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Elementary Mathematical Tools to Understand the 
Binomial Model in the Pricing of Financial Options 

 
Krisada Khruachalee  Winai Bodhisuwan         Andrei Volodin 
         Kasetsart University                University of Regina 

 
ABSTRACT Financial mathematics is typically characterized as applying tools and 
techniques from mathematics to various topics in finance and financial markets. Special 
attention has been given to Financial Mathematics after the last financial crisis in 2007 
and 2008 that resulted in the collapse of a number of large financial institutions in the 
world. Financial options are the most important products traded, and therefore the sub- 
ject of pricing for options is of great importance for preventing future financial crises and 
making the work of financial institutions smooth and reliable. A main focus in economic 
analysis is devoted to a simultaneous combination of quantitative techniques provided by 
Financial Mathematics and the analytical analysis to derive option pricing by particular 
financial experts and advisors. Whenever this is possible, this will provide the best pre- 
diction for the value of the reward received. The most important and the easiest way to 
achieve these goals is to implement the famous Binomial Model, developed by Cox et al. 
[1] in 1973. 

 
Keywords  Binomial model; Conditional Expectation; D-measurable; Financial mathe- 
matics; Martingale; Pricing options. 

 
1. Introduction  

 
While teaching a class on Financial Mathematics, the authors of this note mentioned that 

students have difficulties to understand some crucial Mathematical Tools such as Conditional 
Expectations and Martingales. Without this tools it is impossible to construct and explain the 
Binomial Model in the pricing of financial options. The main goal of this note is to provide 
very simple and elementary definitions, explanations, and derivations of these tools from the 
Elementary Probability level. Some of our derivations are based on the paper by Shiryaev et al. 
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[3], but they rely on σ-algebras, while we do not. The notion of a partition is borrowed from 
the textbook by Shiryaev [2]. 

We provide all necessary mathematical tools from probability theory for derivation the 
Binomial Model for pricing options, while we do not discuss the Binomial Pricing Model 
itself. The special attention is given to such notions from probability theory as conditional 
expectation and martingale. 

 
2. Conditional Expectation by Partitions 

 
In the following let 1 2{ , , , }nω ω ωΩ =   be a finite sample space. 

 
Definition 1.1 A class of subsets or events of the space Ω   

1 2{ , , , },kD D D= D ,iD ⊆ Ω ( 1, , )i k=   
 

is called a partition of the space ,Ω  if 

1) The events iD  are disjoint (mutually exclusive), that is, ,i jD D =∅ ( ),i j≠  and 
2) 1 .k

i iD= = Ω   
The sets iD  are called atoms of the partition D. □ 

 
Suppose 1 11 12 1{ , , , }mD D D= D  and 2 21 22 2{ , , , }kD D D= D  are two partitions of .Ω  

 

 

Definition 1.2 The partition 2D  majorates the partition 1D , or 2D  is more fine than 1D , 
(denoted 1D  2D ), if each atom of the partition 2D  is a subset of an atom of the partition 

1D . That is, for any 1 q k≤ ≤  there exists ,p 1 mp≤ ≤  such that 2 1 .q pD D⊂  □  
Note that if partition 2D  majorates partition 1D , then 2D  is simply a partition of 

atoms of partition 1D . That is, for any 1 mp≤ ≤  there exists {1,2, , }pJ k⊂   such that 

1 2pp q J qD D∈=   and index sets pJ  are disjoint and 1 {1,2, , },m
p pJ k= =  .k m≥  

Also note that there is the “smallest” partition min { }= ΩD  and the “largest” partition 

2max 1 1 2{ { }, { }, , { }}n nD D Dω ω ω= = = =D  (recall that there are n elementary outcomes in 

1 2{ , , , }nω ω ωΩ =  ). Then for any partition D  we have that minD  D  maxD . 
Generally speaking, we can define a probability only on a partition D  in the following 

way.  
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Definition 1.3 Let 1 2{ , , , }kD D D= D  be a partition of space .Ω  A probability P on the 
partition D  is a function of D  into an interval [0, 1],  such that the following conditions are 
satisfied: 

1) ,( ) 0iD ≥P ( 1, , )i k=    and  2) 
1

)( 1.k
ii

D
=

=∑ P □ 
 

We can extend the notion of probability via summation on disjoint unions on the class of sets 
F  which consists of all possible unions of elements of the partition D , that is, if A∈F , 
then i I iA D∈=  , where I is any collection of indexes from 1 to k (including I =∅ ). If 

i I iA D∈=  , then we define the probability of the event A as ) ).( ( ii I
A D

∈
=∑P P  

In the following we assume that the probability function P is defined on the partition 

maxD . In this case, for any A⊂ Ω  we then have )( () .
A

A
ω

ω
∈

=∑P P  
 

Definition 1.4 Let 1 11 12 1{ , , , }mD D D= D  and 2 21 22 2{ , , , }kD D D= D  be two partitions of 
.Ω  We say that partitions 1D  and 2D  are independent if  

  1 2 1 2( ) ( ) ( ),i j i jD D D D=P P P  for all 1 ,mi≤ ≤  1 .j k≤ ≤     □ 

 
Having defined probability on a partition, we now introduce the important concept of a 

random variable. 
 

Definition 1.5 A function η  from the sample space into the real line, that is, 
 

: ( , ),η Ω→ −∞ ∞   
is called a random variable.                  □ 

 
Definition 1.6 Let η  be a random variable taking on values 1 2, , , .ky y y  Denote by  

{ :jD ω= ( ) }.jyη ω =  Then the partition 1 2{ , , , }kD D Dη = D  is called a partition gene- 
rated by random variable η .          

 
□ 

In the same way we can introduce the partition 
1 2, , , mη η η

D  generated by a family of 
random variables 1 2, , , .mη η η  This partition consists of the atoms   

1 2, , , { :
my y yD ω=

 1 1 2 2( ) , ( ) , , ( ) }.m my y yη ω η ω η ω= = =  
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Note that if a random variable η  is given, then in the following we will consider only 
probabilities P defined on the partition ηD  such that   

( ) 0,jyη = >P 1,2, , .j k=   
 

There is one random variable that plays a special role in the following 
 

Definition 1.7 Let A be an event, that is, .A⊂ Ω  The random variable AI  is called an  
indicator function if it takes only two values:  

1, if
( ) .

0, ifA

A
I

A
ω

ω
ω
∈

=  ∉
 

We note that the partition generated by the indicator function AI  has the simple structure: 
{ ,

AI A=D }.cA          □ 
 

Definition 1.8 Let 1 2{ , , , }kD D D= D  be a partition, then random variable ( )η η ω=  is  
measurable with respect to the partition ,D  or D-measurable, if ηD  D.  This means that 
the random variable takes constant values on atoms of the partition D  and hence the random 
variable can be written in the form  

 
1

( ) ( )
i

k

i D
i

y Iη ω ω
=

= ⋅∑ , 
 

where some of the scales iy  may be equal. □ 
 

Sometimes it is more convenient for us to consider only distinct iy . Then we can collect 
all iD  for which random variable η  takes the same values. In this case the random variable 
η  can be represented as   

1
,

j

l

j A
j

y Iη
=

= ⋅∑  { :jA ω= ( ) },
jj i J iy Dη ω ∈= =   

where the index sets jJ  are disjoint and 1 {1,2, , },l
j jJ k= =  .l k≤  

 
Definition 1.9 Let ( )ξ ξ ω=  be a random variable taking values 1 2, , , :lx x x   

1
,

j

l

j A
j

x Iξ
=

= ⋅∑  { :jA ω= ( ) }.jxξ ω =  
 

The mathematical expectation (unconditional) of the random variable ξ  is defined as  

    
1

( ) ( ).
l

j j
j

x Aξ
=

=∑E P    □ 
 

We now state and prove a basic result concerning the expectation of the indicator 
function.  
Fact: ( ) ( ).AI A=E P   
Proof. ( 0)0 1 ( 1) ( ).A AI I A= ⋅ ⋅= + = =E P P P   □ 
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Proposition 1.1 Let ( )ξ ξ ω=  and ( )η η ω=  be two random variables such that ξ  is 
measurable with respect to the partition ηD  generated by the random variable η . Then there 
exists a function f  such that ( )fξ η= .  
Proof. Let 1 2, , , ky y y  be the values taken by the random variable η . Then the partition 

ηD  consists of atoms  

{ :jD ω= ( ) },jyη ω = 1 j k≤ ≤  and 
1

( ) ( )
j

k

j D
j

y Iη ω ω
=

= ⋅∑ . 

Since ξ  is measurable with respect to the partition ηD , it can be written as  

1
( ) ( ).

j

k

j D
j

x Iξ ω ω
=

= ⋅∑  
 

The construction of the function f  now is quite simple. Let ( ) ,j jf y x= 1 .j k≤ ≤  Obviously, 
( ) [ ( )]fξ ω η ω=  by the definition of the function f . The proposition is proved.    □ 

 
Proposition 1.1 has a simple generalization. Namely, let ( )ξ ξ ω=  and 1( ),η ω  2 ( ),η ω  

, ( )mη ω  be random variables such that ξ  is measurable by the partition 
1 2, , , mη η η

D  gene- 
rated by the random variables 1 2, , , .mη η η  Then there exists a function f  such that 

1 2( , , , ).mfξ η η η=   
 

Definition 1.11 Let ξD  and ηD  be two partitions. We say that partitions ξD  and ηD  are 
independent, if for all A ξ∈D  and B η∈D  we have that ( ( ) .) ( )A AB B=P P P □ 

 
Definition 1.12 Two random variables ( )ξ ξ ω=  and ( )η η ω=  are said to be independent 
if the partitions ξD  and ηD  are independent. □ 

 
Let A⊂ Ω  and let ( | )iA DP  be the conditional probability of event A by event .iD  

That is,  
( )( | ) .

( )
i

i
i

A DA D
D

=
PP

P
  

The collection of conditional probabilities 1){ ( | }k
i iA D =P  defines a random variable given by 

         
1

( | )( ) ( | ) ( ),
i

k

i
i DA A D Iω ω

=

=∑P PD         (1) 

 
which takes the values ( | )iA DP  on the atoms iD  of the partition .D  The random variable 
(1) is called the conditional probability of the event A with respect to the partition .D  

The following are some important properties of the conditional probability with respect 
to the partition. 
1 .  If two events A and B in F are disjoint, then ( | ) ( | ) ( | ).A AB B= +P P P D D D  
2 .  Recall that min { }= ΩD  is the minimal partition.  Then min( | ) ( ).A A=P PD  For the random  
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variable ( | )AP D  we can define an expectation as follow.   

1 1 1
( | )] ( | ) ( ) ( | ) ( ) ( ) ( )[ .

i

k k k

i i i
i D i i iA A D I A D D A D Aω

= = =

 = = 
 

= =∑ ∑ ∑E P E P P P P PD  
 

Therefore we have obtained the formula of Total Probability in a modified form: 
3 .  ( | )] ([ ).A A=E P PD  

 
Definition 1.13 Conditional probability ( | )A ηP D  is called the conditional probability of 
event A with respect to random variable η  and denoted by ( | ).A ηP  Denote  

( | ) ( | ),j jA y A Dη = =P P where { :jD ω= ( ) }.jyη ω =  

In the same way we can introduce the conditional probability of an event A with respect to a 
family of random variables 1 2, , , .mη η η  The partition here is generated by the atoms  

 

1 2, , , { :
my y yD ω=

 1 1 2 2( ) , ( ) , , ( ) }.m my y yη ω η ω η ω= = =  
 

This conditional probability is then denoted by 1 2( | , , , ).mA η η ηP  □ 
Definition 1.14 The conditional mathematical expectation of the random variable ξ  by the 
partition D  with respect to the formula:  

 
1

( | ) ( | ).
l

j j
j

x Aξ
=

=∑E PD D          (2) 

 

If the partition D  is generated by the random variables 1 2, , , ,kη η η  then the conditional 
mathematical expectation 

1 2, , ,( | )
kη η ηξE



D  is called the conditional mathematical expectation 
of a random variable ξ  with respect to 1 2, , , kη η η  and is denoted by 1 2( | , , , ).kξ η η ηE    □ 

 
According to this definition, the conditional mathematical expectation of a random 

variable is also a random variable, see (2). Now we approach this notion from a different 
perspective. Define the conditional mathematical expectation ( | )iDξE  of random variable 
ξ  with respect to an event iD  by the formula 

 

1

1( | ) ( | ) ( ).
( ) i

l

i j j i D
j i

D x A D I
D

ξ ξ
=

= = ⋅∑E P E
P
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Now we let  

        
1 1

( )
( | ) ( | ) ( )] ( ) .

(
[

)
i

i i

k k
D

i D D
i i i

I
D I I

D
ξ

ξ ξ ω ω
= =

⋅ 
= ⋅ = ⋅ 

 
∑ ∑

E
E E

P
D         (3) 

  
Note the value of the conditional mathematical expectation of a random variable with respect 
to the partition does not depend on the representation of the random variable. Moreover, for 
its calculation we can follow scheme (3) and we will obtain the same result.   

Now we present the fundamental properties of the conditional expectation. 
 

1) Linearity: ( | ) ( | ) ( | ),a ab b ηξ η ξ⋅ + = +⋅ ⋅⋅E E ED D D where a and b are arbitrary constants.  
 

  Proof. Let 

 
1
( )

j

L

j A
j

x Iξ
=

= ⋅∑  and 
1

( )
i

k

i D
i

y Iη
=

= ⋅∑ . 

  Then 

1 1
( ) ( ) [( ) ].

j i j i

L k

j A i D j i A Dij
j i

a a x I y I a x yb b Ibξ η
= =

⋅ + = ⋅ ⋅ + ⋅ = ⋅ +⋅ ⋅ ⋅⋅∑ ∑ ∑


 
 

  Then ( ) ( )j iij
a bxb a yηξ⋅ + = ⋅ ⋅+ +⋅ ∑E ( ),j iA DP   and 

   ( | ) ( )j iij
a ab bx yηξ ⋅ ⋅⋅ + = ⋅ + +∑E D ( | )j iA DP  D  

         [ ( | )] [ ( | )]j j i ij i
a x A yb D= ⋅ ⋅ + ⋅⋅∑ ∑P PD D  

         [ ( | )] [ ( | )]j j i ij i
A Dba x y⋅= ⋅ ⋅ + ⋅∑ ∑P PD D ( | ) ( | ).ba ξ η= ⋅ + ⋅E ED D  □ 

 
2) min( | ) ( ).ξ ξ=E ED  

 
   Proof. Recall that minD  consists of only one set ,Ω  that is, min { }= ΩD .  

                    min( | )ξ =E D
1

( ) ( ) ( ).
( ) ( )

i

i

k
D

D
i i

I
I I

D
ξ ξ ξΩ

=

⋅  ⋅Ω
⋅ = ⋅ =  Ω 

∑
E E E

P P
              □ 

 
3) Constants: ( | ) ,c c=E D  where c is a constant. 

 
4) If ,AIξ =  then ( | ) ( | ).Aξ =E PD D  

  
The next property generalizes the Law of Total Probability. 

 
5) Expectation Law: ( | )] ([ ).ξ ξ=E E ED  

 
  Proof. It is enough to observe what follows: 

       
1 1 1

( | )] ( | ) [ ( | )] ( )] ( ).[
L

j

L

j

L

j j j
j j j jx A x A x Aξ ξ

= = =

 
= = 


= =


∑ ∑ ∑E E E P E P P ED D D       □ 
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6) Tower Property: Let 1D  2D . Then 2 1 1( | ) | ] ([ | ).ξ ξ=E E ED D D  
  

  Proof. Let 1 11 12 1{ , , , }mD D D= D  and 2 21 22 2{ , , , }.kD D D= D  Following Definition 1.4,  
since 1D  2D , for any 1 mp≤ ≤  there exists {1,2, , }pJ k⊂   such that 1 2pp q J qD D∈=   
and index sets pJ  are disjoint and 1 {1,2, , },m

p pJ k= =  .k m≥  According to this we 
specially label or rearrange the atoms from the partition 2D  taking into consideration as 
to which atom from the partition 1D  they correspond. Namely, we attach an additional 
label p, so it becomes 2

p
qD  for atoms from 2D , such that   

1 2 ,
p

p
p q J qD D∈=   1 mp≤ ≤ . 

  

Note that in our “previous” notation for any event A,   

22 21
( | ) ( | )[ ],

qq D
k

q
A A D I

=
= ⋅∑P PD  

  
while with our “new” notation,   

2
2 2

1
[( | ].) ( | ) p

qp

p
D

m

q J
p

qA A D I
∈

=

⋅=∑∑P PD  
   

The main advantage of our “new” notation that we will use in this proof is that  
 

22 1

1

0, ,
( )( | )

, .
( )

pi
qq p

p

i p
DD D

i p
D

≠
=  =


PP
P

 

Now, if 
1

,
j

l

j A
j

x Iξ
=

= ⋅∑  then 2 2
1

( | ) ( | )
l

j j
j

x Aξ
=

= ⋅∑E PD D  and 
 

2 1 2 1 2 1
1 1

( | ) | ] ( | ) | ( | ) |[ [ ].
l l

j j j j
j j

x A x Aξ
= =

 
= 


= ⋅


∑ ∑E E E P E PD D D D D D  

Hence it is sufficient to show that 2 1 1( | ) | ] ([ | ).j jA A=E P PD D D  As we already men- 
tioned above,  

2
2 2

1
( | ) ( | )[ ].

p
p
q

m

q J
p

j j q D
p

A A D I
∈

=

⋅=∑∑P PD  
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and hence  
 

    2 1( | )[ | ]jAE P D D  

  2 2 1
1

( | ( )]|[ )
p

p p
j q q

m

q J
p

A D D
∈

=

= ⋅∑∑ P P D  

  
12 2 1

11
( | ) ( | )

p i

p p
j q

m m

q J q i D
ip

A D D D I
∈

==

=  ⋅ ⋅ 
 

∑∑ ∑P P  

  
1 1

11
2 2( ) |[ | ( )]

pi

p p
D j q q

m

iq
p

m

J
i

I A D D D
∈

= =

= ⋅∑∑ ∑ P P  

1 2 2 1 2 2
1

1
1,

( | ) ( | )[ [] ( | ) ( | )]
i p i

p p i
m m

q J q
i

D j q q i j q q i
p p i

J
i

I A D D D A D D D
∈ ∈

= = ≠

 



= + ⋅ 


⋅∑ ∑ ∑∑ P P P P  

  
1

2
2 2

1, 11

( )
( | ) ] ( | )[

)
0

(p ii

i
qp i

D j q j q
p p i

m m

q q
i

J J
i

D
I A D A D

D∈ ∈
≠= =

=
 
  ⋅


+


⋅∑ ∑ ∑∑
P

P P
P

 

  
1

1

2
2

1

( )
( | )

( )i i

m

q J

i
qi

D j
i

q
i

D
I A D

D∈
=

⋅= ⋅∑ ∑
P

P
P

 

  
1

2 2

2 11

( ) ( )
( ) ( )ii

i i
j q q

D iJ
q

m

q
ii

A D D
I

D D∈
=

= ⋅⋅∑ ∑
P P

P P


 

  
1

2

1 1

( )
( )i i

i
j q

D

m

q
i

J
i

A D
I

D∈
=

⋅=∑ ∑
P

P


 

  
1

11
2

1 ( )
( ) ii

i
D j

m

q J
i

q
i

I A D
D ∈

=

= ⋅∑ ∑ P
P

  
 

  
1

11
1

1 ( )
( )iD j i

i i

m

I A D
D=

⋅= ∑ P
P

  ( since 2 1
i

i
q iq J

D D
∈

=∑ ) 

  
1

1
1( | )

iD j i

m

i
I A D

=

= ⋅∑ P 1( | ).jA= P D                                                  □ 

 
7) Suppose the random variable η  is measurable with respect the partition .D  Then  

 
( | ) .η η=E D  

  

Proof. Because η  is D-measurable, we have 
1

,
i

k

i D
i

y Iη
=

= ⋅∑  where iD  .D  Then 

1 11
( | ) ( | ) |

i i i

k k

i D D i D
i

L

i
i j

I I Iyη η
= = =

= ⋅ = ⋅
 
 
 

⋅∑∑ ∑E ED D D  
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11 ( )

( )
j i

i

k L
D D

D
i

ji i

I I
I

D

y

==

⋅ ⋅
= ⋅∑∑

E

P
 

         
1 1

.
( ) ( )

( ) ( )
i i

i i

k k
D D

D D
i i

i

ii
i

y
y

I I
I I

D D
η

= =

⋅
= ⋅ = ⋅ =∑ ∑

E E
P P

         □ 

 
8) Independence Law: If the random variables ξ  and η  are independent, then  

 
 ( | ) ( ).ξ η ξ=E E  

Proof. Let 
1

.
i

k
i Di

y Iη
=

= ⋅∑  Thus the partition generated by η  is 1 2{ , , , }.kD D D  
Further suppose 

1
.

j

L
j Aj

x Iξ
=

= ⋅∑  Thus the partition generated by ξ  is 1 2{ , , , }.LA A A  
Since ξ  and η  are independent, this means that their partitions iD  and jA  are inde- 

pendent, that is,   
( ) ( ) ( ),i j i jD A D A=P P P 1 ,i k≤ ≤ 1 .j L≤ ≤   

Equivalently, ( | ) ( )i j iD A D=P P  or ( | ) ( ).j i jA D A=P P  Re-writing in terms of expecta- 

tions we can express this independence as  
 

 ( ) ( ) ( ) 0 ( ) 1 ( ) ( ) ( ) ( ).
i j i j

c
D A D A i j i j i j i jI I I I D A D A D A D A⋅ = ⋅ = ⋅ + ⋅ = =E E E P P P P P    

 

Then 
1

( )
( | ) ,

( )
i

i

k
D

D
i i

I
I

D
ξ

ξ η
=

⋅
= ⋅∑

E
E

P
 where  

 

  ( )1 1
( ) [ ( )]

i j i i j

L L
D j A D j D Aj j

I x I I x I Iξ
= =

⋅ = ⋅ ⋅ = ⋅ ⋅∑ ∑E E E  

        
1
[ ( ) ( )]

i j

L
j D Aj

x I I
=

= ⋅∑ E E
1
[ ( ) ( )].L

j i jj
x D A

=
= ⋅∑ P P  

Returning to our original equation,  

         
1 1 1 1

( | ) {[ ( ) ( )] } [ ( )] ( )
i

k L L k

j i j D j j i
i j j i

x D A I x A Dξ η
= = = =

  = ⋅ ⋅ = =  
  

∑∑ ∑ ∑E P P P P ( ).ξE     □ 

 
9) ( | ) .η η η=E  

 
10) Stability: If the random variable η  is D-measurable, then ( | ) ( | ).η ξ η ξ⋅ = ⋅E ED D  

  

Proof. Let 
1 j

L
j Aj

x Iξ
=

= ⋅∑  and 
1

.
i

k
i Di

y Iη
=

= ⋅∑  Then 
1 1

( ).
j i

L k
j jj i A D

x y Iξ η
= =

⋅ = ⋅∑ ∑  

Hence   

   
1 1

( | ) [ ( | )]L k
j j j ij i

x y A Dη ξ
= =

⋅ = ⋅∑ ∑E PD D  

      
1 11
( ) ( | ) ][

mmm

L k k
j j j i Dj i

x y A D D I
== =

= ⋅∑ ∑ ∑ P  
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1 1

[ ( | ) ]
i

L k
j j j i i Dj i

x y A D D I
= =

= ⋅ ⋅∑ ∑ P
1 1

[ ( | ) ].
i

L k
j j j i Dj i

x y A D I
= =

= ⋅ ⋅∑ ∑ P  

On the other hand, since 2 ,
i iD DI I=  0

miD DI I = ( ),i m≠  we have  

      ( )( )1 1
( | ) ( | )

i

k L
j D j ji j

y I x Aη ξ
= =

⋅ = ∑ ∑E PD D  

            ( ) ( )1 1 1
( | )

i mm
k k L

j D j j Di jm
y I x A D I

== =
= ⋅ ⋅∑ ∑ ∑ P  

            
1 1

[ ( | ) ].
i

L k
j j j i Dj i

x y A D I
= =

= ⋅ ⋅∑ ∑ P                         □ 

 
3. Martingales 

 
Let ( ,Ω ,D P) be a finite probability space, and let 1D  2D  nD  be a sequence of 

partitions of .Ω   
 

Definition 2.1 A sequence of random variables 1 2, , , nξ ξ ξ  is called a martingale (with 
respect to the sequence of partitions 1D  2D  nD ), if 
1) kξ  is kD -measurable, for each 1 nk≤ ≤ ; and 
2) 1( | ) ,k k kξ ξ+ =E D 1 1.k n≤ ≤ −  

We denote such a martingale by 1( )k k k
nξ ξ == ,D . In the particular case, when 

1 2, , , ,
kk ξ ξ ξ=



D D  
we say that the sequence ( )kξ ξ=  is a martingale without specifying the sequence of par- 
titions associated.                                                         □ 

From the definition of a martingale it follows immediately that the mathematical 
expectation ( )kξE  is constant for all k: 1( ) ( ).kξ ξ=E E  We now consider a classical exam- 
ple illustrating a basic example of martingales.  

 
Example 2.1 Let 1 2, , , nη η η  be independent identically distributed random variables with a 
Bernoulli distribution ( 1) ( 1) 1/ 2.k kη η= − = = =P P  Define  

1 2k kS η η η= + + +  and  
1 2, , , .

kk η η η=


D D  

The structure of the partitions associated with kD  is simple:  
 

1 { , },D D+ −=D  
 

where { :D ω+ = 1 1},η = { :D ω− = 1 1};η = −  and  
 

 2 { , , , },D D D D++ +− −+ −−=D  

where { :D ω++ = 1 21, 1},η η= = { :D ω−− = 1 21, 1},η η= − = −  and so on. Since 
 

1 2 1 2, , , , , ,k kS S Sη η η =
 

D D , 
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each of the random variables kS  is kD -measurable. Now we show that the second 
assumption of a martingale is also hold. Observe that  
 

1 1 1 1( | ) ( | ) ( | ) ( | ) ( ) .k k k k k k k k k k k kS S S S Sη η η+ + + += + = + = + =E E E E ED D D D  
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