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The strong convergence rate and complete convergence results for arrays of rowwise
negatively dependent random variables are established. The results presented
generalize the results of Chen et al. [1] and Sung et al. [2]. As applications, some
well-known results on independent random variables can be easily extended to the
case of negatively dependent random variables.
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1. Introduction

The concept of complete convergence of a sequence of random variables was
introduced by Hsu and Robbins [3] as follows. A sequence �Un� n ≥ 1� of random
variables converges completely to the constant � if

�∑
n=1

P��Un − �� > �� < � for all � > 0�
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376 Dehua et al.

The first results concerning the complete convergence were due to Hsu and
Robbins [3] and Erdös [4, 5]. Since then there were many authors who are devoted to
studying complete convergence for sums and weighted sums of independent random
variables. We refer the reader to the expository article by Gut [6], where a detailed
survey of results on complete convergence is given (including his own valuable
contributions). After, Hu et al. [7] announced the general result on complete
convergence for arrays of rowwise independent random variables, presented as
Theorem A below.

In the following, we let �Xnk� 1 ≤ k ≤ kn� n ≥ 1�, be an array of random
variables defined on a probability space ���� � P	� �kn� n ≥ 1�, be a sequence of
positive integers such that lim

n→� kn = �, and �an� n ≥ 1�, be a sequence of positive

constants. For an event A ∈ � , we denote by I�A	 the indicator function. We should
note that all the results of this article remain true in the case kn = � for some/all
n ≥ 1, provided the series

∑�
k=1 Xnk converges almost surely. Of course, we should

consider sup instead of max in the case of infinite sums.

Theorem A. Let �Xni� 1 ≤ i ≤ kn� n ≥ 1� be array of rowwise independent random
variables. Suppose that for every 
 > 0 and some � > 0:

(i)
∑�

n=1 an

∑kn
i=1 P��Xni� > 
� < �,

(ii) there exists J ≥ 1 such that

�∑
n=1

an

(
kn∑
i=1

EX2
niI��Xni� ≤ ��

)J

< ��

(iii)
∑kn

i=1 EXniI��Xni� ≤ �� → 0 as n → �.

Then

�∑
n=1

anP

{
�

kn∑
k=1

Xnk� > 


}
< � for all 
 > 0�

Hu et al. [7] unifies and extends the ideas of previously obtained results on
complete convergence. In the main results of Hu et al. [7], no assumptions are
made concerning the existence of expected values or absolute moments of the
random variables. The proof of Hu et al. [7] is mistakenly based on the fact
that the assumptions of their theorem imply convergence in probability of the
corresponding partial sums. Counterexamples to this proof were presented in Hu
and Volodin [9] and Hu et al. [10]. We would like to stress that the both examples
are the counterexamples to the proof of Theorem A, but not to the result. At the
same time, they mentioned that the problem as to whether Theorem A is true for
any positive constants �an� n ≥ 1� has remained open.

Many attempts to solve this problem led to weaker variants of this theorem.
Hu et al. [10] gave a first partial solution to this question. Next partial solution
was given by Kuczmaszewska [11] and the question was solved completely in Sung
et al. [2], where the result is proved as stated in Hu et al. [7]. The approach of Sung
et al. [2] is different from those of Hu et al. [7] in the sense that it does not use the
symmetrization procedure.

The next article, which, to our best knowledge, presents the most general results
on complete convergence for arrays of rowwise independent random variables is
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Strong Rates for ND Random Variables 377

Kruglov et al. [8]. As it is shown in corollaries of that article, the main results of
Hu et al. [7], Hu et al. [10], Kuczmaszewska [11], and Sung et al. [2] can be derived
easily from the first theorem of Kruglov et al. [8].

The proofs of the main results of Kruglov et al. [8], as well as of Hu
et al. [7], Hu et al. [10], Kuczmaszewska [11], and Sung et al. [2], make use of
the well-known Hoffmann–Jørgensen’s inequality (cf. [12]). Hoffmann–Jørgensen’s
maximal inequality is a powerful tool which has now become a standard technique
in proving limit theorems for independent random variables.

The main purpose of Chen et al. [1] was to extend Theorem A for the case of
arrays of rowwise negatively associated random variables. But for associated random
variables, especially for negative associated random variables, it is still an open
question as to whether Hoffmann-Jørgensen’s maximal inequality is true or not. In
order to extend Theorem A to the case of negatively associated random variables,
we need to find another approach. In the article Chen et al. [1], the exponential
inequality for negatively associated random variables of Kolmogorov’s type, which
is established by Shao [13] was used.

Negatively associated sequences have many good properties and extensive
applications in multivariate statistical analysis and reliability theory. The notion
of negative association has received considerable attention, there are many articles
about negatively associated random variables, while articles about negatively
dependent random variables are a few (see, e.g., [14–20]).

The main purpose of the current investigation is to extend Theorem A for
the case of arrays of rowwise negatively dependent random variables. Joag-Dev
and Proschan [14] pointed out that negative association property implies negatively
dependency, but negative dependency does not imply negative association. They
gave an example of a collection of random variables that are negatively dependent,
but not negatively associated. Negative association is a much more restrictive and
stronger property than negative dependence.

Hence, it not only the case that we cannot use Hoffmann-Jørgensen’s maximal
inequality to prove the results presented in the article, the exponential inequality
by Shao [13] cannot be applied either (it is valid for negative associated random
variables only). Because of that, we prove a new exponential inequality presented in
Lemma 2 below.

The concept of negatively dependent random variables was introduced by
Lehmann [21] as follows.

Definition 1. Random variables Y1� Y2� � � � are said to be negatively dependent if for
each n ≥ 2, the following two inequalities hold:

P�Y1 ≤ y1� � � � � Yn ≤ yn� ≤
n∏

i=1

P�Yi ≤ yi�

and

P�Y1 > y1� � � � � Yn > yn� ≤
n∏

i=1

P�Yi > yi�

for every sequence �y1� � � � � yn� of real numbers.
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378 Dehua et al.

Random variables �Xni� 1 ≤ i ≤ kn� n ≥ 1� are said to be an array of rowwise
negatively dependent random variables if for each n ≥ 1� �Xni� 1 ≤ i ≤ kn� is negatively
dependent.

Note that if �Xi� i ≥ 1� is a sequence of negatively dependent random variables,
then the truncation in the usual way, for example, the sequence �XiI��Xi� < ���

i ≥ 1�, where �> 0, is not necessary negatively dependent any more. We should use
so-called monotone truncation (see the definition of random variables Yj in the proof
of Lemma 2 below) in order to preserve this property.

The main purpose of this article is to discuss the strong convergence rate
for arrays of rowwise negatively dependent random variables. Some new complete
convergence results for arrays of rowwise negatively dependent random variables
are obtained. The results partially extend the results of Chen et al. [1] (where the
negatively associated case was considered) and Sung et al. [2] (where the independent
case was considered).

Throughout this article, C will represent positive constants whose value may
change from one place to another.

2. Lemmata

In order to prove our main result, we need the following lemmas. The first lemma
is well known and trivial, so we omit the proof (see, e.g., [18, Lemma 1] and [15]).

Lemma 1. Let �Yn� n ≥ 1� be a sequence of negatively dependent random variables.

1) If �fn� n ≥ 1� is a sequence of real measurable functions all of which are monotone
increasing (or all monotone decreasing), then �fn�Yn	� n ≥ 1� is a sequence of
negatively dependent random variables.

2) For any n ≥ 1 � E�
∏n

j=1 Yj	 ≤
∏n

j=1 E�Yj	 provided the expectations are finite.

The following lemma presents an exponential inequality of Kolmogorov’s
type for negatively dependent random variables and plays a crucial role in the
proof of the main result of the article. For a different exponential inequality of
Kolmogorov’s type we refer to Volodin [17].

Lemma 2. Let �Xn� n ≥ 1� be a sequence of negatively dependent random variables
with EXn = 0 and EX2

n < �� n ≥ 1. Let Sn =
∑n

i=1 Xi� Bn =
∑n

i=1 EX
2
i . Then for all

x> 0� y > 0

P��Sn� > x	 ≤ 2P
(
max
1≤k≤n

�Xk� > y

)
+ 2 exp

{
x

y
− x

y
ln
(
1+ xy

Bn

)}
�

Proof. Let Yj = min�Xj� y� = XjI�Xj < y	+ yI�Xj ≥ y	 and Tn =
∑n

j=1 Yj .
Obviously EYj ≤ 0 and EY 2

j ≤ EX2
j . By Lemma 1(1) for h > 0� �ehYj � j ≥ 1� is

nonnegative negatively dependent. Thus, by Lemma 1(2), we have

EehTn ≤
n∏

j=1

EehYj �

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
V
o
l
o
d
i
n
,
 
A
n
d
r
e
i
]
 
A
t
:
 
0
6
:
3
0
 
3
0
 
A
p
r
i
l
 
2
0
1
1



Strong Rates for ND Random Variables 379

For fixed h > 0, the function g�x	 = �ehx − 1− hx	/x2 is increasing for all x,
therefore

EehYj = 1+ hEYj + E
[
�ehXj − hXj − 1	I�Xj < y	

]+ �ehy − 1− hy	P�Xj ≥ y	

≤ 1+ ehy − hy − 1
y2

{
EX2

j I�Xj < y	+ y2P�Xj ≥ y	
}

≤ 1+ ehy − hy − 1
y2

EX2
j �

Since ex ≥ 1+ x for all x and by Markov’s inequality, we have

P�Tn > x	 ≤ e−hxEehTn ≤ exp
(
−hx + ehy − hy − 1

y2
Bn

)
�

Chose h = 1
y
ln
(
1+ xy

Bn

)
, then

ehy − hy − 1
y2

Bn =
x

y
− Bn

y2
ln
(
1+ xy

Bn

)
≤ x

y
�

and, hence,

P�Tn > x	 ≤ exp
{
x

y
− x

y
ln
(
1+ xy

Bn

)}
�

Clearly, the events �Sn > x� ⊂ {
max1≤k≤n Xk > y

} ∪ �Tn > x�. Then

P�Sn > x	 ≤ P

(
max
1≤k≤n

Xk > y

)
+ P�Tn > x	

≤ P

(
max
1≤k≤n

�Xk� > y

)
+ exp

{
x

y
− x

y
ln
(
1+ xy

Bn

)}
�

If we consider −Xn instead of Xn in the arguments above, in a similar manner we
obtain

P�−Sn > x	 ≤ P

(
max
1≤k≤n

�Xk� > y

)
+ exp

{
x

y
− x

y
ln
(
1+ xy

Bn

)}
�

Therefore,

P��Sn� > x	 ≤ 2P
(
max
1≤k≤n

�Xk� > y

)
+ 2 exp

{
x

y
− x

y
ln
(
1+ xy

Bn

)}
�

3. Main Results

The first theorem is a slightly different result than a direct generalization of
Theorem A for the case of negatively dependent random variables. The exact
extension of Theorem A is presented in Corollary 1.
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380 Dehua et al.

Theorem 1. Let �Xni� 1 ≤ i ≤ kn� n ≥ 1� be an array of rowwise negatively dependent
random variables and �an� n ≥ 1� be a sequence of positive constants. Suppose that for
every 
 > 0 and some � > 0

(i)
∑�

n=1 an

∑kn
i=1 P��Xni� > �	 < �,

(ii) there exists J ≥ 1 such that

�∑
n=1

an

(
kn∑
i=1

Var�XniI��Xni� ≤ �		

)J

< ��

Then

�∑
n=1

anP

(∣∣∣∣
kn∑
i=1

�Xni − EXniI��Xni� ≤ �		

∣∣∣∣ > 


)
< � for all 
 > 0�

Proof. Note that for any fixed 
 > 0 and n ≥ 1

P

(∣∣∣∣
kn∑
i=1

�Xni − EXniI��Xni� ≤ �		

∣∣∣∣ > 


)

≤ P

(∣∣∣∣
kn∑
i=1

�Xni − EXniI��Xni� ≤ �		

∣∣∣∣ > 
� �Xni� > �� for some i� 1 ≤ i ≤ kn

)

+ P

(∣∣∣∣
kn∑
i=1

�Xni − EXniI��Xni� ≤ �		

∣∣∣∣ > 
� �Xni� ≤ �� for all i� 1 ≤ i ≤ kn

)

≤
kn∑
i=1

P��Xni� > �	+ P

(∣∣∣∣
kn∑
i=1

�XniI��Xni� ≤ �	− EXniI��Xni� ≤ �		

∣∣∣∣ > 


)
�

By condition (i), it is enough to prove that

�∑
n=1

anP

(∣∣∣∣
kn∑
i=1

�XniI��Xni� ≤ �	− EXniI��Xni� ≤ �		

∣∣∣∣ > 


)
< ��

Set

Uni = �I�Xni > �	+ XniI��Xni� ≤ �	− �I�Xni < −�	 and

U ′
ni = �I�Xni > �	− �I�Xni < −�	� ∀1 ≤ i ≤ kn� n ≥ 1�

We have

�∑
n=1

anP

(∣∣∣∣
kn∑
i=1

�XniI��Xni� ≤ �	− EXniI��Xni� ≤ �		

∣∣∣∣ > 


)

=
�∑
n=1

anP

(∣∣∣∣
kn∑
i=1

�Uni − EUni − U ′
ni + EU ′

ni	

∣∣∣∣ > 


)

≤
�∑
n=1

anP

(∣∣∣∣
kn∑
i=1

�U ′
ni − EU ′

ni	

∣∣∣∣ > 
/2
)
+

�∑
n=1

anP

(∣∣∣∣
kn∑
i=1

�Uni − EUni	

∣∣∣∣ > 
/2
)

= I + II� say.
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Strong Rates for ND Random Variables 381

For I, by condition (i) and Markov’s inequality, we have

I ≤ C
�∑
n=1

anE

∣∣∣∣
kn∑
i=1

U ′
ni

∣∣∣∣ ≤ C
�∑
n=1

an

kn∑
i=1

P��Xni� > �	 < ��

For II, let Bn =
∑kn

i=1 Var�Uni	, then

Bn ≤ 3
kn∑
i=1

Var �XniI��Xni� ≤ �		+ 6�2
kn∑
i=1

P��Xni� > �	�

For any y > 0, set

d = min
{
1�

y

6�

}
�N1 =

{
n �

kn∑
i=1

P

(
�Xni� > min

{
��

y

6

})
> d

}
� and N2 = N/N1�

Note that

∑
n∈N1

anP

(∣∣∣∣
kn∑
i=1

�Uni − EUni	

∣∣∣∣ > 
/2
)
≤ ∑

n∈N1

an

≤ 1
d

�∑
n=1

an

kn∑
i=1

P

(
�Xni� > min

{
��

y

6

})
< ��

Hence, it is sufficient to prove that
∑
n∈N2

anP��
∑kn

i=1�Uni − EUni	� > 
/2	 < �.

Since �Uni − EUni� 1 ≤ i ≤ kn� n ≥ 1� is an array of rowwise negatively
dependent random variables, by Lemma 2 we have

∑
n∈N2

anP

(∣∣∣∣
kn∑
i=1

�Uni − EUni	

∣∣∣∣ > 
/2
)
≤ 2

∑
n∈N2

anP

(
max
1≤i≤kn

�Uni − EUni� > y

)

+ 2
∑
n∈N2

an exp
{



2y
− 


2y
ln
(
1+ 
y

2Bn

)}
�

Note that

P

(
max
1≤i≤kn

�Uni − EUni� > y

)
≤ P

(
max
1≤i≤kn

�XniI��Xni� ≤ �	− EXniI��Xni� ≤ �	� > y/2
)

+ P

(
max
1≤i≤kn

�U ′
ni − EU ′

ni� > y/2
)
�

Next, for any n ∈ N2

max
1≤i≤kn

�EXniI��Xni� ≤ �	� ≤ max
1≤i≤kn

E�Xni�I��Xni� ≤ �	

≤ max
1≤i≤kn

�E�Xni�I��Xni� ≤ y/6	+ E�Xni�I�y/6 < �Xni� ≤ �		

≤ y/6+ �
kn∑
i=1

P ��Xni� > min�y/6� ��	 ≤ y/6+ �d ≤ y/3�
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382 Dehua et al.

Therefore,

∑
n∈N2

anP

(
max
1≤i≤kn

�Uni − EUni� > y

)

≤
�∑
n=1

anP

(
max
1≤i≤kn

�Xni�I��Xni� ≤ �	 > y/6
)
+

�∑
n=1

anP

(
max
1≤i≤kn

�U ′
ni − EU ′

ni� > y/2
)

≤
�∑
n=1

an

kn∑
1=1

P��Xni� > y/6	+ C
�∑
n=1

an

kn∑
1=1

P��Xni� > �	 < ��

When n ∈ N2, we have that
∑kn

i=1 P��Xni� > �	 ≤ 1. Let y = 
/�2J	, by conditions (i)
and (ii) we obtain

∑
n∈N2

an exp
{



2y
− 


2y
ln
(
1+ 
y

2Bn

)}

≤ exp
(




2y

) ∑
n∈N2

an

(
1+ 
y

2Bn

)−
/�2y	

≤ exp
(




2y

) ∑
n∈N2

an

(
2Bn


y

)J

≤ C
�∑
n=1

anB
J
n ≤ C

�∑
n=1

an

(
kn∑
i=1

P��Xni� > �	

)J

+ C
�∑
n=1

an

(
kn∑
i=1

Var�XniI��Xni� ≤ �		

)J

≤ C
�∑
n=1

an

kn∑
i=1

P��Xni� > �	+ C
�∑
n=1

an

(
kn∑
i=1

Var�XniI��Xni� ≤ �		

)J

< ��
�

The following are two corollaries to Theorem 1.

Corollary 1. Let �Xni� 1 ≤ i ≤ kn� n ≥ 1� be an array of rowwise negatively dependent
random variables. If conditions (i) and (ii) of Theorem 1 and

(iii) limn→�
∑kn

i=1 EXniI��Xni� ≤ �	 = 0

are satisfied, then

�∑
n=1

anP

(∣∣∣∣
kn∑
i=1

Xni

∣∣∣∣ > 


)
< � for all 
 > 0�

With Theorem 1 in hand, the proof of Corollary 1 is obvious and, hence, is
omitted.

Corollary 2. Let �Xni� 1 ≤ i ≤ kn� n ≥ 1� be an array of rowwise negatively dependent
random variables with EXni = 0 for all 1 ≤ i ≤ kn� n ≥ 1. Let 
�x	 be a real function
such that for some � > 0

sup
x>�

x


�x	
< � and sup

0≤x≤�

x2


�x	
< ��

Suppose that for all 
 > 0, condition (i) is satisfied and there exists J ≥ 1 such that∑�
n=1 an

(∑kn
i=1 E
��Xni�	

)J
< � and

∑kn
i=1 E
��Xni�	 → 0 as n → �.
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Strong Rates for ND Random Variables 383

Then

�∑
n=1

anP

(∣∣∣∣
kn∑
i=1

Xni

∣∣∣∣ > 


)
< � for all 
 > 0�

Proof. We show that the conditions of Corollary 1 are satisfied.
Note that

kn∑
i=1

EX2
niI��Xni� ≤ �	 ≤ sup

0≤x≤�

x2


�x	

kn∑
i=1

E
��Xni�	�

Since EXni = 0 it follows that∣∣∣∣
kn∑
i=1

EXniI��Xni� ≤ �	

∣∣∣∣ ≤
∣∣∣∣

kn∑
i=1

EXniI��Xni� > �	

∣∣∣∣
≤ sup

x>�

x


�x	

kn∑
i=1

E
��Xni�	 → 0 as n → ��
�

The second theorem refines Theorem 1 for the case when all random variables
comprising the array are centered and have a finite moment.

Theorem 2. Let �Xni� 1 ≤ i ≤ kn� n ≥ 1� be an array of rowwise negatively dependent
random variables with EXni = 0 for all 1 ≤ i ≤ kn� n ≥ 1. Suppose that for all

 > 0, condition �i	 is satisfied and there exists J ≥ 1 and 0 < p ≤ 2 such that∑�

n=1 an

(∑kn
i=1 E�Xni�p

)J
< �.

Then
�∑
n=1

anP

(∣∣∣∣
kn∑
i=1

Xni

∣∣∣∣ > 


)
< � for all 
 > 0�

Proof. Note that for any fixed 
 > 0 and n ≥ 1 the events{∣∣∣∣
kn∑
i=1

�XniI��Xni� > �	− EXniI��Xni� > �		

∣∣∣∣ > 
/2

}

⊂ ��Xni� > � for at least one value of i� 1 ≤ i ≤ kn� ⊂ ∪kn
i=1��Xni� > ���

Therefore, by EXni = 0, we have

P

(∣∣∣∣
kn∑
i=1

Xni

∣∣∣∣ > 


)

≤ P

(∣∣∣∣
kn∑
i=1

�XniI��Xni� > �	− EXniI��Xni� > �		

∣∣∣∣ > 
/2

)

+ P

(∣∣∣∣
kn∑
i=1

�XniI��Xni� ≤ �	− EXniI��Xni� ≤ �		

∣∣∣∣ > 
/2

)

≤
kn∑
i=1

P��Xni� > �	+ P

(∣∣∣∣
kn∑
i=1

�XniI��Xni� ≤ �	− EXniI��Xni� ≤ �		

∣∣∣∣ > 
/2

)
�
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By the same argument as in the proof of Theorem 1, it suffices to prove that
condition (ii) is satisfied. Since 0 < p ≤ 2, we have

kn∑
i=1

Var �XniI��Xni� ≤ �		 ≤
kn∑
i=1

E �XniI��Xni� ≤ �		2 = �2
kn∑
i=1

E

(
XniI��Xni� ≤ �	

�

)2

≤ �2
kn∑
i=1

E

( �Xni�I��Xni� ≤ �	

�

)p

≤ �2−p
kn∑
i=1

E�Xni�p�
�

An open problem. Note that the results of Kruglov et al. [8] and Chen et al. [1]
provide a stronger conclusion on the rate of convergence for maximums of partial
sums than the results presented in Theorems 1 and 2 above; that is, they obtained
results of the form

�∑
n=1

anP

(
max
1≤m≤kn

∣∣∣∣∣
m∑

k=1

Xnk

∣∣∣∣∣ > 


)
< � for all 
 > 0�

It is still an open problem to obtain results of this type for arrays of rowwise
negatively dependent random variables. The authors suggest that a solution can be
obtained if a better exponential inequality than that which is presented above in
Lemma 2 could be established.
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