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ABSTRACT  The new lifetime distribution based on non-classical parametrization model 
called the two-sided length biased inverse Gaussian distribution is introduced. The physical 
phenomena of this situation can be explained in the case when a crack develops from two 
sides. Some statistical properties of the distribution such as reciprocal properties and the 
first four moments are investigated. The conventional point estimation, method of moment, 
is developed for estimating the parameters of the distribution together with asymptotic 
property of the proposed estimators. In order to evaluate the performance of the suggested 
estimators, Monte Carlo simulation studies are conducted. Additionally, real data sets in a 
practical setting are used to illustrate the presented estimation method. Concluding remarks 
and discussions are also provided. 
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1.  Introduction 
 

Lifetime distributions are frequently studied in reliability aspects. It is easy to consider a 

lifetime or failure time of physical objects such as coins, electric light bulbs, some pieces of 

machines, etc. They provide useful information on certain practical problems. Since some 

machines or systems are very important and extremely expensive, this information motivates 

practitioners to prevent financial or industrial damages occurring after the failure time terminates. 

One of the interesting views of lifetime distributions in reliability analysis is in the situation 

when a failure of the object under consideration occurs from a fatigue crack development. The 

common distributions used in practical applications of this area are Birnbaum-Saunders, inverse 

Gaussian, and length biased inverse Gaussian [7, 13]. 
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These distributions had been studied in various cases. Birnbaum and Saunders [2] 

introduced the two-parameter Birnbaum-Saunders (BS) distribution as a lifetime distribution for 

fatigue failure caused by periodic loading. Ahmed et al. [1] proposed the new parametrization of 

BS distribution. Importantly, the physical situation under this study are fitted by this 

reparametrization since the suggested parameters correspond to the thickness of the object under 

study and the nominal treatment loading on the object, respectively. The original parameters of 

the distribution do not give these characteristics. Several studies regarding on the inverse 

Gaussian (IG) distribution are often referred to Chhikara and Folks [4], Seshadri [15, 16], 

Johnson et al. [10] and Tweedi [17, 18]. Recently, Lisawadi [13] presented two new distributions 

based on the re-parametrization model proposed in [1] and they were called the two-sided 

Birbaum-Saunders and inverse Gaussian lifetime distributions. These distributions are con- 

sidered in the situation of a crack develops from two sides. A review of applications of length 

biased distributions was given in Gupta and Kirmani [9]. Akman and Gupta [2] had studied the 

length biased inverse Gaussian (LBIG) distribution. They provided comparative simulation 

studies of different estimators for the mean of data from IG and LBIG distributions. Gupta and 

Akman [8] offered statistical properties involving the arithmetic and harmonic means of the 

LBIG distribution. Essentially, as seen in the reviewed literature, all of them were considered in 

the term of usual parameters except the studies of [1] and [13]. In this article, we introduce a new 

lifetime distribution based on non-classical parameters presented by Ahmed et al. [1]. The new 

distribution is called the two-sided length biased inverse Gaussian lifetime distribution denoted 

as TS-LBIG distribution. Interestingly, our contribution is in the investiga- tion process. The 

probability model of the TS-LBIG   distribution is formed by applying the approach of Lisawadi 

[13]. The new distribution is considered in the case when a crack develops from two sides. For 

example, on a metallic rectangular object which is fixed on two sides, a pressure is applied to 

both upper and lower sides of the object that leads to a crack development from two sides. Some 

statistical properties of the distribution such as reciprocal properties and the first four moments 

are investigated. The traditional point estimation, method of moment, is developed together with 

the asymptotic analysis of the proposed estimators. Monte Carlo simulations are utilized to study 

the efficiency of the suggested estimators, and illustrative examples for explaining the given 

estimation method are also provided. 

       The article is organized as follows. The pdf of IG and LBIG distributions based on non- 

classical parameters are provided in Section 2. Probability model of the TS-LBIG is introduced 

in Section 3. Theoretical results are given in Section 4. Numerical results are shown in Section 5. 

Finally, conclusions and discussion are reported in Section 6.  

  

2.   Materials and Methods   
2.1  Inverse Gaussian Distribution   

The usual pdf of inverse Gaussian distribution of a continuous random variable X is  
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where 0   and 0  . The parameter   stands for the mean and   represents the scale 

parameter. The proposed parameters provided by Ahmed et. al. [1] are 0   and 0   standing 

for the thickness of the object under consideration and the nominal treatment loading on the 

object, correspondingly. The relations between the classical and proposed parameters are:    
 

                                      ,



   
2

,



   ,    and  2   .                                  (2) 

 
Hence, the pdf of IG distribution based on the new parametrization is define as 
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where 0   and 0  . 
 

2.2  Length Biased Inverse Gaussian Distribution 
 

       We start with the definition of a length biased pdf presented by Khattree [11].  
Definition 2.2.1  Let X  be a non-negative random variable having an absolutely continuous 

pdf, ( )f x . Assuming ( )E X   , the length biased random variable Y has a pdf defined as 
 

                                                     ( )
( ) ; 0.

xf x
g x


                                                 (4) 

 
It is known that   , and by (3) and (4), finally, pdf of the length biased inverse Gaussian 

(LBIG) distribution is define by  
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where 0   and 0  . 

 

3. Probability Model  
 

The physical phenomena of this situation can be explained in the case when a crack 

develops from two sides of the object under consideration. Let ( ),  0F t t  , be the distribution 

function of the moment of the object breakdown  for one-sided loading. We consider 

 ( ) ; ,LBIGF t F t   . Let /Y k   be the random variable interpreted as a speed of the crack 

evolution. At the bottom side of the metallic block, a crack is developing with the distribution 

function of the time to reach the length k . Simultaneously, at the top side of the block, a crack is 

developing with the same distribution function as the bottom side. Then, we have two random 

variables 1  and 2 , and they are assumed to be independent and identically distributed. The 

speed of the crack development for this two-sided case is 1 1
1 2 1 2Y Y k k     , and the random 

variable 1 1 1
1 2 1 2/ ( ) ( )k Y Y         corresponds to a moment of the object under consi- 

deration break down. The distribution function and pdf of the two-sided length biased inverse 

Gaussian distribution are presented in the following theorems. 



214                                                                                 JPSS      Vol. 14   No.2         August   2016          pp. 211-224 

Theorem 3.1  A random variable   has a two-sided length biased inverse Gaussian distribution 

denoted as TS-LBIG ( , )  , if it has a distribution function in the form:  
1 1

2 2
0 0

1 1
( ) 1 ,

u u tdt ds
F u f f

t t s s

          
    

  
and a density function in the following form:  
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Proof.   Let  be a random variable defined above, 11/T   and 21/S  . Then 
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The density function is obtained by differentiating the ( )F u . Therefore,  
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Finally, we achieve the required expressions which complete the proof.                                     □ 

 
However, the pdf of   has no explicit form. This may be difficult to find main functions 

such as a characteristic function and a moment generating function. Figures 1-2 show variety of  

 

Figure 1   The two-sided length biased 
inverse Gaussian density functions   
for 2  .       

Figure 2  The two-sided length biased inverse 
Gaussian density functions for 1  .  
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the probability density functions for TS-LBIG. It is indicated that the TS-LBIG is the positively 

skewed distribution which is a useful choice in this framework. 

 

4.  Theoretical Results   
4.1  Reciprocal Properties   
Proposition 4.1.1  If random variable 0   has the density function ( )f x , then the reciprocal 

random variable 1/  has the pdf 2
1 ( ) (1/ )f x x f x 

 .  
Proof.  For the reciprocal random variable 1/ , applying a definition of a cumulative distri- 

bution function, then its distribution function is defined by  
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and applying the chain rule, the density function is 2
1 1( ) ( ) (1/ )f x F x x f x  

  .                   □ 
 

Proposition 4.1.2  If random variable 0   has LBIG ( , ) 
 
distribution, then the reciprocal 

random variable 1/  is IG  
2[ , 1/ ( )]  

 
distributed. 

 
Proof.   By Proposition 4.1.1, 
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4.2  The First Four Moments   

Finding the first four moments of the TS-LBIG distribution, we deal with the following way. 

The reciprocal property is necessarily needed. The characteristic function of the IG distribution 

is required. Because of the difficulty of direct derivation, Maclaurin expansion is applied. The 

first four terms are considered to obtain the first four cumulants. Then, they are modified to gain 

the first four moments. The required theorems are presented as follows. 
 

Theorem 4.2.1  If a continuous random variable X  is inverse Gaussian distributed with para- 

meters   and   denoted as IG ( , )  , then its characteristic function is 
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By applying the formula 3.472.5 from Gradsthteyn and Ryzhik [6], (p. 369), we have 
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Theorem 4.2.2  If a random variable X  is two-sided length biased inverse Gaussian distri- 

buted with parameters  and   denoted as TS-LBIG ( , )  , then the first four moments are 
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Proof.  If ( )t
 
is a characteristic function, then its cumulants ; 1, 2, ,jk j m  , are defined 

from the Maclaurin expansion of the logarithm of the characteristic function: 
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Hence, the logarithm of the characteristic function of IG( , ) 

 
distribution is 
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For the Maclaurin expansion, we use  
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This expression gives us the cumulants of the IG distribution:  
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By proposition 4.1.2, if   LBIG( , ),  then the reciprocal 1/  2IG[ ,1/ ( )].  
 
Substituting 

  by 21/ ( )  , 1/  has the following cumulants: 
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Because of the i.i.d. property, the moments for the random variable 1 1
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by combining the cumulants for 1/ . Finally, the first four moments for the two-sided length 

biased inverse Gaussian distribution are:  
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4.3  Method of Moment Estimation  

 
Estimation of the parameters   and   by the method of moment for the TS-LBIG 

distribution can be derived in the following way. In the previous section, the first four moments 

are investigated, and thus we obtain formulas for the expectation and variance; 
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The asymptotic variances and covariance are presented in the theorem below. 
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Proof.  The asymptotic distribution of an estimate which smoothly depends on sample moments 

is commonly obtained by their decomposition into the Taylor series expansion. For our case, 
2ˆ( , ),X S   2ˆ( , ),X S   ( )X

 
is the true value of ,X  and 2 ( )X  is that of 2S . Let 1a  

and 2a  be the values of partial derivatives of ̂  by X and 2S  at the point 2( ), ( )( ),X X   

correspondingly. The 1b  and 2b  are denoted as the values of analogous derivatives of ̂ . 

Therefore, the Taylor expansion can be written as  
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1 2 1 2

ˆ( ) ( ) ( ) 2 ( , )Var a Var X a Var S a a Cov X S    ,                             (10) 

                                   ˆVar   2 2 2 2
1 2 1 2( ) ( ) 2 ( , )b Var X b Var S b b Cov X S  , and                             (11) 

                          2 2
1 1 2 2 1 2 2 1

ˆ ˆ( , ) ( ) ( ) 2 ( , ).Cov a bVar X a b Var S a b a b Cov X S                       (12) 
 

As presented results in section 4.2, we apply the formulas outlined in Cramér [5], (p. 352-358) 
and we obtain:   

3 2

2
( ) ,Var X

n 


 

4 2
2

7 4 2

30 12 2 1
( ) ,Var S O

n n

  
 

      
    

and                                                                                                                                           (13) 

2
5 3 2

6 1
( , )Cov X S O

n n 
    
 

.                                               

 
We firstly consider the derivatives of the estimate ̂  and we have 

 

2

ˆ ˆ 1

2

d T T

X dT X T X

   
    

  
. 

 
Exchanging X  and 2S  on   and 2 , we get 

 
2

2
1

ˆ 4

2 2
a

X

    
            

. 

 
Similarly, based on the appropriate substitution, we obtain  

 
2 2 2 2 2

2 2

ˆ 4

2 4 2
a

S

        
            

. 

 
We secondly provide the analogous derivations of the derivatives of the ̂  and we have 
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1 2

2 2

ˆ ˆ ˆ ˆ ˆ2 2 22 ˆ ( 1)
ˆˆ ˆ ˆ ˆ

d
d d X X

X X X Xd X X

    
   

                                    
.  

 

Note that 2
1

ˆ
( , ) a

X

  



, and hence 

2 2
1

ˆ 3
( , )

2
b

X

   
  


. 

Equivalently,                             
33

2
2 2

ˆ
( , )

2
b

S

   
 


. 
 

Then, we substitute 1 2 1 2, , ,a a b b  and (13) into equations (10)-(12) to obtain ˆ( ),Var 
 

ˆ( ),Var   and 
ˆ ˆ( , ).Cov    Hence, 

22 2 4 2
2 2

3 2 7 4

2 30 12 2ˆ( ) ( )
2

Var
n n

      
   

           
     

 

2 2
2

5 3

6
2( )

2 n

  
 

     
  

2

1
O

n
   
   

2 5 2

2

2 15 6 6 1

2
O

n n n n

             
 

2 5 2

2

7 6 1

2
O

n n

         
 

.
 

Thus, 
2 22 3 3 4 2

3 2 7 4

3 2 30 12 2ˆ( )
2 2

Var
n n

     
   

               
      

 

2 3 3

5 3

3 6
2

2 2 n

  
 

       
   

2

1
O

n
   
   

2 2 2 4 4 2

2

9 15 6 9 1

2 2
O

n n n n

     
  

        
 

2 2 4 4

2

6 6 1

2
O

n n

   


      
 

.
  

Therefore, 
32 2 2 3 4 2

2
3 2 7 4

3 2 30 12 2ˆ ˆ( , ) ( )
2 2 2

Cov
n n

          
   

                            
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2
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2 ( )

2 2 2
O

n n

     
 
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4 3

2

3 15 6 15 1

2
O

n n n n

              
 

4 3

2

9 6 1

2
O

n n

         
 

.
  

Finally, the proof is complete.                                                                                                      □ 

 
5. Numerical Results  

 
5.1  Simulation Study   

We studied the properties of the presented estimators by using the numerical method. The 

results were reported to investigate the behavior of the estimators via calculating the estimated 
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bias and mean square error. Monte Carlo simulations were performed for different sample sizes. 

The R program version 3.1.2 was used to generate and analyze the data. The number of iterations 

was fixed at 5,000 for each combination of  ,   and sample sizes n. We considered all 

combinations of the following values of  , , and n as follows: = 2, 5, 10 and 50,  = 1, 5, 10 

and 50, n = 10, 50 and 100. Tables 1-3 show the estimated bias and MSE of ̂  and ̂  for n = 10, 

50 and 100, respectively.  
 

Table 1  The estimated bias and mean square error of ̂  and ̂  for n = 10 

    ̂  ̂  ˆ   ˆ   ˆ( )MSE   ˆ( )MSE 
2 1 2.8783 0.9308 –0.8783 0.0692 3.9637 0.2492 
 5 2.8448 4.7403 –0.8448 0.2597 4.1692 6.6210 
 10 2.8604 9.3805 –0.8604 0.6195 4.0240 25.5914 
 50 2.9545 45.9168 –0.9545 4.0832 5.1910 634.6735
5 1 6.8814 0.9548 –1.8814 0.0452 22.3718 0.2329 
 5 6.7424 4.9214 –1.7424 0.0786 24.4203 6.6715 
 10 6.6686 9.8587 –1.6686 0.1413 20.4223 24.9115 
 50 6.7746 48.3445 –1.7746 1.6555 20.3529 608.9861

10 1 13.1557 0.9892 –3.1557 0.0108 72.8913 0.2430 
 5 13.2763 4.8915 –3.2763 0.1085 82.1559 5.6023 
 10 13.2732 9.8483 –3.2732 0.1517 89.7769 22.9481 
 50 13.0669 49.5379 –3.0669 0.4621 70.9626 585.4694

50 1 64.0534 1.0045 –14.0534 –0.0045 1962.9841 0.2195 
 5 64.3390 4.9736 –14.3390 0.0264 1748.4027 5.4419 
 10 64.9925 9.9752 –14.9925 0.0248 1980.6301 22.6549 
 50 64.9923 49.6432 –14.9923 0.3568 1937.7596 556.1875

 

Table 2  The estimated bias and mean square error of ̂  and ̂  for n = 50 

    ̂  ̂  ˆ   ˆ   ˆ( )MSE   ˆ( )MSE   
2 1 2.1807 0.9806 –0.1807 0.0194 0.3447 0.0630 
 5 2.1668 4.9312 –0.1668 0.0688 0.3365 1.5770 
 10 2.1602 9.9191 –0.1602 0.0809 0.3432 6.8895 
 50 2.1794 48.9890 –0.1794 1.0110 0.3513 158.2939 
5 1 5.3235 0.9891 –0.3235 0.0109 1.6022 0.0490 
 5 5.2835 4.9861 –0.2835 0.0139 1.5832 1.2768 
 10 5.3022 9.9285 –0.3022 0.0715 1.6239 5.0893 
 50 5.3330 49.4576 –0.3330 0.5424 1.6896 126.1433 

10 1 10.5357 0.9946 –0.5357 0.0054 5.7267 0.0454 
 5 10.5397 4.9685 –0.5397 0.0315 5.6970 1.1347 
 10 10.5112 9.9506 –0.5112 0.0494 5.4637 4.4754 
 50 10.4860 49.9723 –0.4860 0.0277 5.6338 114.6892 

50 1 52.2225 0.9995 –2.2225 0.0005 128.4855 0.0420 
 5 52.2654 4.9916 –2.2654 0.0084 130.2534 1.0312 
 10 51.9926 10.0367 –1.9926 -0.0367 127.8785 4.2046 
 50 52.3120 49.8948 –2.3120 0.1052 130.7992 104.0902 
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Table 3  The estimated bias and mean square error of ̂  and ̂  for n = 100 
 

    ̂  ̂  ˆ   ˆ   ˆ( )MSE   ˆ( )MSE   
2 1 2.0878 0.9919 –0.0878 0.0081 0.1596 0.0341 
 5 2.0869 4.9573 –0.0869 0.0427 0.1534 0.8364 
 10 2.0744 9.9796 –0.0744 0.0204 0.1554 3.4912 
 50 2.0874 49.5103 –0.0874 0.4897 0.1554 80.8199 
5 1 5.1549 0.9951 –0.1549 0.0049 0.7316 0.0253 
 5 5.1407 4.9881 –0.1407 0.0119 0.7177 0.6355 
 10 5.1734 9.9265 –0.1734 0.0735 0.7493 2.5712 
 50 5.1715 49.6719 –0.1715 0.3281 0.7477 62.9094 

10 1 10.2766 0.9975 –0.2766 0.0025 2.6691 0.0235 
 5 10.2824 4.9792 –0.2824 0.0208 2.5877 0.5644 
 10 10.2369 10.0057 –0.2369 –0.0057 2.5639 2.2955 
 50 10.2854 49.7860 –0.2854 0.2140 2.6673 57.8074 

50 1 51.2834 0.9958 –1.2834 0.0042 59.2753 0.0206 
 5 51.0023 5.0004 –1.0023 –0.0004 53.4545 0.4927 
 10 51.1610 9.9823 –1.1610 0.0177 58.8880 2.1036 
 50 51.0919 50.0134 –1.0919 –0.0134 59.8056 54.1736 

 

       As seen in Tables 1-3, importantly, the simulated bias for ̂  has a negative bias for all 

situations, so it is an overestimate. In contrast, that for ̂  are systematically positive, then it is an 

underestimate. When sample sizes are small, the amount of bias is quite large particularly when 

the true value of at least one parameter is sufficient big. Furthermore, the bigger parameters, the 

larger are the bias. For instance, at n = 100, 2   and 5  , the bias of ̂  is 0.0869,  while for 

50   and 50,   the bias of ̂  is 1.0919.  However, the magnitude of the bias may be 

assumed to be relatively small. Tables 1-3 reveal that the more increasing values of the 

parameters, the more growing are the mean square error.  As the results from the numerical study, 

it is observed that ̂  and ̂  are consistent. Thus, they are asymptotically unbiased estimators. 

The simulated bias corresponds to the theoretical background as it is a decreasing function of 

sample sizes n.  That is, when sample sizes increase, the amount of the bias decreases and tends 

to zero as n   . Similarly, the MSE is a decreasing function of n. The larger sample size, the 

smaller is the MSE, and it approaches to zero as n   .  
 

5.2  Illustrative Examples   
       The practical applications of the suggested estimators are illustrated in this section. Two real 

data sets are considered as the followings.  
 

Example 1  The following data set was provided by Lieblein and Zelen [12] on the fatigue life of 

the 23 deep groove ball bearings: 
  

17.88   28.92   33.00   41.52   42.12   45.60   48.48   51.84   51.96   54.12   55.56   67.80 
68.64   68.64   68.88   84.12   93.12   98.64   105.12   105.84   127.92   128.04   173.40.  

The above data had been analyzed by Gupta and Akman [8] and the result indicated that the data 

set comes from the length biased inverse Gaussian distribution. For two-sided case, we divide all 
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data in pairs, we have only 11 pairs of observations, and the last one is dropped. We obtain 11 

observations: 1 2 3 4 21 22( , ), ( , ), , ( , ).y y y y y y  Let 
 

1 2
1 2 3 4

1 1 1 1
, ,u  u

y y y y
    11

21 22

1 1
, , u

y y
   

 
be the observations drawn from the TS-LBIG distribution. In this example, the point estimates 

are reported in Table 4. Moreover, using the relationship given in Section 2.1, the point estimates 

for parameters   and   are also computed.  
 

Example 2  This example was taken from Nichols and Padgett [14] consisting of 100 

observations on breaking stress of carbon fibers (in GPa). These data had been analyzed by 

assuming the Weibull distribution. In our case, the data was ascendingly ordered. Dealing with 

the analogous manner of the example 1, finally, we obtain 50 observations drawn from the 

TS-LBIG distribution. The point estimates for the proposed and original parameters are shown in 

Table 5.  

       Most importantly, the estimators ̂  and ̂  represent the thickness of the object under study 

and the nominal treatment pressure on the object, correspondingly. On the other hand, the 

estimators ̂  and ̂  lack this physical explanation.  
 

Table 4  Point estimates for Example 1 Table 5  Point estimates for Example 2

Proposed 
Parameters 

Usual  
Parameters 

Proposed 
Parameters 

Usual  
Parameters 

                

1.5648 34.1267 53.4029 83.5672 1.3736 1.5579 2.1399 2.9395

 

6. Conclusions and Discussion  
 

        The new lifetime distribution based on re-parametrization model called the two-sided 

length biased inverse Gaussian distribution is proposed. The reciprocal properties and the first 

four moments of the distribution are investigated. The conventional point estimation, method of 

moment, is developed to estimate the parameters of the distribution and the asymptotic variances 

and covariance of the suggested estimators are also provided.  

        In this article, we discussed on some statistical properties of the distribution. The results 

ensure us that the method of moment estimators works and provides consistent statistics. 

Importantly, we estimate the parameters which reflect the physical nature of an object analyzed 

by a statistical view of the distribution. Accordingly, one could continue investigations for other 

point estimation schemes such as maximum likelihood estimators, although we expect to 

encounter mathematical difficulties.   The density function of the TS-LBIG distribution involves 

an integral sign, and finding a maximum of their products even numerically is not easy work. 

Furthermore, we may consider new other estimators, i.e., a regression-quantile (least square). 

This method is dealt with the regression analysis of sample quantiles. However, the method of 
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moment estimation can be examined as a preliminary topic of studying for the TS-LBIG 

distribution since it has a more satisfying property, e.g. simple computation.  Interval estimation 

and hypothesis testing issues remain to be interesting for further investigation. As presented 

results of the asymptotic analysis, tests and confident interval estimation procedures will be 

explored regarding on a power of the test and coverage probabilities. Nevertheless, they are 

above the scope of this article and the investigation will be separately communicated.   
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