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ABSTRACT  In this article, we develop the maximum likelihood estimation for the 
three-parameter of the Crack lifetime distribution and also consider the bias-reduction of the 
estimators obtained from the classical estimation. Moreover, we consider the Bayesian 
estimation which we provide by assuming an informative priors. The Bayes estimators are 
obtained from the Gibbs sampling procedure to generate samples from the posterior 
distribution and also from the Lindley’s approximation method. A simulation study carried 
out to estimate and compare the various point estimation methods considered. 
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1.  Introduction 
 

The engineering interpretation of Crack random variable as the time after a crack started to 

develop in a machine element because of a cyclic or non-cyclic loading until the crack achieves 

the critical value. At the beginning, it may be a small crack in the machine, but the element could 

still work. When it achieves the critical point, tolerance exceeds and the element does not work 

anymore. The three-parameter Crack lifetime distribution had been introduced by Volodin and 

Dzhungurova [12] as a distribution that is performed by adding weighted parameter and com- 

bining the Inverse Gaussian distribution and Length Biased Inverse Gaussian distribution. Thus, 

the Crack lifetime distribution contains as special cases three known distributions, i.e., the  

Birnbaum-Saunders distribution, the Inverse Gaussian distribution and the Length Biased  Inverse  

Gaussian distribution. Bowonrattanaset and Budsaba [1] established properties of this distri- 

bution. The probability density function of the Crack lifetime distribution is given by: 
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which we will denote by ( , , )CR p  , where 0, 0    and 0 1p   are parameters corres- 

pond to the thickness of a machine element, the nominal treatment pressure on a machine 

element and weighted parameter accordingly. 

 Bowonrattanaset [2] compared the Acceptance-Rejection method and the buit-in command 

in Wolfram Mathematica8 for generating random number of the Crack lifetime distribution. Next, 

in Bowonrattanaset [2] two classical estimations (the maximum likelihood and the method of 

moment estimations) have been proposed and compared numerically. Nevertheless, one of the 

most unsatisfactory facts is that the estimation of the parameter p performs poorly. The 

performance of the maximum likelihood estimators and the method of moment estimators are 

asymptotically unbiased and highly biased in case of small sample sizes. 

 The Bayesian estimation has been used widely for parameter estimation. In many cases of 

the Bayesian estimation, the researchers found that the Bayes estimators cannot be obtained in 

closed form. Hence, some new the methods for evaluating the Bayes estimators have been 

suggested. Robert and Odong [11] suggested the Bayesian estimation of the parameters be 

obtained from the Birnbaum-Saunders distribution by using the Lindley’s approximation 

technique under assumption informative priors and compared with the maximum likelihood 

estimates. Kundu and Gupta [6] considered the Bayesian estimation of the two-parameter 

exponential distribution. They used the idea of Lindley to compute the approximated Bayes 

estimators and also proposed the Gibbs sampling procedure in order to approximate the Bayes 

estimators under assumption of non-informative priors. Moreover, they compared the Bayes 

estimators with the maximum likelihood estimators by Monte Carlo simulations. Pradhan and 

Kundu [10] compared the performances of the estimators which are the classical moment 

estimators, the maximum likelihood estimators and the Bayes estimators of the gamma distribu- 

tion. They approximated the Bayes estimators by using the Lindley’s approximation and the 

Gibbs sampling procedure. Pandey and Bandyopadhyay [9] proposed the Bayesian estimation of 

parameters for the Inverse-Gaussian distribution under assumption of informative priors. They 

discussed two different methods which are the Lindley’s approximation method and the Gibbs 

sampling method. They compared the performance of the Bayes estimators, the maximum 

likelihood estimators and the uniformly minimum variance unbiased estimators. Kohansal and 

Rezakhah [5] provided the Bayes inference for unknown parameters for Type-II hybrid censored 

weighted exponential distribution. They provided two approximations, namely the Lindley’s 

approximation and the Gibbs sampling procedure under assumption of non-informative priors. 

They compared performances of the Bayes estimators from the two methods and the maximum 

likelihood estimators.  
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In this paper, we estimate the three-parameter Crack lifetime distribution by the maximum 

likelihood estimation and the Bayesian estimation based on the Gibbs sampling procedure. More- 

over, we estimate and compare the performances of the procedures with fixed p of the Crack 

lifetime distribution by the method of moment estimation, the maximum likelihood estimation, 

the Bayesian estimation based on the Lindley’s approximation and the Gibbs sampling procedure 

and the bias-reduction of the method of moment estimators and the maximum likelihood esti- 

mators which we estimate based on the bootstrap resampling and the Jackknife technique. 

 The rest of the paper is arranged as follows. In Section 2, we propose the algorithm of the 

maximum likelihood estimation. We give the prior and posterior distribution in Section 3. The 

approximate Bayes estimators are also suggested in Section 4. In Section 5, we consider the bias 

reduction methods. Numerical results from simulation study are presented in Section 6. Finally 

we conclude the paper in Section 7.  
 

2. Maximum Likelihood Estimation 
 

The log-likelihood function for a random sample 1 2( , ,..., )nX X X  where ( , , )iX CR p  , 

is  

                                             1 2( , , ) ( , ) ( , , )L p C L L p                                                 (2) 
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Nothing that the weight parameter p appears only at 2 ( , , )L p  , one can use the following 

iterative algorithm to obtain the maximum likelihood estimators.  
ALGORITHM: 

Step 1  Set the initial value of the weight parameter (0)p . 

Step 2  Given the stage ( 1)m   parameter estimate ( 1) ,mp   find the zeros of the following first 

derivatives of ( , , )L p   with respect   and   respectively: 
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In case that analytical expressions are available, one can use the Newton-Raphson method 

with the first derivatives 

( 1)ˆ( , , )mL p 





   and   ( 1)ˆ( , , )mL p 



   

   and the second derivatives 
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Let the solutions of Equations (3) and (4) be  
( ) ( )ˆ ˆ( , ).m m   
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Step 3  Given the stage ( )m  parameter estimate  
( ) ( )ˆ ˆ( , ),m m   find the zeros of the following first 

derivative of  2 ( , , )L p   with respect p : 
 

                                                      
 

( ) ( )
2  ˆ ˆ( , , ) 0.m md

L p
dp

                                                   (5) 

 
   One may use the Newton-Raphson method with the first derivative 
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Let the solution of Equation (5) be ( )ˆ .mp  Repeat steps 2 and 3 until convergence is obtained. 

 

3. Prior and Posterior Distribution 
 

In this section we provide the prior and posterior distributions. Let 1 2( , ,..., )nx x x x  be a 

random sample of size n  from ( , , )CR p  . The likelihood function of the observed sample can 

be written as: 
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Under the assumption of independence of ,  and p, the joint prior of ( , , )p   is 

 

1 1 1( , , ) ( ) ( ) ( )p p        . 
 

The prior distributions of   and   are gamma distribution and  that of p  is a beta distribution 

for which the probability density functions are 
 

                                      

1
1( ) , 0

( )
aa

e


    


  
  

and 0,a                                      (7) 

                                          

1
2 ( ) , 0

( )
bb

e


    


  


and 0,b                                         (8) 

and 

                                   

1 1
3

( )
( ) (1 ) , 0

( ) ( )
p p p   

 
  

  
 

and 0.                              (9) 

 
Thus, the joint posterior of ( , , )p   can be written as  
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where C  is the normalizing constant. From Equation (10) it is clear that the Bayes estimate of 
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( , , )h p   of ,   and p  under squared error loss function is the posterior expectation  
 

                                 

1
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 

    
.                           (11) 

 
Unfortunately, this integral cannot be computed in an explicit form. Thus, we will consider the 

Lindley’s approximation and Gibbs sampling MCMC technique so as to approximate the Bayes 

estimators. 

 

4. Bayesian Point Estimation 
 

In this section we discuss the approximate Bayes estimates of the parameters based on the 

prior assumption mentioned under squared error loss function in previous section. 
 

4.1  Lindley’s Approximation  
 Lindley’s [7] proposed the approximation to compute the ratio of two integral. In this case 

we specify the priors on ,   and p  which mentioned in section 2. The approximate Bayes 

estimates of ,   and p under the squared error loss function which base on Lindley’s 

approximation are: 
 

                
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( )L p p                

            
1 ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(
2

[ p pL L L L L                             

    
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ )p p p p p p pp p pL L L L                         

                
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( p pL L L L L                             

    
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ )p p p p p p pp p pL L L L                         

                   
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( p p p p p p p p p p p pL L L L L                             

                                  
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) ,]p p p p pp pp pp pp ppp pp pL L L L                                       (12) 

 

                
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( )L p p                

            
1 ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(
2

[ p pL L L L L                             

    
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ )p p p p p p pp p pL L L L                         

                
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( p pL L L L L                             

    
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ )p p p p p p pp p pL L L L                         

                   
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( p p p p p p p p p p p pL L L L L                             

                                  
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) ,]p p p p pp pp pp pp ppp pp pL L L L                                       (13) 

and 

                ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( )L p p p ppp p              

            
1 ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(
2

[ p p p pp p pL L L L L                            

    
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ )p pp p p p p p p pp p ppL L L L                       



244                                                                                 JPSS      Vol. 14   No.2         August   2016          pp. 239-251 

  

                
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( p p p pp p pL L L L L                            

    
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ )p pp p p p p p p pp p ppL L L L                       

                   
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( p p p p p p p p p pp p p p p p pL L L L L                            

                                  
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ )]p p p pp pp pp p pp pp p ppp pp ppL L L L                                       (14) 

 
where ˆ,  ˆ,  and p̂  are the maximum likelihood estimators of , ,   and p  respectively. For 

the proofs of Equations (12)-(14), they can be obtained as given in the Appendix. 

 In case we shall assume that the parameter p  is fixed, we will consider the parameters of 

the Crack lifetime distribution which are   and  . The approximate Bayes estimates of   and 

  under the squared error loss function which base on Lindley’s approximation are 
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ˆ ˆ ˆ ˆˆ ˆ( )L           

1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )
2

[ L L L L                       

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )]L L L L                          (16) 
 

where ̂  and ̂  are the maximum likelihood estimators of   and   respectively. For the proofs 

of Equations (15)-(16), they can be obtained as given in the Appendix. 
 

4.2  Gibbs Sampling 
 

In this subsection, we consider Gibbs sampling MCMC technique to generate sample from 

posterior density function under the assumption of ,   and p  in Section 3 and the square error 

loss function. 

 From the posterior distribution of ( , , )p  in Equation (10), the full conditional distribu- 

tions for ,   and p  can be written as 
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 ,                    (18) 

and 

                                          

1 1

1

( , , ) (1 ) 1
n

i i

p
p p x p p p

x
     



 
    

 


.                             (19) 

 
Now using the inverse transform method and following the idea of German and German [4], we 

propose the following scheme to generate ( , , )p   from Equations (17)-(19) respectively. We 

can easily simulate via a three-stage Gibbs sampler and also suggest the following algorithm. 
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ALGORITHM: 

Step  1    Take some initial starting point  0 0( , ).   

Step 2  Generate 1p  from the full conditional function 0 0( , , )p p x 


 by using the inverse 

transform method. 

Step 3  Generate 1  from the full conditional function 0 1( , , )p p p x


 by using the inverse 

transform method. 

Step 4  Generate 1  from the full conditional function 1 1( , , )p p p x


 by using the inverse 

transform method. 

Step 5  The sampler becomes 1 1( , , ) ,i i ip p p x  


 1( , , ) ,i i ip p x   


 ( , , ) ,i i ip p x  


 

2,3, , .i N   
Step  6   The Bayes estimates of ,   and p under square error loss function are 

 

1

1ˆ ˆ ( ) ,
N

G i
i

E x
N

  


  
 

1

1ˆ ˆ ( ) ,
N

G i
i

E x
N

  


  
 and  

1

1ˆˆ ( )
N

G i
i

p E p x p
N 

    
 

   where ( , , )i i ip   is the i-th MCMC sample, 1, 2, , .i N   

 

5. Bias-Reduction 
 

 In what follows, we shall advise the simple bias-reduction methods which are the bootstrap 

resamplingand the Jackknife technique from Efron [3]. 
 

5.1  Bootstrap Resampling 
 

 Suppose now that B  bootstrap samples *1 *2 *( , ,..., )Bx x x
  

 are independent from the original 

sample x
  and also we compute the estimators *1 *2 *ˆ ˆ ˆ( , ,..., )B    from each bootstrap replica- 

tion. Thus we can approximate the expected of the estimators by the bootstrap resampling as  
 

*( ) *b

1

1
ˆ ˆ

B

bB
 



  , 1, 2,...,b B  

 
Hence, the bootstrap bias estimation obtained from the B  replicates of ̂  leads to    

 
*( )ˆ ˆ ˆ ˆ( , )B      . 

 
Thus, the bias-corrected estimator by using the bootstrap resampling is 

 

                                                               
*( )ˆ ˆ ˆ2br     .                                                       (20) 

 
5.2  Jackknife Technique 

 
 In Jackknifing, we remove sample point , 1, 2,...,jx j n  respectively from the data set and 

recompute the estimator ( )
ˆ

j  from the reduced sample of size 1.n  Let us now be given  
 

( ) ( )
1

1
ˆ ˆ

n

j
jn

 


  . 

Thus, the bias-corrected estimator by using the jackknife technique is 
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                                                              ( )ˆ ˆ ˆ( 1)J n n     
                                                    

(21) 
 

where ̂  is the estimator obtained from the data set. 

 

6. Simulation Study 
 

In order to estimate and compare the performanceof the three parameters of the various 

estimation methods described above. First of all, we consider the performance of the three 

estimators from the maximum likelihood estimation, we take the samples of size  10, 100n   and 

500  from (1,1,0.1)CR  and (1,5,0.3)CR  which we show in Table 1 by observing from the 

estimators in each replication.  
 

Table 1  The maximum likelihood estimators for different sample sizes where 

1,  1,  0.1p   and 1, 5, 0.3p     in 5 replications. The first entry 

in each cell corresponds to ,  the second to   and the third to p .  
 

n  it rep  1, 1, 0.1p     1, 5, 0.3p     

1 2.9694 0.4924 0.3759 1.1100 7.9052 0.7898 

2 0.6314 1.3000 0.1259 1.2767 1.9995 0.4810 

3 1.2160 0.8176 0.6923 1.1098 4.9528 0.8006 

4 1.1878 1.0775 0.5544 1.4332 1.7263 0.0043 

10 

5 1.3043 0.4477 0.0010 0.9129 3.0521 0.0033 

1 0.9280 1.0810 0.0094 1.0412 5.4144 0.0030 

2 0.9565 1.5053 0.4992 1.2058 3.5507 0.0114 

3 0.9507 0.9975 0.0043 0.9976 6.1686 0.3554 

4 0.8547 1.0914 0.0037 1.4073 3.7852 0.0017 

100 

5 1.3523 1.3738 0.8749 1.0431 8.5845 0.7718 

1 1.0674 1.0565 0.1909 0.9469 4.4585 0.0153 

2 0.8263 1.1981 0.1994 1.0833 4.6583 0.0055 

3 1.0028 1.0518 0.3617 1.0083 4.9457 0.0103 

4 0.8905 0.9057 0.0036 1.0607 4.8544 0.0940 

500 

5 0.9489 0.9328 0.0057 1.0616 5.0001 0.0211 

 

The second, we estimate the three parameters by the maximum likelihood method for the 

samples of size 1,000n   and 10,000  from (1,1,0.3)CR  and (1,1,0.7).CR  The average value of 

the estimates, the bias and the MSE, based on 1,000 replications are reported in Table 2.  

The third, we consider the Bayesian estimation forthe threeparameters. We take the samples 

of size 10, 20,50n   and 70  from (1,1,0.3)CR , and (1,1,0.7)CR  by assuming an informative 

priors on the parameters which are (1,1)Gamma  as the prior distribution of 1  , (1,1)Gamma  

as the prior distribution of 1q = , (3,7)Beta  and (7,3)Beta  as the prior distribution of 0.3p   
and 0.7  respectively. MCMC samples of size 1,000 were taken for computation. Table 3 gives 

the average value of the estimates, the bias and the MSE, based on 1,000 replications.  
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Table 2  Average, Bias and MSE of the maximum likelihood estimators for 

different sample sizes of 1, 1    and 0.3, 0.7p  . The first entry in each 

cell corresponds to  , the second to   and the third to p .   
 

n  
    p  

1,000 10,000 

0.9949 1.0142 0.3835 1.0010 1.0037 0.2914 
–0.005 0.0142 0.0835 0.0009 0.0037 –0.0081 1 0.3 

0.0026 0.0070 0.0212 0.0003 0.0005 0.0015 

0.9898 1.0325 0.7975 0.9990 1.0041 0.6853 
–0.010 0.0325 0.0975 –0.001 0.0041 –0.0141 1 0.7 

0.0064 0.0367 0.0277 0.0002 0.0014 0.0013 

 

Table 3  Average, Bias and MSE of the Bayes estimators for different sample 

sizes of 1, 1    and 0.3,0.7p  . The first entry in each cell corresponds to 

 , the second to   and the third to p .  
 

n  1, 1, 0.3p     1, 1, 0.7p     

1.1755 1.2617 0.3749 1.1797 1.2741 0.7658 

0.1755 0.2617 0.0749 0.1797 0.2741 0.0658 10 

0.0323 0.0706 0.0056 0.0332 0.0760 0.0043 

1.1447 1.2288 0.3689 1.1485 1.2357 0.7531 

0.1447 0.2288 0.0689 0.1485 0.2357 0.0531 20 

0.0215 0.0534 0.0047 0.0224 0.0561 0.0028 

1.0944 1.1506 0.3481 1.0961 1.1523 0.7315 

0.0944 0.1506 0.0481 0.0961 0.1523 0.0315 50 

0.0092 0.0230 0.0023 0.0094 0.0235 0.0010 

1.0539 1.1038 0.3280 1.0500 1.1086 0.7287 

0.0539 0.1038 0.0280 0.0500 0.1086 0.0287 70 

0.0032 0.0110 0.0008 0.0028 0.0120 0.0008 
 

Lastly, we estimate and compare the performance of the three parameters with fixed p  by 

taking samples of size 10, 20,50n   and 70  from (1,1,0.3)CR  and by assuming informative 

priors on the parameters which are (1,1)Gamma as the prior distribution of 1   and 

(1,1)Gamma  as the prior distribution of 1q =  respectively. MCMC samples of size 1,000 were 

taken for computation. The number of bootstrap replications we provide is based on 1,000 

replications. The average value of the estimates, the bias and the MSE, based on 1,000 

replications, are reported in Table 4. 

 From Table 1, simulation results for the three estimators by the maximum likelihood 

estimation for moderate sample sizes, show that the estimators of p  are far from the true value. 

Then, we evaluated the three parameters by the maximum likelihood estimation for the very 

large sample sizes which are reported in Table 2, it is observed that the MSE decrease as the 
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sample size increases and the estimators are performing very well. From Table 3, as expected it 

is observed that the sample size increases as the MSE decreases. The Bayes estimators obtained 

from the Gibbs sampling procedure are performing very well. 
 

Table 4  Average, Bias and MSE of different estimators for different sample 

sizes of 1, 1, 0.3p    . The first entry in each cell corresponds to   
and the second to   

 
n  10 20 50 70 

1.447 0.916 1.204 0.949 1.067 0.993 1.054 0.984

0.447 –0.08 0.204 –0.05 0.067 –0.00 0.054 –0.01MLE 
0.985 0.213 0.268 0.108 0.061 0.050 0.041 0.032

1.886 0.802 1.430 0.891 1.168 0.964 1.123 0.971

0.886 –0.19 0.430 –0.10 0.168 –0.03 0.123 –0.02MME 
0.270 0.260 0.692 0.152 0.184 0.075 0.137 0.058

0.700 0.991 0.982 0.988 0.994 1.010 1.004 0.996

–0.29 –0.00 –0.01 –0.01 –0.00 0.010 0.004 –0.00BMLE 
0.685 0.235 0.160 0.114 0.050 0.052 0.035 0.032

0.944 0.908 1.094 0.960 1.034 1.001 1.021 0.999

–0.05 –0.09 0.094 –0.03 0.034 0.001 0.021 –0.00BMME 
1.241 0.318 0.518 0.176 0.178 0.085 0.138 0.064

0.748 1.009 0.970 0.993 0.991 1.011 1.000 0.997

–0.25 0.009 –0.02 –0.00 –0.00 0.011 0.000 –0.00JMLE 
0.914 0.246 0.164 0.115 0.050 0.052 0.035 0.032

0.922 0.951 1.013 0.979 1.000 1.007 0.997 1.004

–0.07 –0.04 0.013 –0.02 0.000 0.007 –0.00 0.004JMME 
1.669 0.387 0.677 0.193 0.212 0.091 0.158 0.067

0.905 1.186 1.064 1.092 1.032 1.052 1.031 1.027

–0.09 0.186 0.064 0.092 0.032 0.052 0.031 0.027Bayes 
(Lindley) 

0.138 0.194 0.096 0.104 0.046 0.051 0.033 0.031

1.168 1.252 1.139 1.221 1.092 1.149 1.052 1.059

0.168 0.252 0.139 0.221 0.092 0.149 0.052 0.059Bayes 
(Gibbs) 

0.029 0.066 0.020 0.050 0.008 0.022 0.003 0.003
 

From Table 4, it is observed that as expected, the MSE decreases as the sample size 

increases. We observed the bias in the absolute values of the maximum likelihood estimators, the 

method of moment estimators, the Bayes estimators obtained from Lindley’s approximation and 

Gibbs sampling procedure. We found that the sample size increases as the absolute values of the 

bias decreases which are the asymptotically unbiased estimators. The absolute values of the bias 

from the bias-reduction of the maximum likelihood estimators are less biased than the maximum 

likelihood estimators. Similarly, the absolute values of the bias from the bias-reduction of the 

method of moment estimators are less biased than the method of moment estimators. The Bayes 
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estimators obtained from Gibbs sampling contributed the lowest MSE, the estimators that 

contributed the next lower variance and MSE is the Bayes estimators obtained from Lindley’s 

approximation. Thus, we can conclude that the Bayes estimators obtained from Lindley’s 

approximation and Gibbs sampling procedure are observed to perform much better than the 

estimators from the classical estimations. Moreover, the maximum likelihood estimators perform 

better than the method of moment estimators. Overall, the numerical study reveals that the 

performance of the Bayes estimators obtained from Gibbs sampling procedure are very well in 

this situation. 

 
7. Conclusion 
 
 In this paper we consider the new algorithm of the maximum likelihood estimation and the 

Bayesian estimation for the three-parameter of the ( , , )CR p   distribution. Moreover, we 

proposed the bias-reduction methods for reduction of the bias of the estimators that obtained 

from the classical estimation methods. We assumed independent gamma priors and beta prior for 

the three-parameter in this study and provide the Bayes estimators under assumptions of squared 

errors loss functions. Simulation results suggest that the Bayes estimates with informative priors 

behave much better than the maximum likelihood estimates and the method of moment 

estimates.The Gibbs sampling procedure show how techniques based on MCMC can easily deal 

with the issue of awkward posterior and perform well compared to another available methods of 

estimation. Nevertheless, perhaps the procedure of evaluation the Bayes estimators obtained 

from Gibbs sampling based on the inverse transform method is cumbersome, it is difficult to 

derive estimators from the complex function. In the future research, the question of interval 

estimation, the test of hypothesis and the estimation based on the censoring data still remains to 

be considered. 
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Appendix 

 Let ( , , )L p   denote the log of likelihood function and ( , , )p    denote the log of the 

prior density. Thus, we get 
 

           1
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(22) 

and 

( )
( , , ) ln ( 1) ln

( ) ( ) ( ) ( )

a b
p a

        
   

  
        

 

                                                  ( 1) ln ( 1) ln ( 1) ln(1 ).b p p                               (23) 

 
The third derivative of the log of likelihood function is  

 
3 ( , , )L p

i j k

 
     

where , , , ,i j k p   and  the first derivative of the joint prior density is 
 
( , , )

i

p

i

   


   
where , ,i p  . We substitute the maximum likelihood estimators to the three unknown 
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parameters ,   and ,p  then we obtain an estimate of ijkL
 
and i  which denoted by ˆ

ijkL
 
and ˆi , 

, , , ,i j k p  . 

 Let ( , , )I p  be the fisher information matrix of the unknown parameters ,  and p . The 

element of 3 3 matrix ( , , )I p   are 
 

2 ( , , )
( , , )ij

L p
I p

i j

   
 

 
, , , ,i j p  . 

 
By Miller [8], we obtain the asymptotic distribution of the maximum likelihood estimators 

ˆ ˆ ˆ( , , )p   given by 
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  (24) 

 
with the variance-covariance matrix as the inverse of the information matrix, 
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We substitute the maximum likelihood estimators of the three parameters to the three unknown 

parameters, so we obtain an estimator of   which is denoted by ̂  and defined as follows:  
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