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Abstract 

 The objective of this study is to argue that two classical estimation methods 

(method of moments and method of maximum likelihood) cannot be applied for a 

construction of an asymptotic confidence ellipse for the Beta-Poisson dose-response 

model directly. That is, the first moment for the probability density function of the Beta-

Poisson dose-response model exists for , but data known from literature show that 

a typical values of  is around a few hundredths, while a typical values of  is around a 

few hundred. And the method of maximum likelihood, we cannot find parameter 

estimators of the Beta-Poisson dose-response model and also it is not possible to find 

the asymptotic covariance matrix from the Fisher information matrix, hence it is also not 

possible to construct an asymptotic confidence ellipse based on the maximum likelihood 

estimates. 

 For this purpose we need to use a suitable approximation for the Beta-Poisson 

dose-response model. After that, we derive maximum likelihood equations for 

parameters of the approximate Beta-Poisson dose-response model. For this model, we 
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find the Fisher information matrix and construct a normal approximation that gives 

elliptical confidence regions of the approximate Beta-Poisson dose-response model. We 

use the coverage probabilities as the criteria for comparing with the nominal level 0.98 

and investigate the accuracy of the confidence ellipses are fulfilled by the Monte-Carlo 

method. Three sample sizes  are 100, 500, 1,000 and four cases of values for 

parameters of the Beta-Poisson dose-response model ((i)  (ii) 

  (iii)   (iv) ) are studied here. 

R (2.13.0) software is used for simulation technique with 10,000 iterations. The results of 

this study are as followed: 

 The coverage probabilities of confidence ellipses for parameters of the 

approximate Beta-Poisson dose-response model increase when sample sizes  

increase and also they are close to the confidence coefficient 0.98. 

 In addition, at various values of parameters of Beta-Poisson dose-response 

model, the coverage probabilities are similar when  is fixed. 

______________________________ 

Keywords: Quantitative microbiological risk assessment (QMRA), Method of moments, 

Method of maximum likelihood, Fisher information, Delta method. 

 

1.  Introduction 

 Risk analysis is a complex process consisting of risk assessment, risk 

management, and risk communication. Over the past decade it has been developed as a 

structured model for improving production control system in many branches of World 

economy. For example, it can be applied for our food control systems with the objectives 

of producing safer food, reducing the numbers of food-borne illnesses and facilitating 

domestic and international trade in food. It also should be mentioned that risk 

assessment helps us to organize all available data for better understanding the 

interaction between human illnesses, microorganisms, and foods. Importantly, we are 

able to estimate the risk that specific microorganisms in food can do to human health [1].   

 Microbiological risk assessment can be considered as a tool that can be used in 

the management of the risks posed by food-borne pathogens and in the elaboration of 

standards for food in international trade.  

As it is mentioned in Haas et al. [2] “Quantitative microbiological risk 

assessment (QMRA), is recognized as a resource-intensive task requiring a 

multidisciplinary approach. Yet, food-borne illness is among the most widespread public 

health problems creating social and economic burdens as well as human suffering, 
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making it a concern that all countries need to address. In a QMRA framework, the dose-

response assessment phase is the quantitative yardstick for risk estimation, as this 

phase estimates a risk of response (infection, illness or death) with respect to a known 

dose of a pathogen. The basis of the dose-response phase is the dose-response 

models, which are mathematical functions that take as an argument a measure of dose 

(which can be any non-negative number) and yields the probability of the particular 

adverse effect, which is bounded by zero (no effect) and one (complete conversion to 

adverse state). There are an infinite number of such possible functions. Even restricting 

the universe to those functions that are monotonic (as dose increases, response 

probability is nondecreasing) and bounded by zero and one (at dose = 0, no response; 

as dose  , complete response), there remain an infinite number of possible functions. 

In particular, the last set of conditions is identical to those required of cumulative 

distribution functions, so any cumulative distribution function with support over  

can be a candidate dose-response function”. 

To be plausible, a model should consider the particulate nature of organisms, 

which has a high variability at low dose. It should also be based on the concept of 

infection from one or more “survivors” of the initial dose. Therefore dose response 

models for QMRA need to be physiologically plausible and be derived from what is 

known of the general infection process. There are two models which are derived based 

on these needs for the QMRA dose response relationship, the Exponential and Beta-

Poisson models, specifically, the Beta-Poisson dose-response model (model with two 

parameters) which is enlarged from the Exponential dose-response model (model with 

only one parameter). 

Furumoto & Mickey [3] described the Beta-Poisson as a random model of an 

infection growing on a tobacco plant by a Mosaic virus. The infection can be described in 

the following way. A leaf of tobacco plant is attacked by viruses. The number of viruses 

is random and has a Poisson distribution with the intensity parameter , denoted by 

. The plant is infected if at least one virus penetrates its cell. Each cell has some 

(different for different types of cells) resistance, and hence the infection happens with 

probability , which is also considered to be a random variable. If we assume that  has 

a Beta distribution with parameters  and , then the probability of the infection as a 

function of the intensity of virus flow  has a probability distribution of the Beta-Poison 

dose-response model with the shape parameter  and scale parameter . 

Beta-Poisson dose response model has been considered in experimental data 

of various infection cases; for example, Medema et al. [4] presented an assessment of 
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the Beta-Poisson dose-response model of Campylobacter jejuni (C.jejuni), Teunis & 

Havelaar [5] found that the Beta-Poisson dose-response model is not a single-hit model. 

Single-hit models have played a prominent role in dose-response assessment for 

pathogenic microorganisms. In particular the Beta-Poisson model, are used for 

extrapolation of experimental dose-response data to low doses, as are often present in 

drinking water or food products., Latimer et al. [6] described the development of a 

weighted composite dose–response model for human Salmonellosis and Moon et al. [7] 

presented comparison of microbial dose–response models fitted to human data. 

Nevertheless, all authors mentioned above have studied only point and interval 

estimators of the parameters of Beta-Poisson dose-response model, but they have not 

yet studied confidence regions of those parameters that have been studied in various 

cases; such as, Takada [8] studied confidence sets for the mean of a multivariate normal 

distribution with an unknown covariance matrix of the form , Dilba et al. [9] dealt with 

the problem of simultaneously estimating multiple ratios, Menendez et al [10] presented 

confidence sets for the parameters of a logistic regression model based on preliminary 

minimum -divergence estimators, Azad [11] invented a new method to test the 

significance levels of common periodicities (if any) among sub-divisional rainfall time 

series using the confidence ellipse technique and Chaudhuri [12] studied a simple least 

squares method for fitting of ellipses and circles (depending on border points) of a two-

tone image and their 3-D extensions.    

In this paper we focus on the Beta-Poisson dose-response model. This includes 

investigating some limitations of parameters estimation for the Beta-Poisson dose-

response model and its approximation. Moreover, we find the Fisher information matrix 

for construction of a normal approximation that gives elliptical confidence regions for 

parameters. The article is organized as follows. In Section 2 we reveal framework for 

mechanistic dose-response relationships. In Section 3 we present methodology. The 

results are shown in Section 4 and simulation study is presented in Section 5. In Section 

6 we show an example and concluding remarks are offered in Section 7.      

 

2.  Framework for Mechanistic Dose-Response Relationships 

Haas et al. [2] described framework for mechanistic dose-response 

relationships as follows:  

The probability of investigating precisely j organisms from an exposure in which 

the mean dose (the product of volume and density) is  (i.e., the first of the sequential 

processes) is written as , the probability of k organisms   surviving to initiate 



Noppadol Angkanavisal                          19 

an infectious process (the second step) is written as  If these two processes are 

regarded as independent, the overall probability of k organisms surviving to initiate 

infectious foci is given by (the law of independent events) 

 
 The function  incorporates the individual-to-individual variation in actual 

numbers of organisms ingested or otherwise exposed, and the function  expresses the 

factors of the organisms-host interaction in vivo that allow some organisms to survive to 

initiate infectious foci. 

 Infection occurs when at least some critical numbers of organisms survive to 

initiate infection. If this minimum number is denoted as  , the probability of infection 

(the fraction of subjects who are exposed to an average dose  who become infected) 

may be written as 

 
The two conceptual alternatives have been termed the hypothesis of 

independent action, in which in principle  equals 1, and the hypothesis of 

cooperative interaction, in which  is some number greater than 1. 

 The simplest dose-response model that can be formulated assumes that the 

distribution of organisms between doses is random (i.e., Poisson), that each organism 

has an independent and identical survival probability, . From the Poisson assumption, 

we have  

 
 The assumption with respect to survival means that the Binomial distribution 

can be used as 

 
Hence, 
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with the assumption of , this yields 

                                                  

The Beta-Poisson dose-response model is enlarged from the Exponential      

dose-response model. The Exponential dose-response model assumes constancy of the 

pathogen-host survival probability . For some agents and populations of human 

hosts, there may be variation in this success rate. Such variation may be due to diversity 

in human responses, diversity of pathogen competence, or both. This variation can be 

captured by allowing  to be governed by a probability distribution. This phenomenon of 

host variability was perhaps first invoked by Moran [13]. 

The mixing distribution  should have (its only) support over the interval 

(0,1), corresponding to the allowable range of variability of  itself. Use of the above 

equation is identical to applying the mixture operation directly to equation (1) if the 

Poisson distribution for dose-to-dose variation is assumed, thus yielding 

 

 
A logical distribution, which offers a great deal of flexibility, is the Beta 

distribution. Incorporating this into above equation, yields  

         

Notice that, equation (2) describes the cumulative distribution function of the 

Beta-Poisson dose-response model. 

The cumulative distribution function of a continuous random variable  under 

the Beta-Poisson dose-response model (BP-dose-response model) with parameters  

and , denoted by  is  
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where  and  and  are the slope and scale parameter, 

respectively. The probability density function of the Beta-Poisson dose-response model 

is 

 
 

3. Methodology 
 Firstly, we argue that two classical estimation methods (method of moments 

and method of maximum likelihood) do not work to construct an asymptotic confidence 

ellipse for the Beta-Poisson dose-response model directly and for this purpose we need 

to find a suitable approximation for the Beta-Poisson dose-response model. Next, we 

derive maximum likelihood equations for parameters of the approximate Beta-Poisson 

dose-response model. Moreover, we find the Fisher information matrix and construct a 

normal approximation that gives elliptical confidence regions of approximating the     

Beta-Poisson dose-response model. 

 Three sample sizes  are 100, 500, 1,000 and four cases of values for 

parameters of the Beta-Poisson dose-response model ((i)  (ii) 

  (iii)   (iv) ) are studied here. 

R (2.13.0) software is used for simulation technique with 10,000 iterations. For each 

case we compare coverage probability of confidence ellipse with the nominal level 0.98 

and investigate the accuracy of the confidence ellipses by the Monte-Carlo method. 

 

4. Results 

In this section, we describe results of this study as follows: 

4.1 Beta-Poisson Dose-Response Model 
 4.1.1 The problem of parameters estimation by Method of Moments to 
Construct an Asymptotic Confidence Ellipse 

 If  is finite, where k is a positive integer, then  is called the k-th 

moments of  (or the distribution of ). Given  has a probability distribution of the 

. Then the k-th moments of  is 
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 Note that  exists only if  and the method of moments estimators 

(MME)  and  of parameters  and  are as follows: 

 

 

where . 

 Theoretically by using the Delta method for normal approximation it is possible 

to find the asymptotic covariance matrix of two parameter estimates by method of 

moments  and  and after constructing an asymptotic confidence ellipse. 

However, the calculations are extremely cumbersome, and are not recommended for 

practical applications. Moreover, these lengthy calculations would be useless for 

statistical analysis of epidemiological data, because data known from literature show that 

a typical values of  is around a few hundredths, while a typical values of  is around a 

few hundred. Even the first moment for the probability density function of the              

Beta-Poisson dose-response model exists for  

 

 4.1.2 The problem of parameters estimation by Method of Maximum 
Likelihood to Construct an Asymptotic Confidence Ellipse 

 To construct an asymptotic confidence ellipse we need to find the asymptotic 

covariance matrix of these two maximum likelihood estimates  and  from 

the Fisher information matrix and using the Delta method for normal approximation. 

 However, we cannot find maximum likelihood estimators and also it is not 

possible to calculate the Fisher information matrix in closed form for the probability 

density function of the Beta-Poisson dose-response model (4), hence it is also not 

possible to construct an asymptotic confidence ellipse based on the maximum likelihood 

estimates. 

 

4.2 The Approximate Distribution Function of the Beta-Poisson Dose-Response 
Model 

 From the distribution function (3) we make a substitution  and obtain the 

integral 
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If  and  such that  constant then  

 
then the integral  possesses an equivalent form 

 

 
with the help of the Gamma function 

 

In our case . Applying these formulae we obtain 

 

 

 
The approximation error is the order  

 Because under our assumptions on  and , the expression 

 
 We obtain the cumulative distribution function of a continuous random variable 

 under the approximate Beta-Poisson dose-response model (ABP-dose-response 

model) with parameters  and , denoted by  is 
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 The density function of this model is 

 
 As  or  this function is equivalent to the density function of a 

Beta-Poisson dose-response model and this function is proposed in Furumoto & Mickey 

[3]. 

 
 4.2.1 The problem of parameters estimation by Method of Moments to 
Construct an Asymptotic Confidence Ellipse for the Approximate Beta-Poisson 
Dose-Response Model 

 The Beta function is defined as follows: 

 

 In this integral, if we make a substitution   , we can have the following 

equivalent form of the Beta function  

 
 Now we calculate k-th moments for the probability density function of the 

approximate Beta-Poisson dose-response model 

 

 

Making the substitution  then   . Hence 
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 Note that the Beta function  is defined for  and , we obtain 

that the last integral exists if  and , that is . 

 For the probability density function of the , the k-th moments exist 

only if . Hence we cannot apply method of moments to construct an asymptotic 

confidence ellipse, because data known from literature show that a typical values of  is 

around a few hundredths, while a typical values of  is around a few hundred. 

 

4.2.2 The Equations for Finding Maximum Likelihood Estimators for the 
Approximate Beta-Poisson Dose-Response Model 

The likelihood function of  is 

 
We obtain the system of maximum likelihood equations by evaluating 

derivatives with respect to  and . 

 

 
Hence the Maximum likelihood estimators (MLE) and  of  and  

can be obtained by simultaneously solving  and , 

i.e., 
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 4.2.3 The Fisher Information of Parameters for the Approximate  
Beta-Poisson Dose-Response Model 

 From the approximate distribution function of the Beta-Poisson dose-response 

model (4), we obtain the second derivatives of log function  as  

 

 

 
and expected values of the second derivatives with respect to ,  and  as follows:  

 

 

 
Now we can present the Fisher information matrix about  obtained from a 

single observation . 

 
the Fisher information matrix for a sample size : 

 
where  is a two-dimensional parameters vector, . 

 The Fisher’s information matrix about  obtained from  is 

 
 Because properties of maximum likelihood estimators (MLE) are under certain 

regularity conditions on , The MLE  of  based on a sample sizes  from 
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 is asymptotic normal distribution. The vector of estimates 

 has a two-dimensional normal distribution with the 

mean equal to the vector of true values of the parameters, that is  and the 

covariance matrix equals the inverse to the Fisher information matrix, denoted by 

. That is, as , 

 
and the inverse of the Fisher information matrix is computed as 

 

  

 

 4.2.4 Asymptotic Normal Distribution 

 From the Delta method theorem, consider the sequence of random variables 

 such that 

 
are distributed as the bivariate normal distribution, denoted by  

 
Asymptotic normal distribution as , we get 

 

 
which is equivalent to 
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where . 

 If  and  are independent  random variables, Then  has 

the bivariate normal distribution . From equation (7) 

 

 
is distributed as , where  denotes the chi-square distribution with 2 degrees of 

freedom. 

 

 4.2.5 Confidence Regions of Parameters for the Approximate  
Beta-Poisson Dose-Response Model 

The  distribution assigns probability  to the ellipse 

, where  denotes the 

upper th percentile of the  distribution. 

 The  confidence region for parameters  of a two-

dimensional normal distribution is the ellipse determined by all  such that  

 
 

which is equivalent 

 
where 
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So, the  confidence region for  consists of all value  

satisfying 

 

 
 

5. Simulation Study 

 In this section, a simulation study is carried out to construct asymptotic 

confidence ellipses for parameters of the approximate Beta-Poisson dose-response 

model and compare the coverage probabilities for confidence ellipses of parameters for 

approximation of the Beta-Poisson dose-response model with the confidence coefficient 

0.98. 

 The results of this study are classified according to the values of parameters for 

the Beta-Poisson dose-response model and sample sizes. 

 In an effort to find maximum likelihood estimates we will study by numerical 

method. For calculate the simulated errors of maximum likelihood estimates and 

construct sets of parameters we need a sample from the probability density function of 

the Beta-Poisson dose-response model. First we generate a sample  from the Beta 

distribution with parameters  and  and we use this  to generate a sample  from the 

Exponential distribution with parameter . For the Exponential distribution we use the 

density function 

 
 A sample, , is thus obtained from . This  will 

have the probability density function from the Beta-Poisson dose-response model with 

parameters  and . 

 After we obtain 10,000 replications of each sample, we compute the          

Monte-Carlo estimations of errors of the estimates: average of differences between the 

true value of the parameters and the true values of simulation and the percentages of 

absolute relative errors. If we obtained 10,000 replications of estimators of  where 

, that is, , we will estimate the errors as 
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and the percentages of absolute relative errors as 

 
Now, we present confidence ellipses of parameters as shown in Figures 1 – 12 

and present maximum likelihood estimates of  and , the percentages of absolute 

relative errors and coverage probabilities of confidence ellipses for parameters of the 

approximate Beta-Poisson dose-response model at 98% confidence level as follows 

Tables 1 – 3.  

 

1) Case , 

 
 

 

 
 

 

 

Confidence Ellipse of Parameters for the Approximate
 Beta-Poisson Dose-Response Model 

Figure 1:  A 98% confidence ellipse for  and  based on  

maximum likelihood estimates when . 
Figure 2:  A 98% confidence ellipse for  and  based on  

maximum likelihood estimates when . 

Figure 3:  A 98% confidence ellipse for  and  based on  

maximum likelihood estimates when . 
Figure 4:  A 98% confidence ellipse for  and  based on  

maximum likelihood estimates when . 

Confidence Ellipse of Parameters for the Approximate 
 Beta-Poisson Dose-Response Model 

Confidence Ellipse of Parameters for the Approximate
 Beta-Poisson Dose-Response Model 

Confidence Ellipse of Parameters for the Approximate 
 Beta-Poisson Dose-Response Model 
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Table 1.  Maximum likelihood estimates of  and , these errors and coverage 

probabilities of confidence ellipses for parameters of the approximate         

Beta-Poisson dose-response model when  at 98% confidence level. 

Maximum likelihood 

estimates 

The percentages of 

absolute relative errors   

    

Coverage 

probabilities 

0.1 10 0.10159 10.85432 1.59000 8.54320 0.9549 

0.08 100 0.08097 109.39572 1.21250 9.39572 0.9491 

0.3 150 0.30588 161.38292 1.96000 7.58861 0.9648 

0.7 180 0.71743 194.31646 2.49000 7.95359 0.9604 

 

2) Case , 

 
 

 

 
 

Confidence Ellipse of Parameters for the Approximate
 Beta-Poisson Dose-Response Model 

Figure 5:  A 98% confidence ellipse for  and  based on  

maximum likelihood estimates when . 
Figure 6:  A 98% confidence ellipse for  and  based on  

maximum likelihood estimates when . 

Figure 7:  A 98% confidence ellipse for  and  based on  

maximum likelihood estimates when . 
Figure 8:  A 98% confidence ellipse for  and  based on  

maximum likelihood estimates when . 

Confidence Ellipse of Parameters for the Approximate 
 Beta-Poisson Dose-Response Model 

Confidence Ellipse of Parameters for the Approximate 
 Beta-Poisson Dose-Response Model 

Confidence Ellipse of Parameters for the Approximate
 Beta-Poisson Dose-Response Model 
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Table 2.  Maximum likelihood estimates of  and , these errors and coverage 

probabilities of confidence ellipses for parameters of the approximate         

Beta-Poisson dose-response model when  at 98% confidence level. 

Maximum likelihood 

estimates 

The percentages of 

absolute relative errors   
    

Coverage 

probabilities 

0.1 10 0.10059 10.13029 0.59000 1.30290 0.9684 

0.08 100 0.08022 102.77953 0.27500 2.77953 0.9639 

0.3 150 0.30165 152.77005 0.55000 1.84670 0.9704 

0.7 180 0.70505 183.40679 0.72143 1.89266 0.9687 

 

3) Case when , 

 
 

 

 
 

Confidence Ellipse of Parameters for the Approximate
 Beta-Poisson Dose-Response Model 

Figure 9:  A 98% confidence ellipse for  and  based on  

maximum likelihood estimates when . 
Figure 10: A 98% confidence ellipse for  and  based on  

maximum likelihood estimates when . 

Figure 11: A 98% confidence ellipse for  and  based on  

maximum likelihood estimates when . 
Figure 12: A 98% confidence ellipse for  and  based on  

maximum likelihood estimates when . 

Confidence Ellipse of Parameters for the Approximate 
 Beta-Poisson Dose-Response Model 

Confidence Ellipse of Parameters for the Approximate 
 Beta-Poisson Dose-Response Model 

Confidence Ellipse of Parameters for the Approximate
 Beta-Poisson Dose-Response Model 
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Table 3.  Maximum likelihood estimates of  and , these errors and coverage 

probabilities of confidence ellipses for parameters of the approximate        

Beta-Poisson dose-response model when  at 98% confidence level. 

Maximum likelihood 

estimates 

The percentages of 

absolute relative errors   
    

Coverage 

probabilities 

0.1 10 0.10034 9.94527 0.34000 0.54730 0.9771 

0.08 100 0.08015 101.05571 0.18750 1.05571 0.9729 

0.3 150 0.30079 151.33427 0.26333 0.88951 0.9779 

0.7 180 0.70253 181.66574 0.36143 0.92541 0.9773 

 
6. An Example 

We consider the 33 outbreak reports collected from the published literature and 

from unpublished data received by Food and Agriculture Organization of the United 

Nations (FAO) and World Health Organization (WHO) [14] following Table 4, 23 

contained sufficient information on the number of people exposed, the number of people 

that become ill, and the number of organisms in the implicated food to enable calculation 

of a dose-response relationship. Of the 23 outbreaks, 3 were excluded because the 

immune status of the persons exposed could not be determined. The remaining 20 

outbreaks comprise the database used to calculate a dose-response relationship. 

Of the 20 outbreaks in the database, 11 occurred in Japan and 9 occurred in 

North America. Several Salmonella (S.) serotypes were associated with the outbreaks, 

including S. Enteridies (12 outbreaks), S. Typhimurium (3 outbreaks), and in single 

outbreaks, S. Heidelberg, S. Cubana, S. Infantis, S. Newport and S. Oranienburg. 

Several vehicles were implicated, including food (meat, eggs, dairy products and others), 

water, and a medical dye capsule (carmine dye).  

The maximum likelihood technique was used as the basis for generating the 

best fitting curve to the data. The fit was optimized using an iterative technique that 

minimized the deviance statistic, based upon a Binomial assumption. The parameters of 

the Beta-Poisson dose-response relationship are  and . 

Using our study, we obtain the maximum likelihood estimates  and 

 and we compare the outbreaks data with the Beta-Poisson dose-response 

model as follows Figure 13. If we use the Beta-Poisson as the mathematical form for the 
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relationship, and this was fitted to the outbreaks data. The model tends to close to 

estimate the probability of illness as observed in the outbreaks data. 

 
Figure 13: Comparison of the Beta-Poisson dose-response model and reported 

outbreaks data. 

We construct confidence ellipse of parameters for the Beta-Poisson             

dose-response model is shown in Figure 14. 
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Figure 14:  A 98% confidence ellipse for  and  based on outbreaks data. 

 

7. Conclusions 

In this article, we have investigated some limitations of parameters estimation 

for the Beta-Poisson dose-response model and its approximation. 

For the Beta-Poisson dose-response model, theoretically by using the Delta 

method for normal approximation it is possible to find the asymptotic covariance matrix of 

two parameter estimates by method of moments and after constructing an asymptotic 

confidence ellipse. However, the calculations are extremely cumbersome, and are not 

recommended for practical applications. Moreover, these lengthy calculations would be 
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useless for statistical analysis of epidemiological data, because data known from 

literature show that a typical values of  is around a few hundredths, while a typical 

values of  is around a few hundred. Even the first moment for the probability density 

function of the Beta-Poisson dose-response model exists for  For the method of 

maximum likelihood, we cannot find parameter estimators of the Beta-Poisson            

dose-response model and also it is not possible to find the asymptotic covariance matrix 

for maximum likelihood estimates of the Beta-Poisson dose-response model from the 

Fisher information matrix in closed form for the probability density function of the        

Beta-Poisson dose-response model, hence it is also not possible to construct an 

asymptotic confidence ellipse based on the maximum likelihood estimates. 

For the approximate Beta-Poisson dose-response model, the first moment for 

the probability density function with parameters  and  exists only if . Hence we 

cannot apply method of moments to construct an asymptotic confidence ellipse, because 

data known from literature show that a typical values of  is around a few hundredths, 

while a typical values of  is around a few hundred. Nevertheless, we can derive the 

parameter estimators of the approximate Beta-Poisson dose-response model by the 

method of maximum likelihood. After that, we calculate the Fisher information matrix in 

closed form for the probability density function of the approximate Beta-Poisson        

dose-response model. In addition, we find the covariance matrix which equals the inverse 

to the Fisher information matrix to construct a normal approximation that gives elliptical 

confidence regions with center  for all 12 cases.  

In simulation study, we construct asymptotic confidence ellipses for parameters 

of the approximate Beta-Poisson dose-response model and compared the coverage 

probabilities for confidence ellipses of both parameters for approximating a Beta-Poisson 

dose-response model with the nominal level 0.98. The coverage probabilities of 

confidence ellipses for parameters of an approximation of the Beta-Poisson               

dose-response model increase when sample sizes  increase and also they are close 

to the confidence coefficient 0.98. In addition, at various values of parameters of the 

Beta-Poisson dose-response model, the coverage probabilities are similar when  is 

fixed. 
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Appendix 
Table 4 Summary of outbreaks data [14] 

Case 
no. Serovar Food Pop.(1) Dose(2) Log 

CFU 
Attack 

Rate(2)(%) 

S. Typhimurium Water N 2.31 10.63% 
1 

S. Typhimurium Water S 2.31 18.91% 

2 S. Heidelberg Cheddar 
cheese N 2.22 32.76% 

3 S. Cubana Carmine dye S 4.57 70.93% 

4 S. Infantis Ham N 6.46 100.00% 

5 S. Typhimurium Imitation ice 
cream N 3.79 55.00% 

7 S. Newport Hamburger N 1.23 1.07% 

11 S. Enteritidis Hollandaise 
sauce N 4.74 100.00% 

12 S. Enteritidis Ice cream N 2.09 6.80% 

S. Typhimurium  Ice cream  N  8.70  100%  
13 

S. Typhimurium Ice cream S 8.00 100% 

18 S. Enteritidis Roasted 
beef N 5.41 60.00% 

19 S. Enteritidis Grated yam 
with soup N 6.31 93.93% 

20 S. Enteritidis 
Beef and 
bean 
sprouts 

N 2.97 26.86% 

22 S. Enteritidis Scallop with 
egg yolk N 6.30 56.01% 

23 S. Enteritidis Cake N 5.80 84.62% 

24 S. Enteritidis Peanut 
sauce N 1.72 16.41% 
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Table 4 (Continue) 

Case 
no. Serovar Food Pop.(1) Dose(2) Log 

CFU 
Attack 

Rate(2)(%) 

S. Enteritidis Chicken and 
egg N 3.63 18.75% 

25 
S. Enteritidis Chicken and 

egg S 3.63 42.74% 

30 S. Enteritidis Cooked egg N 3.80 64.18% 

31 S. Enteritidis Cake N 2.65 27.33% 

32 S. Enteritidis Egg salad S 1.40 26.92% 

33 S. Oranienburg Grated yam 
with soup N 9.90 100% 

 

Notes: (1) Pop. = population exposed, where N = Normal population and                         

                 S = Susceptible population. 

            (2) Expected value based on defined uncertainty ranges and distributions. 

Susceptibility in this analysis was therefore limited to outbreaks data for 

individuals less than 5 years old being classified as "susceptible", with other outbreaks 

data representing a "normal" population [15]. 
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