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I. INTRODUCTION

The main focus of the present investigation is to obtain the upper
bound of the exact convergence rate (i.e., a law of the logarithm type
result) for dependent bootstrap means from a sequence of random
variables. The work on the consistency of bootstrap estimators has
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received much attention in recent years due to a growing demand for
the procedure, both theoretically and practically. It is important to note
that exponential inequalities are of practical use in establishing the strong
asymptotic validity of bootstrap mean.

We begin with a brief discussion of results in the literature pertaining
to a sequence of independent and identically distributed (i.i.d.) random
variables and the classical (independent) bootstrap of the mean. Let
�X�Xn� n ≥ 1� be a sequence of i.i.d. random variables defined on a
probability space ���� � P�. For � ∈ � and n ≥ 1, let Pn��� = n−1 ∑n

i=1

�Xi���
denote the empirical measure, and let �X̂���

n�j � 1 ≤ j ≤ m�n�� be i.i.d.
random variables with law Pn��� where �m�n�� n ≥ 1� is a sequence
of positive integers. In other words, the random variables �X̂

���
n�j � 1 ≤

j ≤ m�n�� result by sampling m�n� times with replacement from the n
observations

X1���� 	 	 	 � Xn���

such that for each of the m�n� selections, each Xj��� has probability
n−1 of being chosen. For each n ≥ 1, �X̂

���
n�j � 1 ≤ j ≤ m�n�� is the so-

called Efron [1] bootstrap sample from X1� 	 	 	 � Xn with bootstrap
sample size m�n�. Let �Xn��� = 1

n

∑n
j=1 Xj��� denote the sample mean of

�Xj���� 1 ≤ j ≤ n�, n ≥ 1.
When X is nondegenerate and EX2 < �, Bickel and Freedman [16]

showed that for almost every � ∈ � the central limit theorem (CLT)

n1/2

(
1
n

n∑
j=1

X̂
���
n�j − Xn���

)
d→N�0� 
2�

obtains. Here and below and 
2 = VarX. Note that by the Glivenko–
Cantelli theorem Pn��� is close to ��X� for almost every � ∈ � and all
large n, and by the classical Lévy CLT

n1/2

(
1
n

n∑
j=1

Xj − EX

)
d→N�0� 
2�	

It follows that for almost every � ∈ �, the bootstrap statistic

n1/2

(
1
n

n∑
j=1

X̂
���
n�j − Xn���

)

is close in distribution to that of

n1/2

(
1
n

n∑
j=1

Xj − EX

)
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for all large n: This is the basic idea behind the bootstrap. See the
pioneering work of Efron [1] where this nice idea is made explicit and
where it is substantiated with several important examples.

Moreover, strong laws of large numbers were proved by Athreya [2]
and Csörgö [3] for bootstrap means. Arenal-Gutiérrez et al. [4] analyzed
the results of Athreya [2] and Csörgő [3]. Then, by taking into account
the different growth rates for the resampling size m�n�, they gave new
and simple proofs of those results. They also provided examples that
show that the sizes of resampling required by their results to ensure
almost sure (a.s.) convergence are not far from optimal.

Another article which is important for this article is the work
carried out by Mikosch [5]. He established a series of useful exponential
inequalities that are an important tool for deriving results on the
consistency of the bootstrap mean. Moreover, the pioneering work
establishing a law of the logarithm type result for bootstrap means for
the sequence of i.i.d. random variables was carried out in Mikosch.
The law of logarithm type result for the bootstrapped means from the
arbitrary sequence (not necessary independent or identically distributed)
random variables was established in Ahmed et al. [6].

The main goal of the present article is to extend and generalize the
results of Ahmed et al. [6]. On the law of the logarithm to the case of
dependent bootstrap procedure. The notion of the dependent bootstrap
procedure will be presented in the next section.

II. DEPENDENT BOOTSTRAP

The results from this section are modifications, generalizations and
extensions of the results of Smith and Taylor [7] for the dependent
bootstrap from the sequence of arbitrary (not necessarily i.i.d.) random
variables. We mention that Smith and Taylor [7] consider only i.i.d. case.
We present this section as a simple reference since it plays a role in what
follows.

Let �Xn� n ≥ 1� be a sequence of random variables (which are
not necessarily independent or identically distributed) defined on a
probability space ���� � P�. Let �m�n�� n ≥ 1� and �k�n�� n ≥ 1� be two
sequences of positive integers such that for all n ≥ 1:

m�n� ≤ nk�n�	

For � ∈ � and n ≥ 1, the dependent bootstrap is defined as the sample
of size m�n�, denoted �X

���
n�j � 1 ≤ j ≤ m�n��, drawn without replacement

from the collection of nk�n� items made up of k�n� copies each of the
sample observations X1���� 	 	 	 � Xn���.

The dependent bootstrap procedure is proposed as a procedure to
reduce variation of estimators and to obtain better confidence intervals.
We refer to the paper Smith and Taylor [8] where this fact is proven
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and simulated confidence intervals are used to examine possible gains in
coverage probabilities and interval lengths.

The first proposition gives us the joint distribution of the dependent
bootstrap random variables. We need the following notations.

For � ∈ �, n ≥ 1, and a real number x, denote

��x� =
n∑

j=1

I�Xj��� ≤ x��

where I�·� is the indicator function. Hence, ��x� is the random variable
that counts the number of observations less than or equal to x.

For a finite set �x1� x2� 	 	 	 � xm� of real numbers, let �x�1�� x�2�� 	 	 	 � x�m��
denote its nondecreasing rearrangement, that is x�1� ≤ x�2� ≤ · · · ≤ x�m�

and for any 1 ≤ j ≤ m there exists 1 ≤ i ≤ m such that xi = x�j�.

Proposition 1. For � ∈ �, n ≥ 1, and a set �x1� x2� 	 	 	 � xm� of real
numbers:

1) If k�n���x�j�� ≥ j for all 1 ≤ j ≤ m�n�, then

P
{
X̂

���
n�1 ≤ x1� 	 	 	 � X̂

���

n�m�n� ≤ xm�n�

} =
m�n�∏
j=1

k�n���x�j��− �j − 1�

k�n�n− �j − 1�
	

2) If k�n���x�j�� < j for at least one 1 ≤ j ≤ m�n�, then the above
probability is zero.

Proof. Let � be the reordering of �1� 2� 	 	 	 � m�n�� such that ��j� = i for
xi = x�j�. Then

P
{
X̂

���
n�1 ≤ x1� 	 	 	 � X̂

���

n�m�n� ≤ xm�n�

}
= P

{
X̂

���

n���1� ≤ x�1�� 	 	 	 X̂
���

n���m�n�� ≤ x�m�n��

}
= P

{
X̂

���

n���1� ≤ x�1�
}× P

{
X̂

���

n���2� ≤ x�2��X̂���

n���1� ≤ x��1��
}

× · · · × P
{
X̂

���

n���m�n�� ≤ x�m�n���X̂���

n���1� ≤ x�1�� 	 	 	 � X̂
���

n���m�n�−1� ≤ x�m�n�−1�

}
=

m�n�∏
j=1

k�n���x�j��− �j − 1�

k�n�n− �j − 1�

if k�n���x�j�� ≥ j for all 1 ≤ j ≤ m�n�.
The second part of the proposition is obvious.
Of course, the dependent bootstrap random variables �X̂

���
n�j � 1 ≤

j ≤ m�n�� are dependent. They obey the so-called negatively dependent
property; this property will be established in Proposition 2. The concept
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of negatively dependent random variables was introduced by
Lehmann [9] as follows.

The random variables Y1� Y2� 	 	 	 are said to be negatively dependent
if for each n ≥ 2 the following two inequalities hold:

P�Y1 ≤ y1� 	 	 	 � Yn ≤ yn� ≤
n∏

i=1

P�Yi ≤ yi�

and

P�Y1 > y1� 	 	 	 � Yn > yn� ≤
n∏

i=1

P�Yi > yi�

for any set �y1� 	 	 	 � yn� of real numbers.

Proposition 2. For � ∈ � and n ≥ 1 the dependent bootstrap random
variables �X

���
n�j � 1 ≤ j ≤ m�n�� are negatively dependent and finitely

exchangeable.

Proof. For the negative dependence property we will prove only the first
inequality. The proof of the second one is similar.

Let �x1� x2� 	 	 	 � xm�n�� be a sequence of real numbers. We need
to consider only the case k�n���x�j�� ≥ j for all 1 ≤ j ≤ m�n�. By
Proposition 1

P
{
X̂

���
n�1 ≤ x1� 	 	 	 � X̂

���

n�m�n� ≤ xm�n�

} =
m�n�∏
j=1

k�n���x�j��− �j − 1�

k�n�n− �j − 1�

≤
m�n�∏
j=1

k�n���x�j��

k�n�n
=

m�n�∏
j=1

P
{
X̂

���
n�j ≤ xj

}
	

The exchangeability is obvious by Proposition 1.

Remark 1. Note that the dependent bootstrap random variables are only
finitely exchangeable, they cannot be embedded into infinite sequence of
exchangeable ranom variables. This follows from the simple observation
that an infinite sequence of exchangeable random variables cannot be
negatively correlated (cf. Taylor et al. [10] inequality (1.1.4), p. 8), while in
view of Lemma 1(2) given below, negatively dependent random variables
are negatively correlated, provided the expecatations exist.

III. A FEW TECHNICAL LEMMAS

In this section we present a few technical results that we will use in
proofs of the main results of the article. Some of the lemmas are only
generalizations and extensions of well-known results. For expository
purposes we outline their proofs.
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For the simplicity, by the log-function in this section we mean the
natural logarithm function. The results can be easily generalized to any
other logarithm function with base greater than one.

The first lemma is well known and trivial (cf. for example
Bozorgnia et al. [11]).

Lemma 1. Let �Yn� n ≥ 1� be a sequence of negatively dependent random
variables.

1) If �fn� n ≥ 1� is a sequence of measurable real functions all of which are
monotone increasing (or all monotone decreasing), then �fn�Yn�� n ≥ 1�
is a sequence of negatively dependent random variables.

2) For any n ≥ 1  E�
∏n

j=1 Yj� ≤
∏n

j=1 E�Yj� provided the expectations are
finite.

Next two lemmas deal with convergence of maximums of random
variables. No assumption of independence is made.

Lemma 2. Let �Xn� n ≥ 1� be a sequence of positive random variables and
�bn� n ≥ 1� be a nondecreasing sequence of positive constants such that
bn → �. Then the assertions Xn/bn → 0 a.s. and 1

bn
max1≤j≤n Xj → 0 a.s.

are equivalent.

Proof. Let Xn/bn → 0 a.s. For arbitrary n ≥ k ≥ 2,

1
bn

max
1≤j≤n

Xj ≤
1
bn

max
1≤j≤k−1

Xj +
1
bn

max
k≤j≤n

Xj

≤ 1
bn

max
1≤j≤k−1

Xj + max
k≤j≤n

Xj/bj �since �bn� n ≥ 1� is nondecreasing�

≤ 1
bn

max
1≤j≤k−1

Xj + sup
j≥k

Xj/bj → 0

as first n → � and then k → �. The reverse implication is obvious.
The following lemma in this section is a generalization of the

Corollary to Theorem 3 of Barnes and Tucker [12].

Lemma 3. Let ��t�� t ≥ 0 be a strictly increasing function and �bn� n ≥ 1�
be a nondecreasing sequence of positive numbers such that

��bn� ≥ Cn� n ≥ 1�

where constant C does not depend on n. Let moreover �Xn� n ≥ 1� be
a sequence of positive identically distributed random variables such that
E��X1/�� < � for all � > 0. Then

1
bn

max
1≤j≤n

Xj → 0 a.s.
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Proof. For arbitrary � > 0

�∑
n=1

P�Xn > �bn� ≤
�∑
n=1

P

{
1
C
�

(
X1

�

)
> n

}
≤ 1

C
E�

(
X1

�

)
< �	

Then by the Borel–Cantelli lemma Xn/bn → 0 a.s. By Lemma 2 we
obtain that

1
bn

max
1≤j≤n

Xj → 0 a.s.

The last lemma in this section is only a technical result that will help us
to improve a constant in the Kolmogorov exponential in equality.

Lemma 4. Let a > 0 and 0 < � ≤ a3

2�ea−1−a−a2/2� . Then

ex − 1− x − x2

2
≤ x3

2�

for all 0 ≤ x ≤ a.

Proof. Consider the function

f�x� �� = ln
(
1+ x + x2

2
+ x3

2�

)
− x	

We need to prove that f�x� �� ≥ 0 for all 0 < � ≤ a3

2�ea−1−a−a2/2� and
0 ≤ x ≤ a.

Take the derivative

�f

�x
= − x2�x − �3− ���

2��1+ x + x2/2+ x3/�2���
	

Hence, f is increasing in x on the interval �0� 3− �� and decreasing on
the interval �3− �� a�.

Note that f�0� �� = 0 and f�a� �� ≥ 0 since � ≤ a3

2�ea−1−a−a2/2� .
The next lemma is a generalization of the famous Komogorov

exponential inequality (cf. for example Stout [13], Theorem 5.2.2(i)). The
result was announced in Volodin [14].

Lemma 5. Let �Xn� n ≥ 1� be a sequence of negatively dependent random
variables with zero means and finite variances. Let

s2n =
n∑

k=1

EX2
k� n ≥ 1�
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and assume that �Xk� ≤ Csn a.s. for each 1 ≤ k ≤ n and n ≥ 1. For each
a > 0 and n ≥ 1, if �C ≤ a and 0 < � ≤ a3

2�ea−1−a−a2/2� , then

P
{
Sn/sn > �

} ≤ exp
{
−�2

2

(
1− �C

�

)}
�

where Sn =
∑n

k=1 Xk, n ≥ 1.

Proof. Fix n ≥ 1 and a > 0. Suppose x = �C ≤ a. For each 1 ≤ k ≤ n,

E exp
{
�Xk/sn

} = 1+ �2EX2
k

2!s2n
+ �3X3

k

3!s3n
+ · · ·

≤ 1+ �2EX2
k

2s2n

(
1+ �C

3
+ �2C2

3 · 4 + · · ·
)

= 1+ �2EX2
k

2s2n

(
1+ x

3
+ x2

3 · 4 + · · ·
)
	

By Lemma 4,

ex − x − x2

2
= 1+ x2

2

(
x

3
+ x2

3 · 4 + · · ·
)
≤ 1+ x3

2�
= 1+ x2

2
· x
�
�

Hence,

x

3
+ x2

3 · 4 + · · · ≤ x

�
or 1+ x

3
+ x2

3 · 4 + · · · ≤ 1+ x

�
	

Therefore,

E exp��Xk/sn� ≤ 1+ �2EX2
k

2s2n

(
1+ x

�

)
≤ exp

{
�2EX2

k

2s2n

(
1+ x

�

)}

since 1+ t ≤ et for all t. By Lemma 1,

E exp��Sn/sn� ≤ exp
{
�2

2

(
1+ �C

�

)}
	

Thus,

P�Sn/sn > �� ≤ exp�−�2�E exp��Sn/sn� ≤ exp
{
−�2

2

(
1− �C

�

)}
	

Remarks. 2. Even for a = 1, our lemma gives better constant

� = 1
2e− 5

= 2	2906 · · · > 2�

while in the Kolmogorov original inequality we have � = 2 (cf.
Stout [13], p. 263).
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3. If a → 0 then � → 3. We need a → 0 for the proof of the law of
the logarithm.

4. Another interesting advantage of the lemma is that we can
consider any positive a, while in the Kolmogorov inequality a = 1. In
our inequality the upper bound involves a fixed (given) C and fixed
� and a variable �. Now, � is a function of a, for a ≥ �C. Note
that the left-hand side of the inequality does not involve a anywhere,
whereas the right-hand side is, in effect, a function of a. So the best
possible inequality occurs when a is chosen so that ��a� is maximized
on the interval ��C���. However, � is a decreasing function of a, so
the maximum value of the upper bound occurs when a is as small as
possible; that is, when a = �C.

In short, we technically then have a family of inequalities – one for
each value of a ≥ �C. However, the special case where � = ���C� implies
the validity of the inequality for all larger values of �. So there is really
only one inequality, for one specific value of �.

The next lemma is a general result for arrays of rowwise negatively
dependent random variables and is the key lemma used in the proof
of the upper bound for the law of the logarithm type result for the
dependent bootstrap of the mean presented in the theorem. Lemma 6 is
given in a form somewhat more general than what is required for the
proof of the theorem and maybe of independent interest.

Lemma 6. Let �Yn�j� 1 ≤ j ≤ m�n� < �� n ≥ 1� be an array of rowwise
negatively dependent random variables such that EYn�j = 0 and �Yn�j� ≤ cn,
1 ≤ j ≤ m�n�, n ≥ 1 where �cn� n ≥ 1� is a sequence of constants in �0���.
Set s2n =

∑m�n�
j=1 EY 2

n�j , n ≥ 1 and suppose that s2n > 0, n ≥ 1. Let �an� n ≥ 1�
be a sequence of positive constants such that

�∑
n=1

exp�−�2a2
n� < �

for some 0 < � < �. Then:

(i) If cnan = o�sn�,

lim sup
n→�

∣∣∑m�n�
j=1 Yn�j

∣∣
snan

≤ √
2B0 a.s.�

where

B0 = inf
{
B ∈ �0� �� 

�∑
n=1

exp
{−B2a2

n� < �
}
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(ii) If cn�log n�
1/2 = o�sn�,

lim sup
n→�

∣∣∑m�n�
j=1 Yn�j

∣∣
sn�2 log n�1/2

≤ 1 a.s.

Proof. Part (ii) follows immediately from (i) by taking a1 = �log 2�1/2,
an = �log n�1/2, n ≥ 2. To prove (i), note that for arbitrary � > 0, there
exists a positive integer N��� such that for all n ≥ N���

�B0 + ��2
(
1−

√
2�B0 + ��ancn

2sn

)
≥

(
B0 +

�

2

)2

	

Employing Lemma 5 we have for n ≥ N���

P

{∣∣∑m�n�
j=1 Yn�j

∣∣
snan

≥ √
2�B0 + ��

}

≤ 2 exp
{
−�B0 + ��2a2

n

(
1−

√
2�B0 + ��ancn

2sn

)}

≤ 2 exp
{
−
(
B0 +

�

2

)2

a2
n

}
	

By definition of B0, it follows that

�∑
n=1

P

{∣∣∑m�n�
j=1 Yn�j

∣∣
snan

≥ √
2
(
B0 +

�

2

)}
< �	

Then, by the Borel–Cantelli lemma,

P

{∣∣∑m�n�
j=1 Yn�j

∣∣
snan

≥ √
2
(
B0 +

�

2

)
i.o. �n�

}
= 0

and, hence,

lim sup
n→�

∣∣∑m�n�
j=1 Yn�j

∣∣
snan

≤ √
2
(
B0 +

�

2

)
a.s.

Since � is arbitrary,

lim sup
n→�

∣∣∑m�n�
j=1 Yn�j

∣∣
snan

≤ √
2B0 a.s.
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IV. UPPER BOUND FOR THE LAW OF THE LOGARITHM
FOR THE DEPENDENT BOOTSTRAP OF THE MEAN

The next theorem can be considered as a upper bound for the law of the
logarithm for the dependent bootstrap of the mean. The theorem is an
analog of Theorem 1 of Ahmed et al. [6] for the case of the dependent
bootstrap.


̃n =
(∑n

i=1�Xi −�Xn�
2

n

)1/2

=
(∑n

i=1 X
2
i

n
−

(∑n
i=1 Xi

n

)2)1/2

� n ≥ 1	

Theorem. Let �Xn� n ≥ 1� be a sequence of random vaiables (which are
not necessarily independent or identically distributed) and let �m�n�� n ≥ 1�
be a sequence of positive integers. Suppose that

(i) lim
n→�

�log n�max1≤i≤n�Xi −�Xn�
2

m�n�
= 0 a	s	

and
(ii) for almost every � ∈ � the limit limn→� 
̃n��� ≡ 
̃��� > 0 exists.

Then for almost every � ∈ �

lim sup
n→�

(
m�n�

2 log n

)1/2∣∣∣∣
∑m�n�

j=1 X̂
���
n�j

m�n�
−�Xn���

∣∣∣∣ ≤ 
̃��� a	s	

Proof. The conclusion of the theorem is equivalent to: for almost every
� ∈ �

lim sup
n→�

∣∣∑m�n�
j=1 �X̂

���
n�j −�Xn����

∣∣
�2m�n� log n�1/2

≤ 
̃��� a	s	

To prove this, set

Y
���
n�j = X̂

���
n�j −�Xn���� 1 ≤ j ≤ m�n�� n ≥ 1	

Note that

EY
���
n�j = 0� �Y ���

n�j � ≤ max
1≤i≤n

�Xi���−�Xn����� 1 ≤ j ≤ m�n�� n ≥ 1

and
m�n�∑
j=1

E�Y
���
n�j �

2 = m�n�E�Y
���
n�1 �

2 = m�n�
̃2
n���	

Now by (i)

�max1≤i≤n �Xi���−�Xn������log n�1/2(∑m�n�
j=1 E�Y

���
n�j �

2
)1/2

= �max1≤i≤n �Xi���−�Xn������log n�1/2
�m�n��1/2
̃n���

→ 0
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and so by Lemma 6(ii)

lim sup
n→�

∣∣∑m�n�
j=1 Y

���
n�j �(

�2 log n�
∑m�n�

j=1 E�Y
���
n�j �

2
)1/2 ≤ 1 a.s.

Then

lim sup
n→�

∣∣∑m�n�
j=1 �X̂

���
n�j −�Xn����

∣∣
�2m�n� log n�1/2

= lim sup
n→�

( ∣∣∑m�n�
j=1 Y

���
n�j

∣∣(
�2 log n�

∑m�n�
j=1 E�Y

���
n�j �

2
)1/2 ·

(∑m�n�
j=1 E�Y

���
n�j �

2

m�n�

)1/2)

= lim sup
n→�

∣∣∑m�n�
j=1 Y

���
n�j

∣∣(
�2 log n�

∑m�n�
j=1 E�Y

���
n�j �

2
)1/2 
̃n���

≤ 
̃��� a	s

Corollary. Let �Xn� n ≥ 1� be a sequence of nondegenerate random
variables such that either

(i) �Xn� n ≥ 1� is a sequence of pairwise i.i.d. random variables or
(ii) �Xn� n ≥ 1� is a stationary ergodic sequence of random variables.

Let �m�n�� n ≥ 1� be a sequence of positive integers such that

m�n�

log n
↑ 	

Suppose that there exists a constant � ≥ 1 such that

n1/� log n = ��m�n��

and

E�X1�2� < �	

Set 
2 = VarX1. Then for almost every � ∈ �

lim sup
n→�

(
m�n�

2 log n

)1/2∣∣∣∣
∑m�n�

j=1 X̂
���
n�j

m�n�
−�Xn���

∣∣∣∣ ≤ 
 a	s	

Proof. Under case (i), �X2
n� n ≥ 1� is also a sequence of pairwise i.i.d.

random variables. Now by a double application of the Etemadi [15]
strong law of large numbers


̃n =
(∑n

i=1 X
2
i

n
−

(∑n
i=1 Xi

n

)2)1/2

→ �EX2
1 − �EX1�

2�1/2 = 
 > 0 a.s.
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Under case (ii), �X2
n� n ≥ 1� is also a stationary ergodic sequence

by Theorem 3.5.8 of Stout, ([6] p. 182). By a double application of the
pointwise ergodic theorem for stationary sequences (see, e.g., Stout [6],
p. 181), we again have 
̃n → 
 > 0 a.s.

Next, there exists a constant M < � such that n1/� log n ≤ Mm�n�,
n ≥ 1. Then for arbitrary � > 0

�∑
n=1

P

{
�log n�X2

n

m�n�
> �

}
≤

�∑
n=1

P

{
�X1� >

(
�

M

) 1
2

n
1
2�

}
< CE�X1�2� < �

Thus by the Borel–Cantelli lemma

lim
n→�

�log n�X2
n

m�n�
= 0 a.s.

Since m�n�

log n ↑, condition (i) of the theorem then follows from Lemmas 2
and 3. The conclusion results directly from the theorem.
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