > 0, then condition (i) in Corollary 2 is also necessary. In

fact,
1X

nD1

cnP

(
max

1�m�kn

ˇ̌̌
ˇ̌ mX
kD1

Xnk

ˇ̌̌
ˇ̌ > "

)
< 1

implies that
1X

nD1

cnP

�
max

1�i�kn

jXni j > "

�
< 1; for all " > 0;

hence we have P fmax1�i�kn
jXni j > "g ! 0 as n ! 1. By Lemma 2 of Liang [11], we have

for sufficiently large n,

knX
iD1

PfjXni j > "g � CP

�
max

1�i�kn

jXni j > "

�

for some C > 0, therefore condition (i) holds.

Remark 2. By Theorems B and C we have that Corollaries 1 and 2 of Hu et al. [6] are also

true if we assume negative association instead of independence and replace weighted sums by

the maxima of weighted sums.

3. Proofs

In the following, C always stands for a positive constant which may differ from one place

to another.

Proof of Theorem B. The conclusion of the theorem is obvious if
1P

nD1

cn < 1. Let fYnk ; 1 �
k � kn; n � 1g be a monotone truncation of fXnk ; 1 � k � kn; n � 1g, that is

Ynk D XnkIfjXnk j � ıg C ıIfXnk > ıg � ıIfXnk < �ıg

where ı > 0 and 1 � k � kn; n � 1. Note that by Property 6 of Joag-Dev and Proschan [8]

(applied twice) we can conclude that fYnk ; 1 � k � kn; n � 1g is an array of rowwise NA

random variables.
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For n � 1 and 1 � m � kn let

Tm D
mX

kD1

Ynk ; Sm D
mX

kD1

Xnk ; S 0
m D

mX
kD1

XnkIfjXnk j � ıg;

A D
kn\

kD1

fXnk D XnkIfjXnk j � ıgg ; Ac D
kn[

kD1

fXnk ¤ XnkIfjXnk j � ıgg :

Note that for any n � 1

Pf max
1�m�kn

jSm � ES 0
mj > "g

D P

�
f max

1�m�kn

jSm � ES 0
mj > "g \ Ac

�
C P

�
f max

1�m�kn

jS 0
m � ES 0

mj > "g \ A

�

�
knX

kD1

PfjXnk j > ıg C Pf max
1�m�kn

jS 0
m � ES 0

mj > "g

�
knX

kD1

PfjXnk j > ıg C Pf max
1�m�kn

jTm � ETmj > "=2g

CPf max
1�m�kn

j.S 0
m � Tm/ � E.S 0

m � Tm/j > "=2g

�
knX

kD1

PfjXnk j > ıg C Pf max
1�m�kn

jTm � ETmj > "=2g

CPf max
1�m�kn

ıj
mX

kD1

ŒIfXnk > ıg � IfXnk < �ıg

�E.IfXnk > ıg � IfXnk < �ıg/�j > "=2g

�
knX

kD1

PfjXnk j > ıg C Pf max
1�m�kn

jTm � ETmj > "=2g

CCE max
1�m�kn

j
mX

kD1

ŒIfXnk > ıg � IfXnk < �ıg

�E.IfXnk > ıg � IfXnk < �ıg/�j (by Markov’s inequality)

�
knX

kD1

PfjXnk j > ıg C Pf max
1�m�kn

jTm � ETmj > "=2g

CCE max
1�m�kn

mX
kD1

ŒIfXnk > ıg C IfXnk < �ıg C PfXnk > ıg C PfXnk < �ıg�

�
knX

kD1

PfjXnk j > ıg C Pf max
1�m�kn

jTm � ETmj > "=2g

CCE

knX
kD1

ŒIfXnk > ıg C IfXnk < �ıg C PfjXnk j > ıg�
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� Pf max
1�m�kn

jTm � ETmj > "=2g C .1 C 2C /

knX
kD1

PfjXnk j > ıg:

By (i) it is enough to prove that for all " > 0

1X
nD1

cnPf max
1�m�kn

jTm � ETmj > "g < 1:

Let Bn D Pkn

kD1 Var.Ynk/. For any " > 0 and a > 0 set

N1 D fn W Bn > a"g;

N2 D
(

n W
knX

kD1

PfjXnk j > ıg > minf1; a"=.2ı2/; a=.4ı/g
)

;

N3 D
(

n W
knX

kD1

EX 2
nkIfjXnk j � ıg > minfa"=2; a2=16g

)
;

N4 D N � .N2 [ N3/:

Since

Bn D
knX

kD1

.EY 2
nk � .EYnk/2/ �

knX
kD1

EY 2
nk

D ı2

knX
kD1

PfjXnk j > ıg C
knX

kD1

EX 2
nkIfjXnk j � ıg;

we have N1 � N2 [ N3. Note thatX
n2N2[N3

cnPf max
1�m�kn

jTm � ETmj > "g �
X

n2N2[N3

cn

� �
minf1=2; a"=.4ı2/; a=.8ı/g��1

1X
nD1

cn

knX
kD1

PfjXnk j > ıg

C �
minfa"=4; a2=32g��j

1X
nD1

cn

 
knX

kD1

EX 2
nkIfjXnk j � ıg

!j

< 1:

Hence it is sufficient to prove that

X
n2N4

cnP

(
max

1�m�kn

j
mX

kD1

.Ynk � EYnk/j > "

)
< 1:

By Lemma we have that

X
n2N4

cnP

(
max

1�m�kn

ˇ̌̌
ˇ̌ mX
kD1

.Ynk � EYnk/

ˇ̌̌
ˇ̌ > "

)
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�
X
n2N4

cn

�
2P

�
max

1�k�kn

jYnk � EYnkj > a

�

C4 exp

�
� "2

4.a" C Bn/

�
1 C 2

3
ln

�
1 C a"

Bn

����

Note that for any n 2 N4

max
1�k�kn

jEYnkj � max
1�k�kn

EjYnkj
� max

1�k�kn

.ıPfjXnk j > ıg C EjXnk jIfjXnk j � ıg/

� ı

knX
kD1

PfjXnk j > ıg C
 

knX
kD1

EX 2
nkIfjXnk j � ıg

!1=2

� ı minf1; a"=.2ı2/; a=.4ı/g C �
minfa"=2; a2=16g�1=2

(since n … N2 and n … N3/

� a=4 C a=4 D a=2:

This implies that for any n 2 N4; max1�k�kn
jEYnkj � a=2 and

X
n2N4

cnP

�
max

1�k�kn

jYnk � EYnk j > a

�

�
1X

nD1

cnP

�
max

1�k�kn

jYnk j > a=2

�

�
1X

nD1

cn

knX
kD1

P fjXnk j > minfı; a=2gg < 1 (by (i)).

Therefore it is sufficient to prove that

X
n2N4

cn exp

�
� "2

4.a" C Bn/

�
1 C 2

3
ln

�
1 C a"

Bn

���
< 1:

When n 2 N4; Bn � a" and
Pkn

kD1 PfjXnk j > ıg � 1. Let a D "=.12j /.

X
n2N4

cn exp

�
� "2

4.a" C Bn/

�
1 C 2

3
ln

�
1 C a"

Bn

���

�
X
n2N4

cn exp

�
� "2

8a"

�
1 C 2

3
ln

�
1 C a"

Bn

���

� expf�3

2
j g
X
n2N4

cn exp

�
�j ln

�
Bn C a"

Bn

��

D C
X
n2N4

cn

�
Bn

Bn C a"

�j

� C
X
n2N4

cn

�
Bn

a"

�j

D C
X
n2N4

cn .Bn/j
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� C
X
n2N4

cn

"
ı2

knX
kD1

PfjXnk j > ıg C
knX

kD1

EX 2
nkIfjXnk j � ıg

#j

� C
X
n2N4

cn

8<
:ı2j

"
knX

kD1

PfjXnk j > ıg
#j

C
"

knX
kD1

EX 2
nkIfjXnk j � ıg

#j
9=
;

� C
X
n2N4

cn

8<
:ı2j

knX
kD1

PfjXnk j > ıg C
"

knX
kD1

EX 2
nkIfjXnk j � ıg

#J
9=
;

(since
knX

kD1

PfjXnk j > ıg � 1/

� C

1X
nD1

cn

8<
:ı2j

knX
kD1

PfjXnk j > ıg C
"

knX
kD1

EX 2
nkIfjXnk j � ıg

#j
9=
; < 1

by the assumptions. The proof is completed. �

Proof of Theorem C. In view of Corollary 2 it is enough to show that conditions (ii) and (iii) 0

are satisfied.

For (ii) note that

knX
kD1

EX 2
nkIfjXnk j � ıg � sup

0�x�ı

x2

�.x/

knX
kD1

E�.jXnkj/:

For (iii)0 since EXnk D 0 it follows that

max
1�m�kn

j
mX

kD1

EXnkIfjXnk j � ıgj D max
1�m�kn

j
mX

kD1

EXnkIfjXnk j > ıgj

� sup
x>ı

x

�.x/

knX
kD1

E�.jXnkj/ ! 0 as n ! 1:

�
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