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1. Introduction

The main focus of the present investigation is to obtain asymptotic results for
the probability of the weighted deviations of dependent bootstrap means from
the sample mean.

Work on the validity of bootstrap estimators has received much attention in
recent years due to a growing demand for the procedure, both theoretically and
practically. As is mentioned in Mikosch [3], the sample mean is fundamental
for parameter estimation in statistics. Therefore, most of the recent literature
on the bootstrap is devoted to statistics of this type. This literature is mainly
concerned with bootstrap validity; that is, with showing that a statistic and its
bootstrap version have the similar asymptotic distributional behaviour. How-
ever, the limiting behaviour of bootstrap statistics is also of interest since it is by
no means clear whether the bootstrap version of a consistent estimator is itself
consistent.

We call the reader’s attention to the special issue of the journal Statistical
Science (2003) Volume 18, Number 2 devoted to the Silver Anniversary of the
Bootstrap, where the wide applications of the bootstrap procedure to diverse
areas of statistics are discussed. We also refer the reader to the recent expository
paper by Csörgő and Rosalsky [2] where a detailed and comprehensive survey of
limit laws for bootstrap sums is given.

The notion of the dependent bootstrap procedure was introduced by Smith
and Taylor [4] where some important properties were also established. Let
{Xn, n ≥ 1} be a sequence of random variables (which are not necessarily inde-
pendent or identically distributed) defined on a probability space (Ω, F, P ). Let
{m(n), n ≥ 1} and {k(n), n ≥ 1} be two sequences of positive integers such that
m(n) ≤ nk(n) for all n ≥ 1. For ! ∈ Ω and n ≥ 1, the dependent bootstrap is

defined to be the sample of size m(n), denoted {X̂(!)
n,j , 1 ≤ j ≤ m(n)}, drawn

without replacement from the collection of nk(n) items made up of k(n) copies
each of the sample observations X1(!), ⋅ ⋅ ⋅ , Xn(!).

This dependent bootstrap procedure is proposed as a procedure to reduce
variation of estimators and to obtain better confidence intervals. We refer to
Smith and Taylor [5] for details and where simulated confidence intervals are
obtained to examine possible gains in coverage probabilities and interval lengths.

We may consider the dependent bootstrap procedure as a more general pro-
cedure than the classical Efron independent bootstrap. If we take k(n) = ∞
for all n ≥ 1, then the dependent bootstrap reduces to the classical Efron inde-
pendent bootstrap. The main results presented in this paper do not require any
assumptions on k(n); they are certainly true for the independent bootstrap as
well.

Henceforth we let {X̂(!)
n,j , 1 ≤ j ≤ m(n)} denote the dependent bootstrap

sample from X1, ⋅ ⋅ ⋅ , Xn.

We refer the reader to the paper Ahmed et al. [1] where some important
general properties of the dependent bootstrap are presented and a discussion of
results in the literature pertaining to the classical (independent) and dependent
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bootstrap of the mean is given.

The main focus of Ahmed et al. [1] was to obtain asymptotic results for the
following probability
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as n → ∞ where � > 0, 0 < � < 2. The objective of the investigation resulting
in the present paper is to extend the results of Ahmed et al. [1] to weighted
deviations of the dependent bootstrap means from the sample mean. That is,
the main focus of this paper is to obtain asymptotic results for the following
probability
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as n → ∞ where � > 0, {an, n ≥ 1} and {bn, n ≥ 1} are two sequences of

numbers such that 0 < bn ↑ ∞, and {X̂(!)
n,j , 1 ≤ j ≤ m(n)} is the dependent

bootstrap sample from X1, ⋅ ⋅ ⋅ , Xn.

The following notion is well known. We recall that a sequence of random
variables {Xn, n ≥ 1} is stochastically dominated by a random variable X if
there exists a constant D > 0 such that P{∣Xn∣ > t} ≤ DP{D∣X ∣ > t} for all
t ≥ 0 and all n ≥ 1.

2. Exponential Inequality

The exponential inequality presented in the lemma below is the key tool used in
establishing the asymptotic probability for the weighted deviations of dependent
bootstrap means from the sample mean that will be presented in the next sec-
tion. It is a dependent bootstrap analog of the Mikosch exponential inequality
(Mikosch [3], Lemma 5.1). We mention that this result was proved by Mikosch [3]
under the assumption that {Xn, n ≥ 1} is a sequence of i.i.d. random variables,
for supremum (not partial sums) of bootstrap random variables, and for the
independent bootstrap procedure. Moreover, this result was proved in Ahmed
et al. [1] Lemma 6 for normed sums (not weighted sums). Also, in Lemma 6
of Ahmed et al. [1], c(n) ≡ m(n), while in our result {c(n), n ≥ 1} may be
arbitrary positive sequence of constants.

Lemma 1. Let {an, n ≥ 1}, {bn, n ≥ 1}, {c(n), n ≥ 1}, and {ℎn, n ≥ 1} be
sequences of nonnegative real numbers and �(n) = max1≤j≤m(n) aj , n ≥ 1. Let
{Xn, n ≥ 1} be a sequence of (not necessary independent or identically dis-
tributed) random variables. Then for ! ∈ Ω and n ≥ 1 such that ℎn�(n)Mn(!) <
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1, the following inequality holds for all � > 0:
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2.

Proof. By the Markov inequality,
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.

We will estimate only the expectation in the first term of the last expression;
the same bound is valid for the second expectation.

Now by Proposition 2 from Ahmed et al. [1] the dependent bootstrap random

variables {X̂(!)
n,j , 1 ≤ j ≤ m(n)}, n ≥ 1 are negatively dependent and exchange-

able. Hence, by Lemma 1(1) from Ahmed et al. [1] the random variables

{
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Hence,
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3. The Main Result

With the preliminaries accounted for, we can formulate and prove the main result
of this paper, that is the asymptotic probability for the weighted deviations of
dependent bootstrap means from the sample mean. We emphasize that there are
no independence or identical distribution assumptions on the original sequence
of random variables {Xn, n ≥ 1}.

Theorem 2. Let  (t), t ≥ 0 be an increasing function such that
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where  −1(t) is the inverse function of  (t). Let {an, n ≥ 1} and {bn, n ≥ 1} be
sequences of nonnegative real numbers and �(n) = max1≤j≤m(n) aj , n ≥ 1. Let
moreover {Xn, n ≥ 1} be a sequence of random variables which is stochastically
dominated by a random variables X such that E (DX) < ∞ for all D > 0.
Then for almost every ! ∈ Ω, for every � > 0, and for every positive number r,
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et al. [1],

ℎ2nBn =
r2

�2
m(n)

n

1

( −1(n))2

n
∑

j=1

X2
j =

m(n)

n
o(1) a.s.



Weighted Deviations of Dependent Bootstrap Means 49
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The result then follows directly from Lemma.

Remark 3. The conclusion of Theorem is of course stronger the larger r is taken.
The constant r does not play a role in any assumptions and it can be taken to
be arbitrarily large.

Using different moment assumptions, we can now derive different results on
the asymptotic probability for the deviations of dependent bootstrap means
from the sample mean. In all corollaries we assume that m(n) = c(n) = n, bn =
logn, aj = log j, n ≥ 1, j ≥ 1.

Corollary 4. Let {Xn, n ≥ 1} be a sequence of random variables which is stochas-
tically dominated by a random variable X and let 0 < � < 2. If E∣X ∣� < ∞,
then for almost every ! ∈ Ω and every � > 0
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Proof. Let  (t) = t�, t > 0. Then  −1(n) = n1/�, n ≥ 1. The relation (*)
holds trivially since 2/� > 1. If we take an = n1/� and m(n) = n, n ≥ 1, then
according to Theorem for every � > 0 and every r > 0 and for all sufficiently
large n and some constant C <∞,
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Corollary 5. Let {Xn, n ≥ 1} be a sequence of random variables which is
stochastically dominated by a random variable X and let 0 < � < 2. If
E∣X ∣�∣ log ∣X ∣∣� < ∞, then for every � > 0, every real number r, and almost
every ! ∈ Ω
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Proof. Let  (t) = t� log� t, t ≥ 1. Then according to Lemma 4 from Ahmed et

al. [1], the sequence  −1(n) is equivalent to n1/�

logn , n ≥ 2. The relation (*) holds

by Lemma 5 Ahmed et al. [1] since 2/� > 1. For fixed r, � > 0, m(n) = n, and
an = n1/�, n ≥ 1, applying Theorem we obtain the result.

Corollary 6. Let {Xn, n ≥ 1} be a sequence of random variables which is stochas-
tically dominated by a random variable X and let 0 < � < 2. If E∣X ∣� <∞ for
some � < � < 2, then for every � > 0, every r, and almost all ! ∈ Ω
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Proof. Let  (t) = t�, t > 0, then  −1(n) = n1/�. The relation (*) holds trivially
since 2/� > 1. For fixed r, � > 0, m(n) = n, and an = n1/� logn, n ≥ 1, applying
Theorem we obtain the result.
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