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ABSTRACT  In this article, a new family of distributions is introduced. It is gained by 
compounding a lifetime distribution with discrete distributions. It is called the Topp- 
Leone generalized exponential power series distribution. The distributions are utilized 
for reliability of parallel process with independent and identically distributed compo- 
nents, where the lifetime of each component shows the characteristic of the Topp-Leone 
generalized exponential distribution. The proposed distribution can be composed by 
several lifetime models. There are some special cases such as the Topp-Leone genera- 
lized exponential Poisson, Topp-Leone generalized exponential geometric, Topp-Leone 
generalized exponential binomial, and Topp-Leone generalized exponential logarithmic 
distributions. Some statistical properties of the proposed distributions are presented in- 
cluding the survival function, distribution function, hazard function and moments. The 
hazard function of the proposed distributions is categorized as decreasing, increasing, 
and V shaped. In this study, the maximum likelihood estimation is employed to estimate 
the parameter. Some real datasets are used to illustrate the goodness-of-fit depended on 
the generalized exponential, Topp-Leone generalized exponential, Topp-Leone genera- 
lized exponential geometric, and Topp-Leone generalized exponential Poisson distri- 
bution. The results show that its sub-model of the proposed distribution is better than 
selected distributions.  

 
Keywords  Maximum likelihood method; Parallel system; Power series class of 
distributions; Topp-Leone generalized exponential distribution 

 

1. Introduction  
 

The lifetime model has become well-known in many fields such as medicine, engineering, 

and biological organisms. Recently, various distributions have been presented for lifetime data. 
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The reliability analysis is focused on the study of experimental failure components. It can 

often be assumed that there is a mechanism that leads to the failure of these components. It 

seems that there is a lack of analysis on what factors are responsible for component failure, 

see [2]. Consider a lifetime of a system which consists of Z  components, where discrete 

random variable Z  can have Poisson, geometric, binomial, logarithmic distribution. The 

general form of these selected distributions is called power series. Let iY  be the continuous 

lifetime random variable of each component such as the generalized exponential or Weibull 

distributions. Then a random variable 1 2min( , , )ZX Y Y Y   or 1 2max( , , )ZX Y Y Y   repre- 

sents the lifetime of components depending on the organization of components as a series or 

parallel system, respectively.  

Some lifetime distributions including the power series distribution have been combined 

to lifetime model. For example, [4] presented the exponential power series (EPS) distribution 

which contained the exponential Poisson (EP) distribution [8], exponential logarithmic (EL) 

distribution [15] and exponential geometric (EG) distribution [1]. In case of the system with 

parallel components, the generalized exponential with family of power series distributions [9] 

and the complementary exponential with family of power series distribution [6] are discussed. 

Recently in 2016, a new attractive life time distribution is proposed in [14], namely the Topp - 

Leone generalized exponential (TLGE) distribution. In the application study in these article, 

the results suggested as the TLGE distribution is flexible and capable for modeling some 

phenomena in engineering field. In this work, we introduce and present the method of con- 

structing the Topp-Leone generalized exponential power series distributions, which consists 

of the TLGE distribution and the power series distributions. It can be used in reliability 

analysis. 

This work is arranged as follows. The Topp-Leone generalized exponential power series 

distributions are defined in Section 2. The moments and quantile function are derived in 

Section 3. Some special cases of the distribution are presented in Section 4. Parameters 

Estimation using the maximum likelihood estimation are shown in Section 5. Applications 

with two real datasets are given in Section 6. Section 7 concludes this research. 

 

2.  The Class of Topp-Leone Generalized Exponential Power Series Distri- 
bution 

 
Remind that a random variable Y  has the Topp-Leone generalized exponential distri- 

bution (denoted as TLGE( , , )Y    ), see [14], if its cumulative distribution function (cdf) 

is  

( ) [2 (1 ) ] (1 ) ,y yG y e e          
 

where 0,y   0   and 0   are shape parameters and 0   is scale parameter. The 

probability density function (pdf) is  
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 1 1( ) 2 (1 ) [1 (1 ) ][2 (1 ) ] ,y y y yg y e e e e                    
 

0,y   0,   and 0  . 

Let Z  be a random variable distributed as the power series which excludes zero. Its 

probability mass function (pmf) is  

 ( ; )
( )

z
za

P Z z
C




  , 

  
where 1,2, , 0zz a   depends on Z , 

1
( )z

zz
a C 


  and 0  . Function ( )C   

takes finite values and its first and second derivatives are denoted as ( )C   and ( )C  , 

respectively. The inverse function of ( )C   is denoted as 1( )C  . In Table 1 below (see also 

[10]), some special cases belong to the power series distribution (excluded zero) are presented 

and more details are described in [7, 12]. 

 

Table 1  Some Special Cases of the Power Series Distributions  
 

Distributions za  ( )C   ( )C   1( )C 
 

Parameter 
space 

Poisson 1z!  1e   e  l og( +1)   (0, )  

Logarithmic 1z  log(1 )   
1(1 )   1 e    (0, 1)  

Geometric 1  
1(1 )    

2(1 )   
1( 1)     (0, 1)  

Binomial 
m

z

 
 
   

( 1) 1m    
1( 1)mm    

1
( 1) 1m     (0, 1)  

 

Let ( ) 1 2max( , , , ),Z ZX Y Y Y   where 1 2, , , ZY Y Y  are independent and identically dis- 

tributed random variables with TLGE distribution. In this case ( ) |ZX Z z  has the con- 

ditional cdf as   

 
( ) |

( ) [2 (1 ) ] (1 )
Z

zx x
X Z zG x e e     

     , 0x  . 
 

Thus, the Topp-Leone generalized exponential power series (TLGEPS) distribution is given 

by the marginal cdf of ( )ZX  is  

        
 

1

(1 ) [2 (1 ) ][ ( )]
( ) [ ( )]

( ) ( ) ( )

{ }x xz
zz

z

C e ea C G x
F x G x

C C C

     
  

 



  
   .     (1) 

 

Consequently, the pdf is  
 

1 1( ) 2 [1 (1 ) ](1 ) [2 (1 ) ]x x x xf x e e e e                    

 (1 ) [2 (1 ) ]

( )

{ }x xC e e

C

    



    
 . 
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The survival and hazard functions are  
 

 ( ) (1 ) [2 (1 ) ][ ( )]
( ) 1

( ) ( )

{ }x xC C e eC G x
s x

C C

     
 

    
    

and  
1

12 [1 (1 ) ](1 )
( ) [2 (1 ) ] [ ( )]

( ) [ ( )]

x x x
xe e e

h x e C G x
C C G x

    
   

 

   
       


. 

 

In the same manner, if (1) 1 2min( , , , ),ZX Y Y Y   then the cdf of (1)X  is  
 

 
(1)

(1 ) [2 (1 ) ]
( ) 1

( )

{ }x x

X

C e e
F x

C

     



    
  . 

 
3. Quantiles and Moments 

 

From (1), let 
[ ( )]

( )

C G x
u

C




 , then the quantile function of X  is obtained by  

1
1 [ ( )]

u

C uC
X G





  

  
 

 

 
where  Uniform(0, 1).u   Note that the inverse quantile function is  

 

 1 1/ 1/1
( ) log 1 1 1( )G y y  


      . 

 
A random variate X  can be generated from the TLGEPS distribution using the quantile 

function. If TLGEPS( , , , )X     , then the moment generating function (mgf) of X  is 

gathered from the cdf and pdf expansion of TLGE distribution:  

                  
1 0 0 0

( 1) 1
( )

( )
1

z j
z

X ijk
z i j k

t
k

a
M t

tC
k


 
 



  

   

     
 

    
 

               (2) 

where 

( 1) 2i j k z i
ijk

z z i j

i j k
 

      
    
   

. 

 
By differentiating the mgf of X  in (2) with respect to t  and setting t  equal to zero, the 

first moment about origin of X  is  
 

1 0 0 0

(1)
( ) [ ( 1) (1)]

( )

z j
z

ijk
z i j k

a
E X k

C

    
 

  

   


     

 
and the second moment about origin of X  is  
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2 2
2

1 0 0 0

(1)
( ) { (1) ( 1) ( 1) [ (1)] }

( )

z j
z

ijk
z i j k

a
E X k k

C

       
 

  

   

          

 
where ( ) ( ) / ( )        is the digamma function and ( )    is the trigamma function. 

 

4. Special Cases of TLGEPS Distributions 
 

Now we mention in some special cases of TLGEPS distributions. 
 

4.1 The Topp-Leone Generalized Exponential Geometric Distribution 
 

The Topp-Leone generalized exponential geometric (TLGEG) distribution is defined by 

using the cdf from (1) with 1( ) (1 )C       and 2( ) (1 ) ,C       0 1,   leading to  
 

(1 ) (2 )
( )

1 (2 )
F x

  

  

  
 

 


 
 

 
where 1 xv e    and 0.x   The pdf and hazard functions of the TLGEG distribution are  

 
1 1

2

2(1 ) (2 ) (1 )
( )

[1 (2 ) ]

xe
f x

    

  

    
 

    


 
 

and  
1 12(1 ) (2 ) (1 )

( )
[1 (2 ) ][1 (2 ) ]

xe
h x

    

     

    
   

    


   
 

  

 

Figure 1  Plots of the TLGEG pdf and hazard function with specified parameter values 
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4.2 The Topp-Leone Generalized Exponential Binomial Distribution 
 

The Topp-Leone generalized exponential binomial (TLGEB) distribution is defined by 

using the cdf from (1) with ( ) ( 1) 1mC      and 1( ) ( 1) ,mC m     0 1,  leading to 
 

[ (2 ) 1] 1
( )

( 1) 1

m

m
F x

   

  


 

 

 
where 1 xv e    and 0.x   The pdf and hazard functions of the TLGEB distribution are 

 
1 1 12 (1 )(2 ) [ (2 ) 1]

( )
( 1) 1

x m

m

me
f x

            


      


 
 

and  
1 1 12 (1 )(2 ) [ (2 ) 1]

( )
( 1) [ (2 ) 1]

x m

m m

me
h x

       

  

     
  

      


   
, 

0.x   
 

 

Figure 2  Plots of the TLGEB pdf and hazard function with specified parameter values 

 

4.3 The Topp-Leone Generalized Exponential Poisson Distribution 
 

The Topp-Leone generalized exponential Poisson (TLGEP) distribution is defined by 

using the cdf from (1) with ( ) 1C e    and ( ) ,C e  0,   leading to  
 

exp{ (2 ) } 1
( )

1
F x

e

  



  



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where 1 xv e    and 0.x   The pdf and hazard functions of the TLGEP distribution are  
 

1 12 (1 )(2 ) exp{ (2 ) }
( )

1

xe
f x

e

       



         



 

and  
1 12 (1 )(2 ) exp{ (2 ) }

( )
exp{ (2 ) }

xe
h x

e

       

   

     
 

    


 
, 

0.x   
 

 

Figure 3  Plots of the TLGEP pdf and hazard function with specified parameter values 

 
4.4 The Topp-Leone Generalized Exponential Logarithmic Distribution 

 
The Topp-Leone generalized exponential logarithmic (TLGEL) distribution is defined by 

using the cdf from (1) with ( ) log(1 )C      and 1( ) (1 ) ,C      0 1,   leading to  
 

log[1 (2 ) ]
( )

log(1 )
F x

   


 



 

 
where 1 xv e    and 0.x   The pdf and hazard functions of the TLGEL distribution are  

 
1 12 (1 )(2 )

( )
[log(1 )][ (2 ) 1]

xe
f x

    

  

   
  

   


  
 

and  

 
1 12 (1 )(2 )

( )
[ (2 ) 1]log (1 ) / [1 (2 ) ]

xe
h x

    

     

   
    

   


    
, 

0.x   
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Figure 4  Plots of the TLGEL pdf and hazard function with specified parameter values 

 

5. Parameter Estimation 
 

In this section, parameters estimation based on the maximum likelihood estimations 

(MLE) will be discussed. Let 1 2, , , nX X X  be independent and identically distributed 

TLGEPS random variables (sample) with observed values 1 2, , , nx x x . Let ( , , , )T      

be a parameter vector. The log-likelihood function (  ) of 1 2, , , nx x x  is  
 

1 1

(log 2) (log ) (log ) (log ) (log ) log[ ( )] log(1 )
n n

i i
i i

n n n n n n C x       
 

           

1 1 1

( 1) log( ) ( 1) log(2 ) log{ [ ( )]}
n n n

i i
i i i

C G x    
  

         

 
where 1 .ix

iv e    Then, finding the first partial derivatives of   with respect to each para- 

meter , , ,    and  :  

, , ,
T

U
   

    
      

   
 

where  

1 1

log( ) log(2 )
n n

i i
i i

n   
   


   

  
, 

 

1 1 1

log( ) log( )
log( ) ( 1)

1 2

n n n
i i i i

i
i i ii i

n  

 

     
     


    

    
, 
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1 1

1 1 1 1

( 1) ( 1)
1 2

i i ix x xn n n n
i i i i i

i
i i i ii i i

x e x e x en
x

   

 

    
    

   

   


      

     
, 

and 

1

[ ( )] ( ) ( )

[ ( )] ( )

n

i

n C G x G x C
n

C G x C

 
   

   
      


. 

 
The MLEs of   are implemented by solving the nonlinear equations and setting 0U 


, 

where 0


 is a zero vector. In this case, there is no explicit solution of above system of 

nonlinear equations. Hence, the maximum likelihood estimators can be calculated by a 

numerical method using optim function in R language [13]. 

 

6. Applications 
 

In this section, we analyze two real datasets with the TLGEG, TLGEP, TLGE and GE 

distributions. The first dataset is given by [3], provides the life length of maximum stresses 

per cycle 31,000 measured in pound force per square inch for aluminum coupons which is cut 

into the direction of compress at 18 cycles per second (101 samples). The second dataset from 

[11] presents the breaking strength data measured in GPa which consists of 100 samples 

which are also provided in Adequacy Model package [5] of R language. The proposed 

distribution is applied to two real datasets. We have fitted the TLGEG, TLGEP, TLGE and GE 

distributions. The results for both datasets are reported in Tables 2 and 3. 
 

Table 2  Parameter Estimates, KS and AD Test Results, AIC and  

BIC Values for Maximum Stress Data 
 

Parameter 
estimates 

Distributions 
TLGEG TLGEP TLGE GE 

̂  13.653 23.387 32.873 281.135 

̂  0.041 0.033 0.030 0.046 

̂  6.236 2.258 2.696 – 

̂  0.978 4.803 – – 

–log LL 455.277 455.953 458.865 462.612 

KS 0.049 0.077 0.096 0.108 

( p-value) (0.9715) (0.5805) (0.3129) (0.1875) 

AD 0.247 0.419 0.819 1.392 

( p-value) (0.9719) (0.8298) (0.4647) (0.2047) 

AIC 918.554 919.905 923.729 929.223 

BIC 929.014 930.366 931.574 934.453 
 

Theoretically, the most popular goodness-of-fit measures are the Kolmogorov-Smirnov 

(KS) test as well as Anderson-Darling (AD) test statistics which are based on empirical 

distribution function. For model selection, it uses minus log-likelihood (–log LL) to calculate 
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Akaike information and Bayesian information criteria (AIC and BIC). In Table 2 we present 

the fitting results of the data based on TLGEG, compared to the TLGEP, TLGE and GE 

distributions. The result shows that the TLGEG distribution gives the largest p-value of KS 

and AD test statistics. Moreover, its AIC and BIC values are the smallest. The fitted distri- 

butions for the second dataset are presented in Table 3. It shows that the TLGEG distribution 

also gives the smallest AIC and BIC values. In addition, the proposed distribution provides 

the highest p-value based on KS and AD test statistics. Therefore, the TLGEG distribution 

provides the better fit among selected distributions for both datasets. The plots of fitted 

TLGEG, TLGEP, TLGE and GE distributions with real datasets are shown in Figures 5 and 6. 
 

Table 3  Parameter Estimates, KS and AD Test Results, AIC and  

BIC Values for Breaking Stress of Carbon Fibres Data 
 

Parameter 
estimates 

Distributions 
TLGEG TLGEP TLGE GE 

̂  0.231 8.158 10.144 4.484 

̂  0.778 0.739 0.645 0.819 

̂  2.476 0.156 0.390 – 

̂  0.997 5.622 – – 

–log LL 144.592 146.374 155.323 160.762 

KS 0.065 0.084 0.115 0.124 

( p-value) (0.7995) (0.4869) (0.1392 ) (0.0943) 

AD 0.401 0.653 1.766 2.616 

( p-value) (0.8479) (0.5985) (0.1241) (0.0432) 

AIC 297.183 300.748 316.646 325.525 

BIC 307.604 311.169 324.462 330.735 

 
Figure 5  Plots of fitted TLGEG, TLGEP, TLGE and GE for Maximum Stress Data 
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Figure 6  Plots of fitted TLGEG, TLGEP, TLGE and GE for Breaking Stress of Carbon  

Fibres Data 

 

7. Conclusion 
 

In this work, a new family of lifetime distributions is proposed, called, the TLGEPS 

distribution. The TLGEG, TLGEB, TLGEP and TLGEL distributions are the special cases of 

the proposed family of distributions. The basic mathematical properties of the proposed distri- 

bution are derived including the cumulative distribution function, probability density function, 

hazard function, quantile function, moment generating function and moments about origin. In 

this work, we mainly focus on TLGEG and TLGEP distributions. The parameters of the 

TLGEG and TLGEP distributions are estimated by the maximum likelihood method. The 

distributions are applied to two real dataset. In addition, their performance is compared with 

the performance of TLGE and GE distributions. The results of fitting based on AIC and BIC 

values indicate that the TLGEG is the best fit than other distributions. Also the p-value based 

on KS and AD test statistic of TLGEG distribution shows maximum values. It can be 

concluded that the TLGEG distribution is the most flexible and potentially good for fitting 

than others. 
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