Aims and Scope The *Journal of Probability and Statistical Science (JPSS, ISSN 1726-3328)* is a modified version of the *Journal of Propagations in Probability and Statistics (JPPS, ISSN 1607-7083)*. *JPSS*, like its predecessor *JPPS*, is a multipurpose and comprehensive journal of probability and statistics that publishes papers of interest to a broad audience of theorists, methodologists, practitioners, teachers, and any other users of probability and/or statistics. The scope of *JPSS* is intended to be quite broad, including all the major areas of probability and statistics. Research papers involving probability and/or statistics, either theoretical or applied in nature, will be seriously considered for publication. Additionally, papers involving innovative techniques or methods in teaching probability and/or statistics will also be considered. Papers submitted for publication consideration will be peer reviewed. Initially, we will publish semiannually, one issue each in February and August. Hopefully, as time accrues, we will be able to publish quarterly. It is the goal of *JPSS* to publish a wide range of works involving probability and/or statistics (theoretical and/or applied in nature) and provide widespread availability of such to a broad audience of people interested in probability, statistics and biostatistics.

Submission and Review Policies

1. Submission of manuscript written in English should be mailed (by email attachment) to the Editor-in-Chief, an Editor, a Coordinating Editor, or to the Managing Editor at the address provided in the *JPSS* Editorial Board.
2. A manuscript is accepted only with the understanding that the text has not appeared in publication, and that it is not being simultaneously reviewed by any other journal.
3. Submitted manuscripts are refereed by a double-blind process, meaning that the reviewers will not know the names of the authors and vice versa.
4. If an article is accepted for publication, the author(s) will be required to provide an electronic copy of the paper, in Micro-soft Word or PCTEX format, through an email attachment. The authors will also be requested to transfer their copyright on certain conditions to the publisher.

Publisher Harold C. H. Chen, Head, Susan Rivers’ Cultural Institute. Address: 26, Lane 2, Chien Mei Road, Hsinchu City, Taiwan, ROC. Phone: (03)5716594, Fax: (03)5712524.
Editor’s Invited Paper
A Moment-Based Bivariate Density Estimation Methodology Applicable to Big Data Modeling
H. Zareamoghaddam, S. B. Provost, and S. Ejaz Ahmed 135

Research Papers
A New Class of Generalized Distributions for Survival and Lifetime Data Analysis: Theory and Applications
B. O. Oluyede, Shujiao Huang, B. Mashabe, and A. F. Fagbamigbe 153

Supervised Classification Using Finite Mixture Coupl
Sumen Sen and Norou Diawara 189

Weighted Likelihood Estimator of Scale Parameter for the Two-parameter Weibull Distribution with a Contamination
K. Boonlha, K. Budsaba, and A. I. Volodin 203

An Integer Valued Process with Generalized Discrete Laplace Marginals
V. Seetha Lekshmi and Simi Sebastian 219

Computational Aspects of Spectral Estimations and Periodicities in Irregularly Observed Data
Amy L. Potrzeba-Macrina and Igor G. Zurbenko 233

Modelling Fertility among Polygamous Households
C. A. Uzuke and I. C. A. Oyeka 247

G-Efficient Extreme Vertices Designs to Fit Linear Model for Mixture Experiments
Chhaya Sonar and Jyoti Rajarajan 261

How Does Periodically Released News Impact on the Reversals of Major Currency Rates?

Estimation of the Lorenz Curve and Gini Index for the Symmetric Double Pareto Model
Mohammed Obeidat, Aymen Rawashdeh, and Mohammad Al-Talib 287

Appendix
Published by: Susan Rivers’ Cultural Institute, Hsinchu City, Taiwan, ROC.
Weighted Likelihood Estimator of Scale Parameter for the Two-parameter Weibull Distribution with a Contamination

Kanlaya Boonlha Kamon Budsaba Andrei I. Volodin
Thammasat University University of Regina

ABSTRACT In this article, we propose the weighted likelihood estimator for the scale parameter of the two-parameter Weibull distribution when the data set has a contamination. This method assigns zero weights to observations with small likelihood. We also examine the robust properties of the MLE and WLE for the parameters of the Weibull distribution. To examine the performance of the WLE method as compared to the MLE methods, and found that the WLE method out-performs the MLE method based on the relative bias and quadratic risk values.

Keywords Weibull distribution; Weighted likelihood estimator; Maximum likelihood estimator; Contamination; Outlier.

1. Introduction

The Weibull distribution is widely used in many fields such as engineering [1], biomedical sciences [2], ecology [3], etc. The Weibull distribution is named after the Swedish scientist Waloddi Weibull who associated this distribution with the strength of materials in 1939. This distribution is useful in describing wear-out or fatigue failures [4]. As further practical applications of the two-parameter Weibull distribution we mention wind energy assessment, rainfall amount, prediction of water levels, and analysis of lifetime of materials. The Weibull distribution is often used as the first step for modeling some real phenomenon.

An assumption of known shape parameter is appropriate for many real lifetime analysis problems. For example, in engineering applications we often assume that the shape parameter is...
one and get an exponential distribution [7]. Therefore, we would like to study two-parameter
Weibull distribution assuming that the shape parameter is known.

As we mentioned above, Weibull distribution plays a central role in lifetime models. If
a dataset is contaminated with outliers, the maximum likelihood estimator (MLE) can be very
unreliable [2]. The problem of estimating the parameters of the Weibull distribution when a
proportion of the observations are outliers is quite important to reliability applications. The
weighted likelihood estimator (WLE) was proposed for robust estimation of the exponential
distribution parameters by [1]. The WLE was introduced by [4] and it has been applied to a
problem of robust estimation of parameters. The weighted likelihood method was introduced
as a generalization of the local likelihood method and it can be global, as demonstrated in [5].

The weighted likelihood method from [1] yields \(\alpha \)-trimmed mean type estimators of the
parameter of interest. We continue this investigation applying this technique to the Weibull
distribution in order to obtain robust estimation of the scale parameter. We assume that the shape
parameter is known and a dataset shows a contamination. This method assigns zero weights to
observations with small likelihood. We also examine the robust properties of the MLE and
WLE for the parameters of the Weibull distribution with contamination. The simulation studies
are extended to compare the MLE and WLE methods based on the relative bias and quadratic
risk values.

The rest of this paper is organized as follows. In Section 2 we define the WLE for the
Weibull distribution and the robustness of this estimator show in Section 3. In Section 4, we
compare the WLE and MLE in terms of relative bias and quadratic risk. An example is given
in Section 5. Some conclusions remarks are finally made in Section 6.

2. Proposed Weighted Likelihood Estimator

The distribution function for the two-parameter Weibull distribution is

\[
F(x; \delta, \beta) = 1 - e^{-(x/\delta)^\beta}; \quad x \geq 0, \quad \delta > 0, \quad \beta > 0,
\]

and the probability density function is

\[
f(x; \delta, \beta) = \frac{\beta}{\delta^\beta} x^{\beta-1} e^{-(x/\delta)^\beta}; \quad x \geq 0, \quad \delta > 0, \quad \beta > 0,
\]

where \(\delta \) is the scale parameter and \(\beta \) is the shape parameter of the distribution.

Let \(x^{(n)} = \{x_1, x_2, \ldots, x_n\} \) be a sample values from a distribution with a density function
\(f(x; \delta, \beta) \). The weighted likelihood estimators (WLE) of \(\{\delta, \beta\} \) are obtained by maximizing
the weighted likelihood function

\[
L(\delta, \beta | x^{(n)}) = \sum_{i=1}^{n} w_i(x^{(n)}) \ln \left(f(x_i; \delta, \beta) \right),
\]
where \(w_i(x^{(n)}) \), \(1 \leq i \leq n \) are the weights which depend on the sample. If all the weights are equal to one, then the resulting estimator is the maximum likelihood estimator (MLE).

Our goal is to estimate the scale parameter \(\delta \) of the Weibull distribution, we assume the shape parameter \(\beta \) is known. Following the idea presented in [1] we let the weight \(w_i \) that corresponds to the \(i^{th} \) observation to be 1, if its estimated likelihood is sufficiently large, and 0 elsewhere. To be more precise, let

\[
 w_i = \begin{cases}
 1 & \text{if } f(x_i; \hat{\delta}, \beta) > C \\
 0 & \text{otherwise},
\end{cases}
\]

where \(\hat{\delta} \) be the MLE of the parameter \(\delta \) and we remind that \(\beta \) is assumed to be known. This means that we delete all improbable observations from the sample, we reject only extreme order statistics.

We now have the issue of the choice of \(C \). Following the ideas of [1], we suggest this not be considered as a constant. Rather assume that \(C \) is chosen from the condition of a small probability of rejection of an observation when we sample from the non contamination Weibull distribution with cumulative distribution function, \(F(x; \delta, \beta) \). Hence, we define \(C \) by the given pre-assigned small probability \(\alpha \) as

\[
 P\left[f\left(\max_{1 \leq i \leq n} X_i; \hat{\delta}, \beta \right) < C \right] = \alpha.
\]

So we get, \(C \approx \alpha \beta / (n \hat{\delta}) \).

Let the weighted likelihood estimator \(\tilde{\delta} \) of the parameter \(\delta \) be defined as the solution of the equation

\[
 \sum_{k=1}^{m} \frac{\partial f(x_{ik}; \delta, \beta)}{\partial \delta} = 0,
\]

where \(x_{i1}, x_{i2}, ..., x_{im} \) are the remaining observations in the sample after applying our procedure \((w_{ik} = 1)\). The WLE of \(\delta \) is \(\tilde{\delta} = \left(\frac{1}{m} \sum_{k=1}^{m} x_{ik}^\beta \right)^{1/\beta} \).

3. Robust Properties of the WLE for the Weibull Distribution with a Contamination

Assume that the sample \((x_1, x_2, ..., x_n)\) is taken from a population that follows a distribution with the distribution function \(G_\varepsilon(x) \) to be defined now. We define the \(\varepsilon \)-contamination model as

\[
 G_\varepsilon(x) = (1 - \varepsilon) F(x; \delta, \beta) + \varepsilon F_1(x; \delta_1, \beta_1) = (1 - \varepsilon)(1 - e^{-(x)}^{\beta}) + \varepsilon(1 - e^{-(x)}^{\beta_1})
\]

\[
 = 1 - e^{-(x)}^{\beta} - \varepsilon\left(e^{-(x)}^{\beta_1} \right)^{(\beta_1+\Delta_2) - e^{-(x)}^{\beta}}.
\]
where $F(x; \delta, \beta)$ is the Weibull distribution with parameters (δ, β), and contamination $F_1(x; \delta_1, \beta_1)$ is the Weibull distribution with parameters (δ_1, β_1), where $\delta_1 = \delta(1 + \Delta_1), \beta_1 = \beta(1 + \Delta_2)$, $\Delta_1, \Delta_2 > 0$, and ε denotes the contamination proportion, $0 \leq \varepsilon \leq 1$. Under the ε-contamination model we assume β is known. Let $\hat{\delta} = \left(\frac{1}{n} \sum_{i=1}^{n} x_i^\beta\right)^{1/\beta}$ be the MLE of the scale parameter δ. We assume

$$\delta_\varepsilon = E[G_\varepsilon(x)] = \delta \left((1 - \varepsilon) \Gamma(1 + \frac{1}{\beta}) + \varepsilon(1 + \Delta_1) \Gamma\left(1 + \frac{1}{\beta(1 + \Delta_2)}\right)\right).$$

By the strong law of large numbers,

$$\lim_{n \to \infty} \hat{\delta} = \delta_\varepsilon = \delta \left((1 - \varepsilon) \Gamma(1 + \frac{1}{\beta}) + \varepsilon(1 + \Delta_1) \Gamma\left(1 + \frac{1}{\beta(1 + \Delta_2)}\right)\right).$$

The estimate $\hat{\delta}$ converges in probability to some value $\overline{\delta}_\varepsilon$ which can be calculated as a limit of the expected values truncated at the point $A = -\delta_\varepsilon \left(\ln \frac{\alpha}{n}\right)^{1/\beta}$ of the distribution $G_\varepsilon(x) = G(x)/G(A)$ where $0 \leq x \leq A$, so we get

$$\overline{\delta}_\varepsilon = \lim_{n \to \infty} E\left[G_\varepsilon(x)\right]$$

$$= \lim_{n \to \infty} \frac{1}{G(A)} \left((1 - \varepsilon) \int_0^A \frac{\beta}{\delta_1} x^\beta e^{-\left(\frac{\alpha}{x}\right)^{\beta_1}} \, dx + \varepsilon \int_0^A \frac{\beta_1}{\delta} x^\beta_1 e^{-\left(\frac{\alpha}{x}\right)^{\beta_1}} \, dx\right).$$

Then

$$\overline{\delta}_\varepsilon = \frac{\delta_\varepsilon}{G(A)} \left((1 - \varepsilon) IG_1 + \varepsilon(1 + \Delta_1) IG_2\right)$$

where

$$IG_1 = \Gamma\left(\frac{1}{\beta} + 1\right) P\left(\frac{1}{\beta} + 1, A_u\right), \quad IG_2 = \Gamma\left(\frac{1}{\beta_1} + 1\right) P\left(\frac{1}{\beta_1} + 1, A_v\right).$$

$$G(A) = 1 - e^{-\left(\frac{\alpha}{A}\right)^{\beta}} - \varepsilon \left(e^{-\left(\frac{\alpha}{x}\right)^{\beta_1}} - e^{-\left(\frac{\alpha}{x}\right)^{\beta}}\right), \quad A_u = \frac{\delta_\varepsilon \ln \frac{\alpha}{n}}{\delta}, \quad A_v = \frac{\delta_\varepsilon \ln \frac{\alpha}{n}}{\delta_1^{\beta_1}}.$$

$$P\left(\frac{1}{\beta} + 1, A_u\right) = \frac{\gamma\left(\frac{1}{\beta} + 1, A_u\right)}{\Gamma\left(\frac{1}{\beta} + 1\right)} \quad \text{and} \quad P\left(\frac{1}{\beta_1} + 1, A_v\right) = \frac{\gamma\left(\frac{1}{\beta_1} + 1, A_v\right)}{\Gamma\left(\frac{1}{\beta_1} + 1\right)}$$

are a normalized function of a lower incomplete gamma function $\gamma\left(1/\beta + 1, A_u\right)$ and $\gamma\left(1/\beta_1 + 1, A_v\right)$, respectively.

Therefore, an exact calculation of the gain in the bias and reduction of the risk of the proposed estimator in comparison with the MLE cannot be possible. Indeed, these integrals cannot be evaluated in the closed form. Moreover the solution is cumbersome. Thus, we cannot easily compare the relative bias of $\tilde{\delta}$ with the relative bias of δ. A relevant conclusion may not be possible concerning the gain in bias using these precise formulas even if we expand $\overline{\delta}_\varepsilon$ in powers of ε. Thus, we shall confine ourselves to asymptotic analysis. Recall that we reject observation
with $X_k > -\hat{\delta}(\ln \frac{\alpha}{n})^{1/\beta}$ and note that $-\hat{\delta}(\ln \frac{\alpha}{n})^{1/\beta} \sim -\delta_\varepsilon(\ln \frac{\alpha}{n})^{1/\beta} = (\delta_\varepsilon \ln \frac{\alpha}{n})^{1/\beta}$. Hence the probability of rejecting an observation in the contamination model is asymptotically equal to

$$P[X_1 > A] = 1 - P[X_1 \leq A] = 1 - G(A) \approx \frac{\alpha}{n}.$$

Therefore the asymptotic distribution of $\tilde{\delta}$ equals to the distribution of the α–generalized trimmed sample mean where we defined α–generalized trimmed sample mean as

$$Y = \left(\frac{1}{n(1 - \alpha)} \sum_{k=1}^{n(1-\alpha)} Y_k^\beta \right)^{\frac{1}{\beta}}$$

of the random sample of size $n(1 - \alpha)$ from the distribution concentrated on the interval $(0, A)$. The probability density of this distribution is positive only the interval $(0, A)$ and has the form

$$f_A(x; \delta, \beta) = \left(\frac{G_A(x)}{G(A)} \right)' = \frac{G(x)'}{G(A)}; 0 < x \leq A$$

$$= \frac{(1 - \varepsilon)f(x; \delta, \beta) + \varepsilon f(x; \delta_1, \beta_1)}{G_\alpha}; \text{ where } G_\alpha \approx 1 - \frac{\alpha}{n}.$$

Result 1 Under the Weibull distribution contamination has the relative bias of the maximum likelihood estimator ($\hat{\delta}$) as

$$(1 - \varepsilon)\Gamma\left(1 + \frac{1}{\beta}\right) + \varepsilon(1 + \Delta_1)\Gamma\left(1 + \frac{1}{\beta_1}\right) - 1$$

Result 2 Under the Weibull distribution contamination has the relative bias of the weighted likelihood estimator ($\tilde{\delta}$) as

$$\frac{1}{G_\alpha}(1 - \varepsilon)IG_1 + \varepsilon(1 + \Delta_1)IG_2 - 1$$

where

$$IG_1 = \Gamma\left(\frac{1}{\beta} + 1\right)P\left(\frac{1}{\beta} + 1, A_u\right), \quad IG_2 = \Gamma\left(\frac{1}{\beta_1} + 1\right)P\left(\frac{1}{\beta_1} + 1, A_v\right),$$

$$G_\alpha \approx 1 - \frac{\alpha}{n}, \quad A_u = \frac{\delta_\varepsilon \ln \frac{\alpha}{n}}{\delta_\varepsilon}, \quad A_v = \frac{\delta_\varepsilon \ln \frac{\alpha}{n}}{\delta_\varepsilon_1},$$

$$P\left(\frac{1}{\beta} + 1, A_u\right) = \frac{\gamma\left(\frac{1}{\beta} + 1, A_u\right)}{\Gamma\left(\frac{1}{\beta} + 1\right)}, \quad P\left(\frac{1}{\beta_1} + 1, A_v\right) = \frac{\gamma\left(\frac{1}{\beta_1} + 1, A_v\right)}{\Gamma\left(\frac{1}{\beta_1} + 1\right)}.$$

Result 3 Under the Weibull distribution contamination has the quadratic risk of the maximum likelihood estimator ($\hat{\delta}$) as

$$\frac{\delta^2}{n}(E_2 - E_1^2 + (1 - E_1)^2)$$
where
\[
E_1 = (1 - \varepsilon) \Gamma\left(1 + \frac{1}{\beta}\right) + \varepsilon(1 + \Delta_1) \Gamma\left(1 + \frac{1}{\beta(1 + \Delta_2)}\right)
\]
\[
E_2 = (1 - \varepsilon) \Gamma\left(1 + \frac{2}{\beta}\right) + \varepsilon(1 + \Delta_1)^2 \Gamma\left(1 + \frac{2}{\beta(1 + \Delta_2)}\right).
\]

Result 4 Under the contamination is the Weibull distribution has the quadratic risk of the weighted likelihood estimator \(\hat{\delta}\) as
\[
\frac{\delta^2((1 - \varepsilon)IG_3 + \varepsilon(1 + \Delta_1)^2IG_4)}{n(1 - \alpha)G_\alpha} + \frac{\delta^2((1 - \varepsilon)IG_1 + \varepsilon(1 + \Delta_1)IG_2)}{n(1 - \alpha)G_\alpha}
\]
where
\[
IG_1 = \Gamma\left(\frac{1}{\beta} + 1\right) P\left(\frac{1}{\beta_1} + 1, A_u\right), \quad IG_2 = \Gamma\left(\frac{1}{\beta_1} + 1\right) P\left(\frac{1}{\beta_1} + 1, A_v\right),
\]
\[
G_\alpha \approx 1 - \frac{\alpha}{n}, \quad A_u = \frac{\delta^6 \ln \frac{n}{\alpha}}{\delta^6 \ln \frac{n}{\alpha}}, \quad A_v = \frac{\delta^6 \ln \frac{n}{\alpha}}{\delta^6 \ln \frac{n}{\alpha}},
\]
\[
IG_3 = \Gamma\left(\frac{2}{\beta} + 1\right) P\left(\frac{2}{\beta_1} + 1, A_u\right), \quad IG_4 = \Gamma\left(\frac{2}{\beta_1} + 1\right) P\left(\frac{2}{\beta_1} + 1, A_v\right),
\]
\[
P\left(\frac{1}{\beta} + 1, A_u\right) = \frac{\gamma\left(\frac{1}{\beta} + 1, A_u\right)}{\Gamma\left(\frac{1}{\beta} + 1\right)}, \quad P\left(\frac{1}{\beta_1} + 1, A_v\right) = \frac{\gamma\left(\frac{1}{\beta_1} + 1, A_v\right)}{\Gamma\left(\frac{1}{\beta_1} + 1\right)},
\]
\[
P\left(\frac{2}{\beta} + 1, A_u\right) = \frac{\gamma\left(\frac{2}{\beta} + 1, A_u\right)}{\Gamma\left(\frac{2}{\beta} + 1\right)}, \quad P\left(\frac{2}{\beta_1} + 1, A_v\right) = \frac{\gamma\left(\frac{2}{\beta_1} + 1, A_v\right)}{\Gamma\left(\frac{2}{\beta_1} + 1\right)}.
\]

4. Simulation Study

A simulation study was carried out to study the performance of the MLE and WLE methods for the Weibull distribution contamination based on the simulated and asymptotic relative bias and quadratic risk of the estimation for the scale parameter \(\delta\).

We generated data sets of size \(n = 25, 50, 100\) from the \(\varepsilon\)–contamination model. The central distribution to be the Weibull with scale parameter \(\delta = 1\) and shape parameter \(\beta = 0.5, 1, 2\). The contamination has the Weibull distribution with scale parameter \(\delta_1 = \delta(1 + \Delta_1)\) and shape parameter \(\beta_1 = \beta(1 + \Delta_2)\) where \(\Delta_1, \Delta_2 = 1, 3, 5\) and the contamination proportion \(\varepsilon = 0.05\) and the values of \(\alpha = 0.01, 0.03, 0.05, 0.07, 0.09\). All the following simulations results are based on 10,000 replicates by using programs written in R statistical software [10].

The results are presented in Tables 1-3 which show the simulated(sim) and the asymptotic(asy) relative bias and quadratic risk of the MLE and WLE for the central distribution is the Weibull\((1, \beta)\) when distribution of the contamination is Weibull\((1(1 + \Delta_1), \beta(1 + \Delta_2))\) and the contamination proportion \(\varepsilon = 0.05\). Note that the simulated and the asymptotic relative bias
and quadratic risk of the MLE do not depend on α for all sample sizes. From these results, we observe the following.

The simulated and the asymptotic relative bias of the MLE and WLE are smallest at $\Delta_1 = 1$. The same conclusion can be seen for the quadratic risk values of the MLE and WLE. In the case when $\beta = 0.5$, relative bias of the WLE method provides smaller than those of the MLE method for small values of α, but the quadratic risk of the WLE method is higher than those of the MLE method. In the case of Weibull$(1(1 + \Delta_1), 1(1 + \Delta_2))$ contamination, the WLE method provides smaller quadratic risk δ than those of the MLE method and quadratic risks of the WLE is close to those of the MLE method when α is small. When Δ_1 gets large, the WLE provides smaller relative bias and quadratic risk values than those of the MLE when α is increasing. In the case when $\beta = 2$, the WLE outperforms the MLE based on the simulated and the asymptotic relative bias and quadratic risk when α is small.

Table 1 The simulated(sim) and the asymptotic(asy) relative bias and quadratic risk of MLE and WLE for $W(1,0.5) + 0.05W((1 + \Delta_1), 0.5(1 + \Delta_2))$.

<table>
<thead>
<tr>
<th>(Δ_1, Δ_2)</th>
<th>α</th>
<th>relative bias</th>
<th>quadratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>sim</td>
<td>asy</td>
</tr>
<tr>
<td>α = 0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α = 0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α = 0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α = 0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α = 0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α = 0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α = 0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α = 0.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α = 0.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α = 0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The simulated and the asymptotic relative bias of the MLE and WLE are smallest at $\Delta_1 = 1$. The same conclusion can be seen for the quadratic risk values of the MLE and WLE. In the case when $\beta = 0.5$, relative bias of the WLE method provides smaller than those of the MLE method for small values of α, but the quadratic risk of the WLE method is higher than those of the MLE method. In the case of Weibull$(1(1 + \Delta_1), 1(1 + \Delta_2))$ contamination, the WLE method provides smaller quadratic risk δ than those of the MLE method and quadratic risks of the WLE is close to those of the MLE method when α is small. When Δ_1 gets large, the WLE provides smaller relative bias and quadratic risk values than those of the MLE when α is increasing. In the case when $\beta = 2$, the WLE outperforms the MLE based on the simulated and the asymptotic relative bias and quadratic risk when α is small.
Table 1: Continued

<table>
<thead>
<tr>
<th>α</th>
<th>relative bias</th>
<th>quadratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=25</td>
<td>n=50</td>
<td>n=100</td>
</tr>
<tr>
<td>sim</td>
<td>asy</td>
<td>sim</td>
</tr>
<tr>
<td>(1, 5)</td>
<td>MLE</td>
<td>0.067</td>
</tr>
<tr>
<td>0.01</td>
<td>0.065</td>
<td>0.989</td>
</tr>
<tr>
<td>0.03</td>
<td>0.060</td>
<td>0.989</td>
</tr>
<tr>
<td>0.05</td>
<td>0.055</td>
<td>0.989</td>
</tr>
<tr>
<td>0.07</td>
<td>0.049</td>
<td>0.988</td>
</tr>
<tr>
<td>0.09</td>
<td>0.044</td>
<td>0.987</td>
</tr>
</tbody>
</table>

Table 2 The simulated (sim) and the asymptotic (asy) relative bias and quadratic risk of MLE and WLE for $W(1, 1) + 0.05W(1(1 + \Delta_1), 1(1 + \Delta_2))$.
Table 2: Continued

<table>
<thead>
<tr>
<th>(Δ₁, Δ₂)</th>
<th>α</th>
<th>relative bias n=25</th>
<th>relative bias n=50</th>
<th>relative bias n=100</th>
<th>quadratic risk n=25</th>
<th>quadratic risk n=50</th>
<th>quadratic risk n=100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sim</td>
<td>asy</td>
<td>sim</td>
<td>asy</td>
<td>sim</td>
<td>asy</td>
<td>sim</td>
</tr>
<tr>
<td>(5,3)</td>
<td>MLE</td>
<td>0.056</td>
<td>0.222</td>
<td>0.053</td>
<td>0.222</td>
<td>0.054</td>
<td>0.222</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.055</td>
<td>0.220</td>
<td>0.052</td>
<td>0.222</td>
<td>0.053</td>
<td>0.222</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.050</td>
<td>0.207</td>
<td>0.049</td>
<td>0.218</td>
<td>0.052</td>
<td>0.221</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.044</td>
<td>0.186</td>
<td>0.045</td>
<td>0.211</td>
<td>0.050</td>
<td>0.219</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>0.039</td>
<td>0.166</td>
<td>0.044</td>
<td>0.202</td>
<td>0.047</td>
<td>0.217</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>0.033</td>
<td>0.146</td>
<td>0.038</td>
<td>0.192</td>
<td>0.045</td>
<td>0.213</td>
</tr>
<tr>
<td>(1,5)</td>
<td>MLE</td>
<td>0.017</td>
<td>0.043</td>
<td>0.019</td>
<td>0.043</td>
<td>0.019</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.016</td>
<td>0.040</td>
<td>0.019</td>
<td>0.041</td>
<td>0.019</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.014</td>
<td>0.036</td>
<td>0.017</td>
<td>0.039</td>
<td>0.018</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.011</td>
<td>0.032</td>
<td>0.015</td>
<td>0.037</td>
<td>0.016</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>0.009</td>
<td>0.028</td>
<td>0.014</td>
<td>0.035</td>
<td>0.015</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>0.007</td>
<td>0.024</td>
<td>0.012</td>
<td>0.033</td>
<td>0.015</td>
<td>0.038</td>
</tr>
<tr>
<td>(3,5)</td>
<td>MLE</td>
<td>0.039</td>
<td>0.136</td>
<td>0.035</td>
<td>0.136</td>
<td>0.037</td>
<td>0.136</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.038</td>
<td>0.134</td>
<td>0.034</td>
<td>0.135</td>
<td>0.036</td>
<td>0.135</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.036</td>
<td>0.132</td>
<td>0.033</td>
<td>0.134</td>
<td>0.035</td>
<td>0.135</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.033</td>
<td>0.129</td>
<td>0.031</td>
<td>0.132</td>
<td>0.034</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>0.031</td>
<td>0.126</td>
<td>0.030</td>
<td>0.131</td>
<td>0.033</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>0.028</td>
<td>0.124</td>
<td>0.028</td>
<td>0.130</td>
<td>0.033</td>
<td>0.133</td>
</tr>
<tr>
<td>(5,5)</td>
<td>MLE</td>
<td>0.059</td>
<td>0.228</td>
<td>0.054</td>
<td>0.228</td>
<td>0.056</td>
<td>0.228</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.058</td>
<td>0.228</td>
<td>0.054</td>
<td>0.228</td>
<td>0.055</td>
<td>0.228</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.054</td>
<td>0.226</td>
<td>0.052</td>
<td>0.227</td>
<td>0.054</td>
<td>0.228</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.049</td>
<td>0.219</td>
<td>0.049</td>
<td>0.226</td>
<td>0.053</td>
<td>0.227</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>0.044</td>
<td>0.204</td>
<td>0.046</td>
<td>0.225</td>
<td>0.051</td>
<td>0.227</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>0.040</td>
<td>0.186</td>
<td>0.043</td>
<td>0.221</td>
<td>0.050</td>
<td>0.227</td>
</tr>
</tbody>
</table>

Table 3: The simulated(sim) and the asymptotic(asy) relative bias and quadratic risk of MLE and WLE for \(W(1,2) + 0.05W(1(1 + Δ₁), 2(1 + Δ₂))\).
5. An Example

We use the MLE method to fit this data set. We fit the data set for the Weibull distribution by using the function fitdist in the R package. The MLE of scale and shape parameter are 27.007 and 4.579 with the standard error 0.911 and 0.493, respectively. Then we create 7% of the contamination in the data set with the Weibull distribution with shape parameter 27.007(1 + 1) and shape parameter 4.579(1 + 1). We change the first three of the observations 30.20, 36.55, 25.11, as 50.76, 61.53, 58.21, respectively. Then we apply the MLE and WLE methods to the new data set, assuming that the shape parameter is 4.579. The MLE of the scale parameter is 34.042 with the standard error 1.997, but the WLE of the scale parameter is 26.159.

Table 3: Continued

<table>
<thead>
<tr>
<th>((\Delta_1, \Delta_2))</th>
<th>(\alpha)</th>
<th>(n=25)</th>
<th>(n=50)</th>
<th>(n=100)</th>
<th>(n=25)</th>
<th>(n=50)</th>
<th>(n=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\alpha)</td>
<td>(\text{sim})</td>
<td>(\text{asy})</td>
<td>(\text{sim})</td>
<td>(\text{asy})</td>
<td>(\text{sim})</td>
<td>(\text{asy})</td>
</tr>
<tr>
<td>((3,3))</td>
<td>MLE</td>
<td>0.061</td>
<td>0.030</td>
<td>0.063</td>
<td>0.030</td>
<td>0.067</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.015</td>
<td>-0.151</td>
<td>0.011</td>
<td>-0.147</td>
<td>0.013</td>
<td>-0.142</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.006</td>
<td>-0.157</td>
<td>0.005</td>
<td>-0.153</td>
<td>0.009</td>
<td>-0.150</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.003</td>
<td>-0.160</td>
<td>0.003</td>
<td>-0.156</td>
<td>0.007</td>
<td>-0.152</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>0.000</td>
<td>-0.162</td>
<td>0.002</td>
<td>-0.157</td>
<td>0.006</td>
<td>-0.154</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>-0.002</td>
<td>-0.164</td>
<td>0.001</td>
<td>-0.159</td>
<td>0.005</td>
<td>-0.155</td>
</tr>
<tr>
<td>((5,3))</td>
<td>MLE</td>
<td>0.125</td>
<td>0.124</td>
<td>0.132</td>
<td>0.124</td>
<td>0.140</td>
<td>0.124</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.006</td>
<td>-0.158</td>
<td>0.005</td>
<td>-0.158</td>
<td>0.005</td>
<td>-0.157</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.002</td>
<td>-0.159</td>
<td>0.003</td>
<td>-0.158</td>
<td>0.004</td>
<td>-0.158</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.000</td>
<td>-0.160</td>
<td>0.002</td>
<td>-0.159</td>
<td>0.003</td>
<td>-0.158</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>-0.002</td>
<td>-0.161</td>
<td>0.001</td>
<td>-0.160</td>
<td>0.003</td>
<td>-0.159</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>-0.004</td>
<td>-0.163</td>
<td>0.001</td>
<td>-0.160</td>
<td>0.003</td>
<td>-0.159</td>
</tr>
<tr>
<td>((1,5))</td>
<td>MLE</td>
<td>0.013</td>
<td>-0.062</td>
<td>0.016</td>
<td>-0.062</td>
<td>0.018</td>
<td>-0.062</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.013</td>
<td>-0.064</td>
<td>0.015</td>
<td>-0.063</td>
<td>0.018</td>
<td>-0.063</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.012</td>
<td>-0.067</td>
<td>0.015</td>
<td>-0.065</td>
<td>0.017</td>
<td>-0.064</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.010</td>
<td>-0.070</td>
<td>0.014</td>
<td>-0.066</td>
<td>0.017</td>
<td>-0.064</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>0.009</td>
<td>-0.072</td>
<td>0.013</td>
<td>-0.068</td>
<td>0.016</td>
<td>-0.065</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>0.008</td>
<td>-0.075</td>
<td>0.012</td>
<td>-0.069</td>
<td>0.016</td>
<td>-0.066</td>
</tr>
<tr>
<td>((3,5))</td>
<td>MLE</td>
<td>0.065</td>
<td>0.034</td>
<td>0.065</td>
<td>0.034</td>
<td>0.068</td>
<td>0.034</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.015</td>
<td>-0.157</td>
<td>0.011</td>
<td>-0.155</td>
<td>0.011</td>
<td>-0.152</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.006</td>
<td>-0.160</td>
<td>0.005</td>
<td>-0.158</td>
<td>0.006</td>
<td>-0.156</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.002</td>
<td>-0.162</td>
<td>0.003</td>
<td>-0.159</td>
<td>0.005</td>
<td>-0.157</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>-0.001</td>
<td>-0.164</td>
<td>0.002</td>
<td>-0.160</td>
<td>0.004</td>
<td>-0.158</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>-0.003</td>
<td>-0.165</td>
<td>0.001</td>
<td>-0.161</td>
<td>0.003</td>
<td>-0.159</td>
</tr>
<tr>
<td>((5,5))</td>
<td>MLE</td>
<td>0.124</td>
<td>0.129</td>
<td>0.133</td>
<td>0.129</td>
<td>0.145</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.003</td>
<td>-0.158</td>
<td>0.002</td>
<td>-0.158</td>
<td>0.004</td>
<td>-0.158</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.000</td>
<td>-0.159</td>
<td>0.000</td>
<td>-0.159</td>
<td>0.003</td>
<td>-0.158</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>-0.003</td>
<td>-0.160</td>
<td>-0.001</td>
<td>-0.159</td>
<td>0.003</td>
<td>-0.159</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>-0.004</td>
<td>-0.162</td>
<td>-0.001</td>
<td>-0.160</td>
<td>0.002</td>
<td>-0.159</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>-0.006</td>
<td>-0.163</td>
<td>-0.002</td>
<td>-0.160</td>
<td>0.002</td>
<td>-0.159</td>
</tr>
</tbody>
</table>
with the standard error 0.869. The result of WLE method are close to the MLE obtained from the data set without any outlier. Therefore, the WLE method outperforms the MLE when the contamination is present in this data set.

6. Conclusion

The Weibull distribution plays a central role in lifetime models in medical and biological sciences as well as in engineering. When data are contaminated with outliers, the maximum likelihood estimator can be very unreliable. In this study the weighted likelihood estimator is applied to the Weibull distribution for the more robust estimation of the scale parameter, assuming that the shape parameter is known, when the data set shows the Weibull contamination that is the presence of outliers. This method assigns zero weights to observations with small likelihood. We also examine the robust properties of the MLE and WLE for the parameters of the Weibull distribution when the data set shows a contamination. To examine the performance of the WLE method in comparison with the MLE methods, we found that the WLE method outperforms the MLE method based on the relative bias and quadratic risk values. And in the most of the cases, the relative bias and quadratic risk of the WLE method decrease as sample increase. This is expected because most estimator in statistical theory perform better when sample size increases. The gain in terms of the relative bias and the quadratic risk of the WLE methods decreases as \(\alpha \) increase.

As future work we may mention that the WLE method can be extended to some further modifications of the Weibull distribution. A robust estimator obtained should be compared to the other estimators of the Weibull parameter such as the estimations from the moment method, the least squares method, the method of percentiles and the Bayesian estimation method. In addition, in this study we were considered only an estimator of the scale parameter of the Weibull distribution and assume that the shape parameter is known. The WLE method can be extended to estimate the two-parameter Weibull distribution when we assume both of the scale and shape parameter are unknown. Next, the WLE method can be extended to estimate the three-parameter Weibull distribution.

Acknowledgments

The authors gratefully acknowledge the financial support provided by Thammasat University Research Fund under the TU Research Scholar, Contract No. 32/2557.
Appendix

A.1 Proof of Result 1

Proof. By definition the relative bias is

\[
\frac{\text{bias}(\delta)}{\delta} = \frac{E[\hat{\delta}] - \delta}{\delta} = \frac{\delta((1 - \epsilon)\Gamma(1 + \frac{1}{\beta}) + \epsilon(1 + \Delta_1)\Gamma(1 + \frac{1}{\beta_1})) - \delta}{\delta} = (1 - \epsilon)\Gamma(1 + \frac{1}{\beta}) + \epsilon(1 + \Delta_1)\Gamma(1 + \frac{1}{\beta_1}) - 1
\]

A.2. Proof of Result 2

Proof. For the asymptotic bias of estimator \(\hat{\delta} \), we have

\[
E[\hat{\delta}] \sim E[Y]
\]

\[
= \int_{0}^{A} x f_A(x; \delta, \beta) dx = \frac{1}{G_\alpha} \int_{0}^{A} x \left((1 - \epsilon) \frac{\beta}{\delta^\beta} x^{\beta-1} e^{-\left(\frac{x}{\delta}\right)^\beta} + \epsilon \frac{\beta_1}{\delta_1^{\beta_1}} x^{\beta_1-1} e^{-\left(\frac{x}{\delta_1}\right)^{\beta_1}} \right) dx
\]

\[
= \frac{\delta}{G_\alpha} \left((1 - \epsilon) IG_1 + \epsilon(1 + \Delta_1)IG_2 \right),
\]

where \(IG_1 = \Gamma(1/\beta+1)P(1/\beta+1, A_u) \) and \(IG_2 = \Gamma(1/\beta_1+1)P(1/\beta_1+1, A_v) \). So we have relative bias as

\[
\frac{\text{bias}(\delta)}{\delta} = \frac{E[\hat{\delta}] - \delta}{\delta} = \frac{1}{G_\alpha} \left((1 - \epsilon) IG_1 + \epsilon(1 + \Delta_1)IG_2 \right) - 1
\]

A.3. Proof of Result 3

Proof. By the definition of the quadratic risk, we have

\[
R(\hat{\delta}) = \frac{E[(X - \hat{\delta})^2]}{n} = \frac{\delta^2}{n} \left(E\left[\frac{X}{\delta} - E\left[\frac{X}{\delta} \right] \right]^2 + \left(\frac{\delta - \delta_\epsilon}{\delta} \right)^2 \right)
\]

\[
= \frac{\delta^2}{n} \left(\text{Var}\left(\frac{X}{\delta} \right) + \left(\frac{\delta - \delta_\epsilon}{\delta} \right)^2 \right) = \frac{\delta^2}{n} \left(\frac{1}{\delta^2} E[X^2] - E[X]^2 \right) + \left(\frac{\delta - \delta_\epsilon}{\delta} \right)^2.
\]

From the obstructing model

\[
G_\epsilon(x) = (1 - \epsilon) \left(1 - e^{-\left(\frac{x}{\delta}\right)^\beta} \right) + \epsilon \left(1 - e^{-\left(\frac{x}{\delta_1}\right)^{\beta_1}} \right).
\]

We get

\[
E[X] = \int_{0}^{\infty} x \left((1 - \epsilon) \frac{\beta}{\delta^\beta} x^{\beta-1} e^{-\left(\frac{x}{\delta}\right)^\beta} + \epsilon \frac{\beta_1}{\delta_1^{\beta_1}} x^{\beta_1-1} e^{-\left(\frac{x}{\delta_1}\right)^{\beta_1}} \right) dx
\]

\[
= (1 - \epsilon) \int_{0}^{\infty} \frac{\beta}{\delta^\beta} x^{\beta-1} e^{-\left(\frac{x}{\delta}\right)^\beta} dx + \epsilon \int_{0}^{\infty} \frac{\beta_1}{\delta_1^{\beta_1}} x^{\beta_1-1} e^{-\left(\frac{x}{\delta_1}\right)^{\beta_1}} dx
\]
\[
(1 - \varepsilon)\delta \Gamma\left(1 + \frac{1}{\beta}\right) + \varepsilon \delta_1 \Gamma\left(1 + \frac{1}{\beta_1}\right)
\]

\[
= \delta \left((1 - \varepsilon)\Gamma\left(1 + \frac{1}{\beta}\right) + \varepsilon(1 + \Delta_1)\Gamma\left(1 + \frac{1}{\beta(1 + \Delta_2)}\right) \right) = \delta E_1.
\]

\[
E[X^2] = \int_0^\infty x^2 \left((1 - \varepsilon) \frac{\beta}{\delta^\beta} x^{\beta-1} e^{-x}\right) + \varepsilon \frac{\beta_1}{\delta_1^\beta_1} x^{\beta_1-1} e^{-\left(\frac{x}{\beta_1}\right)^{\beta_1}} dx
\]

\[
= (1 - \varepsilon)\delta^2 \Gamma\left(1 + \frac{2}{\beta}\right) + \varepsilon \delta_1^2 \Gamma\left(1 + \frac{2}{\beta_1}\right) = \delta^2 E_2.
\]

where

\[
E_1 = (1 - \varepsilon) \Gamma\left(1 + \frac{1}{\beta}\right) + \varepsilon(1 + \Delta_1) \Gamma\left(1 + \frac{1}{\beta(1 + \Delta_2)}\right),
\]

\[
E_2 = (1 - \varepsilon) \Gamma\left(1 + \frac{2}{\beta}\right) + \varepsilon(1 + \Delta_1)^2 \Gamma\left(1 + \frac{2}{\beta(1 + \Delta_2)}\right).
\]

Therefore the quadratic risk is

\[
R(\hat{\delta}) = \frac{\delta^2}{n} \left(\frac{1}{\delta^2} (E[X^2] - (E[x])^2) + \left(\frac{\delta - \delta_1}{\delta} \right)^2 \right) = \frac{\delta^2}{n} \left(E_2 - E_1^2 + (1 - E_1)^2 \right).
\]

A.4 Proof of Result 4

Proof. Since, the asymptotic distribution of \(\overline{\delta} \) equals the distribution of the \(\alpha \)-generalized trimmed sample mean where we defined

\[
Y = \left(\frac{1}{n(1 - \alpha)} \sum_{k=1}^{n(1-\alpha)} y_k^{\beta} \right)^\frac{1}{\beta}.
\]

The asymptotic \(\overline{\delta} \) has the quadratic risk is

\[
R(\overline{\delta}) = \frac{E_\alpha[(Y - \delta)^2]}{n(1 - \alpha)} = \frac{1}{n(1 - \alpha)} E_\alpha\left[\left((Y - \mu) - (\delta - \mu) \right)^2 \right]
\]

\[
= \frac{1}{n(1 - \alpha)} \left(E_\alpha[(Y - \mu)^2] + E_\alpha[(\delta - \mu)^2] - 2(\delta - \mu) E_\alpha[(Y - \mu)] \right)
\]

\[
= \frac{1}{n(1 - \alpha)} \left(E_\alpha[(Y - \mu)^2] + E_\alpha[(\delta - \mu)^2] \right)
\]

\[
= \frac{1}{n(1 - \alpha)} \left(Var_\alpha(Y) + E_\alpha[(\delta - \mu)^2] \right).
\]

The asymptotic distribution of \(\overline{\delta} \) equals the distribution of the \(\alpha \)-generalized trimmed sample mean of the random sample of size \(n(1 - \alpha) \) from the distribution concentrated on the interval \((0, A)\). The probability density of this distribution is positive only the interval and has the form

\[
f_\alpha(x; \delta, \beta) = \frac{(1 - \varepsilon) f(x; \delta, \beta) + \varepsilon f(x; \delta_1, \beta_1)}{G_\alpha}.
\]
Then

\[
\mu = E_\alpha[Y] = \int_0^A x f_A(x; \delta, \beta) \, dx \\
= \frac{1}{G_\alpha} \int_0^A x \left((1 - \varepsilon) \frac{\beta}{\delta} x^{\beta-1} e^{-\left(\frac{x}{\delta}\right)^\beta} + \varepsilon \frac{\beta_1}{\delta_1} x^{\beta_1-1} e^{-\left(\frac{x}{\delta_1}\right)^\beta_1}\right) \, dx \\
= \frac{\delta}{G_\alpha} \left((1 - \varepsilon) IG_1 + \varepsilon(1 + \Delta_1) IG_2\right),
\]

\[
E_\alpha[Y^2] = \int_0^A x^2 f_A(x; \delta, \beta) \, dx \\
= \frac{1}{G_\alpha} \int_0^A x^2 \left((1 - \varepsilon) \frac{\beta}{\delta} x^{\beta-1} e^{-\left(\frac{x}{\delta}\right)^\beta} + \varepsilon \frac{\beta_1}{\delta_1} x^{\beta_1-1} e^{-\left(\frac{x}{\delta_1}\right)^\beta_1}\right) \, dx \\
= \frac{1}{G_\alpha} \left((1 - \varepsilon) \delta^2 IG_3 + \varepsilon \delta^2 IG_4\right) = \frac{1}{G_\alpha} \left((1 - \varepsilon) \delta^2 IG_3 + \varepsilon \delta^2(1 + \Delta_1)^2 IG_4\right)
\]

where \(IG_1 = \Gamma(1/\beta + 1) P(1/\beta + 1, A_u) \), \(IG_2 = \Gamma(1/\beta_1 + 1) P(1/\beta_1 + 1, A_v) \), \(IG_3 = \Gamma(2/\beta + 1) P(2/\beta + 1, A_u) \), \(P(2/\beta + 1, A_u) = \gamma(2/\beta + 1, A_u)/\Gamma(2/\beta + 1) \) is a normalized function of a lower incomplete gamma function \(\gamma(2/\beta + 1, A_u) \), \(IG_4 = \Gamma(2/\beta_1 + 1) P(2/\beta_1 + 1, A_v) \), \(P(2/\beta_1 + 1, A_v) = \gamma(2/\beta_1 + 1, A_v)/\Gamma(2/\beta_1 + 1) \) is a normalized function of a lower incomplete gamma function \(\gamma(2/\beta_1 + 1, A_v) \). Therefore the quadratic risk is

\[
R(\tilde{\delta}) = \frac{1}{n(1 - \alpha)} \left(E_\alpha[Y^2] - (E_\alpha[Y])^2 + E_\alpha[(\delta - \mu)^2]\right)
\]

\[
= \frac{1}{n(1 - \alpha)} \left(E_\alpha[Y^2] - (E_\alpha[Y])^2 + (\delta - \mu)^2\right)
\]

\[
= \frac{1}{n(1 - \alpha)} \left(E_\alpha[Y^2] - \mu^2 + \delta^2 - 2\delta \mu + \mu^2\right)
\]

\[
= \frac{E_\alpha[Y^2]}{n(1 - \alpha)} + \frac{\delta^2}{n(1 - \alpha)G_\alpha} - \frac{2\delta \mu}{n(1 - \alpha)G_\alpha}
\]

\[
= \frac{\delta^2 \left((1 - \varepsilon) IG_3 + \varepsilon(1 + \Delta_1)^2 IG_4\right)}{n(1 - \alpha)G_\alpha} + \frac{\delta^2}{n(1 - \alpha)G_\alpha} - \frac{2\delta^2 \left((1 - \varepsilon) IG_1 + \varepsilon(1 + \Delta_1) IG_2\right)}{n(1 - \alpha)G_\alpha}.
\]

References

