Journal of Probability and Statistical Science 14(2), 149-170, Aug. 2016

Asymptotic Properties and Parameter Estimation Based on Two-Sided Crack Distribution

Wikanda Phaphan	Andrei I. Volodin	Kamon Budsaba
Thammasat University	University of Regina	Thammasat University

ABSTRACT In this paper we propose a new family of the two-sided crack distribution. The theoretical properties of the two-sided crack distribution is established. Also, we develop and investigate the method of moments of parameters estimation. A Monte Carlo simulation and real data study are conducted to appraise the performance of the proposed estimators for given sample sizes by using R program for evaluation.

Keywords Birnbaum-Saunders distribution; Inverse Gaussian distribution; Lengthbiased inverse Gaussian distribution; Maximum likelihood estimators.

1. Introduction

The crack distribution is a positively skewed model, which is widely applicable to model failure times of fatiguing materials. It is also known as the inverse Gaussian mixture distribution, was studied by Jorgensen *et al.* [11] and Bowonrattanaset and Budsaba [5]. Gupta and Akman [9] proposed the mixture of inverse Gaussian (IG) distribution and length biased inverse Gaussian (LBIG) distribution which given in Jorgensen *et al.* [11] in a reliability view point, and here called JSW distribution. Gupta and Akman [10] studied the mixture of IG distribution and LBIG distribution in the view of Bayes estimation. Balakrishnan *et al.* [2] discussed several aspects of the inverse Gaussian mixture distribution which is useful for modelling positive data. Specifically, they discussed transformations, the derivation of moments, fitting of models, and a shape analysis of the transformations. Bowonrattanaset and Budsaba [5] introduced the inverse Gaussian mixture distribution based on re-parametrization model presented in Ahmed *et al.* [1], and proposed the name crack for this distribution, it will be denoted by $CR(\lambda, \theta, p)$. They also established some deeper results especially function with rigorous proves. Gupta and Kundu [8] proposed to use the EM algorithm to estimate the unknown parameters of the inverse Gaussian

Received May 2015, revised July 2015, in final form August 2016.

Wikanda Phaphan (email: <u>maji.hunter@gmail.com</u>) and Kamon Budsaba are affiliated to the Department of Mathematics and Statistics at Thammasat University, Rangsit Center, Pathum Thani 12121, Thailand. Andrei Volodin (email: <u>andrei@uregina.ca</u>) is affiliated to the Department of Mathematical and Statistics at University of Regina, Regina, Saskatchewan, Canada.

^{© 2016} Susan Rivers' Cultural Institute, Hsinchu City, Taiwan, Republic of China. JPSS: ISSN 1726-3328

mixture distribution for complete and censored samples. Duangsaphon [6] studied crack distribution in the view of regression-quantile estimation, Bayesian estimation and confidence interval estimation. Additionally, Saengthong and Bodhisuwan [14] proposed a two-parameter crack distribution which is obtained by adding a new weight parameter p to the inverse Gaussian mixture distribution.

The crack lifetime distribution depends on three parameters. It is formed by adding the weighted parameter and combining the two parameter IG distribution and two parameter *LBIG* distribution. This distribution contains special case three known distribution, namely, the Birnbaum and Saunders (BS) distribution, the IG distribution, and the *LBIG* distribution. The relevance of the probability density function (pdf.) of distributions mentioned above are as follows. Suppose X_1 and X_2 be independent random variables such that $X_1 \sim IG(\lambda, \theta)$ i.e., X_1 has IG distribution with the parameters $\lambda, \theta > 0$ and it has the pdf.:

$$f_{IG}(x_1;\lambda,\theta) = \begin{cases} \frac{\lambda}{\theta\sqrt{2\pi}} \left(\frac{\theta}{x_1}\right)^{\frac{3}{2}} exp\left[-\frac{1}{2}\left(\sqrt{\frac{x_1}{\theta}} - \lambda\sqrt{\frac{\theta}{x_1}}\right)^2\right]; & x > 0\\ 0; & otherwise. \end{cases}$$
(1)

In addition, suppose $X_2 \sim LBIG(\lambda, \theta)$. The pdf. of X_2 is given by:

$$f_{LBIG}(x_2;\lambda,\theta) = \begin{cases} \frac{1}{\theta\sqrt{2\pi}} \left(\frac{\theta}{x_2}\right)^{\frac{1}{2}} exp\left[-\frac{1}{2}\left(\sqrt{\frac{x_2}{\theta}} - \lambda\sqrt{\frac{\theta}{x_2}}\right)^2\right]; & x > 0\\ 0; & otherwise. \end{cases}$$
(2)

The variable X_2 is so-called the complementary reciprocal of X_1 . For the crack distribution, we consider the new random variable X such that,

$$X = \begin{cases} X_1 \text{ with probability } p \\ X_2 \text{ with probability } 1 - p \end{cases}$$
(3)

where $0 \le p \le 1$. Obviously, X is a mixture of X_1 and X_2 and the pdf. of X is given by the following formula

$$f_{CR}(x;\lambda,\theta,p) = pf_{IG}(x;\lambda,\theta) + (1-p)f_{LBIG}(x;\lambda,\theta)$$
(4)

From (4), the probability density function, can be expressed as

$$f_{CR}(x;\lambda,\theta,p) = \begin{cases} \frac{1}{\theta\sqrt{2\pi}} \left[p\lambda \left(\frac{\theta}{x}\right)^{\frac{3}{2}} + (1-p) \left(\frac{\theta}{x}\right)^{\frac{1}{2}} \right] exp \left[-\frac{1}{2} \left(\sqrt{\frac{x}{\theta}} - \lambda\sqrt{\frac{\theta}{x}}\right)^{2} \right]; & x > 0\\ 0; & otherwise. \end{cases}$$
(5)

where $\lambda > 0$, $\theta > 0$ and $0 \le p \le 1$. Evidently, the crack distribution become IG distribution for p = 1, *LBIG* distribution for p = 0 and BS distribution by substituting p = 0.5.

However, all of published about the crack distribution can be used in model one sides crack growth data except the studies of Lisawadi [12]. Hence, the main aim of this paper is to introduce a new class of distributions based on crack distribution proposed in [5] by considering the case when a crack develops from two sides. The new distribution is call two-sided crack distribution. Additionally, this kind of study has not been studied before. We propose probability model of the two-sided crack distribution by applying the approach of Lisawadi [12]. The theoretical properties of the two-sided crack distribution are established. Also, we develop and investigate the method of moments of parameters point estimation for the new distribution. A Monte Carlo simulation and real data study are conducted to appraise the performance of the proposed estimators for given sample sizes by using R program for evaluation.

2. Probability Model of Two-Sided Crack Distribution

In this dessertation we consider the case when a crack develops from two sides of material with the same distribution function of the time reaching the critical value, e.g., fatigue limit loading applied to both upper and lower sides of the block.

Suppose F(t), t > 0, be the cumulative distribution function of break down time moment τ for one-sided loading. If at the top and the bottom side of the block a crack is developing with the same distribution function of the time of reaching the critical length a, then we have two, assumed to be independent, identically distributed random variables τ_1 and τ_2 .

Therefore, the random variable $Y_1 = a/\tau_1$ can be interpreted as a speed of the crack evolution which has cumulative distribution function $F_{Y_1}(t) = 1 - F(at^{-1})$, that is the reliability function R(t), and probability density function $f_{Y_1}(t) = at^{-2} f(at^{-1})$, which is a derivative of the R(t).

In a similar way, we get $Y_2 = a/\tau_2$ which has cumulative distribution function $F_{Y_2}(t) = 1 - F(at^{-1})$ and probability density function $f_{Y_2}(t) = at^{-2}f(at^{-1})$. Then the speed of the crack evolution for this two-sided case equals $Y_1 + Y_2 = a\tau_1^{-1} + a\tau_2^{-1}$ and the random variable

$$\tau = \frac{a}{Y_1 + Y_2} = \left[\tau_1^{-1} + \tau_2^{-1}\right]^{-1}$$

corresponds to a moment of the block break down.

The cdf. of τ is

$$F_{\tau}(z) = \int \int_{t+s>z^{-1}} f\left(\frac{1}{t}\right) f\left(\frac{1}{s}\right) \frac{dtds}{t^2 s^2}$$
(6)

$$= 1 - \int_0^{z^{-1}} f\left(\frac{1}{t}\right) \frac{dt}{t^2} \int_0^{z^{-1}-t} f\left(\frac{1}{s}\right) \frac{ds}{s^2}.$$
 (7)

Proof. Let $X = 1/\tau_1$, $Y = 1/\tau_2$. Recall on

$$P(X + Y \ge z^{-1}) = \iint_{x+y\ge z^{-1}} f_{X,Y}(x,y) dx dy$$

$$f_{X,Y}(x, y) = f_X(x) \cdot f_Y(y).$$

Therefore,

$$F_X(x) = P(X \le x) = P\left(\frac{1}{\tau_1} \le x\right) = P(\tau_1 \ge x^{-1}) = 1 - F_{\tau_1}\left(\frac{1}{x}\right)$$
$$f_X(x) = F'_X(x) = f\left(\frac{1}{x}\right) \cdot \frac{1}{x^2}.$$

The same $f_Y(y) = f(1/y)/y^2$. If $z = \infty$, then $F_\tau(\infty) = 1$ and 1/z = 0. So,

$$F_{\tau}(z) = 1 - \iint f_{\tau}(x, y) dx dy = 1 - \int_{0}^{z^{-1}} \int_{0}^{z^{-1}-y} f_{\tau}(x, y) dx dy$$
$$f_{\tau}(x, y) = f\left(\frac{1}{x}\right) f\left(\frac{1}{y}\right) \frac{1}{x^{2}} \frac{1}{y^{2}}.$$

Hence,

$$F_{\tau}(z) = 1 - \int_{0}^{z^{-1}} \int_{0}^{z^{-1}-t} f\left(\frac{1}{t}\right) f\left(\frac{1}{s}\right) \frac{1}{t^{2}s^{2}} ds dt.$$

= $1 - \int_{0}^{z^{-1}} f\left(\frac{1}{t}\right) \frac{dt}{t^{2}} \int_{0}^{z^{-1}-t} f\left(\frac{1}{s}\right) \frac{ds}{s^{2}}.$

The pdf. of τ is

$$f_{\tau}(z) = z^{-2} \int_0^{z^{-1}} f\left(\frac{1}{t}\right) f\left(\frac{1}{z^{-1} - t}\right) \frac{1}{t^2 \left(z^{-1} - t\right)^2} dt \tag{8}$$

Proof. Let

$$F_{\tau}(z) = 1 - \int_0^{z^{-1}} \int_0^{z^{-1}-t} f\left(\frac{1}{t}\right) f\left(\frac{1}{s}\right) \frac{1}{t^2 s^2} ds dt.$$

Hence,

$$F_{\tau}(z)' = -\left(\int_{0}^{z^{-1}} \int_{0}^{z^{-1}-t} f\left(\frac{1}{t}\right) f\left(\frac{1}{s}\right) \frac{1}{t^{2}s^{2}} ds dt\right)'.$$

Let $g_z(z,t) = \int_0^{z^{-1}-t} \left[f(1/t) f(1/s) / (t^2 s^2) \right] ds$. Therefore,

$$F_{\tau}(z)' = -\left(\int_0^{z^{-1}} g_z(z,t)dt\right)'.$$

Recall on Leibniz integral rule, hence,

$$F_{\tau}(z)' = -\int_0^{z^{-1}} g'_z(z,t) dt - g(z,z^{-1}) \cdot \left(-\frac{1}{z^2}\right) + 0.$$

0

We can see that

$$g(z, z^{-1}) = \int_0^{z^{-1} - z^{-1}} f\left(\frac{1}{t}\right) f\left(\frac{1}{s}\right) \frac{1}{t^2 s^2} ds = \int_0^0 f\left(\frac{1}{t}\right) f\left(\frac{1}{s}\right) \frac{1}{t^2 s^2} ds = 0$$

Thus,

$$F_{\tau}(z)' = -\int_{0}^{z^{-1}} g'_{z}(z,t)dt, \qquad g'_{z}(z,t) = \left(\int_{0}^{z^{-1}-t} f\left(\frac{1}{t}\right) f\left(\frac{1}{s}\right) \frac{1}{t^{2}s^{2}}ds\right)'$$

Let $h(z,s) = h(s) = f(1/t) f(1/s) / (t^2 s^2)$. Recall on Leibniz integral rule again, therefore,

$$g'_{z}(z,t) = \int_{0}^{z^{-1}-t} h'(z,s)ds + h(z,z^{-1}-t) \cdot \left(-\frac{1}{z^{2}}\right) - g(z,0) \cdot \\ = \int_{0}^{z^{-1}} 0 \, ds + h(z,z^{-1}-t) \cdot \left(-\frac{1}{z^{2}}\right) - 0 \\ = -\frac{1}{z^{2}}h(z,z^{-1}-t) \\ F_{\tau}(z)' = \int_{0}^{z^{-1}} \frac{1}{z^{2}}h(z,z^{-1}-t)dt \\ = z^{-2} \int_{0}^{z^{-1}} f\left(\frac{1}{t}\right) f\left(\frac{1}{z^{-1}-t}\right) \frac{1}{t^{2}(z^{-1}-t)^{2}}dt$$

For the case when we consider $F(t) = F_{CR}(t; \lambda, \theta, p)$, we can say that the random variable τ has two-sided crack distribution.

3. Cumulants and Moments

Theorem 3.1 Let τ be a random variable of the two-sided crack distribution with parameters λ , θ and p. Then the first four cumulants of τ can be given as:

$$1^{st} \quad cumulant \quad K_1 = \frac{2}{\lambda^2 \theta} (\lambda + p)$$

$$2^{nd} \quad cumulant \quad K_2 = \frac{2}{\lambda^4 \theta^2} (\lambda + 3p - p^2)$$

$$3^{th} \quad cumulant \quad K_3 = \frac{2}{\lambda^6 \theta^3} (3\lambda + 15p - 9p^2 + 2p^3)$$

$$4^{th} \quad cumulant \quad K_4 = \frac{2}{\lambda^8 \theta^4} (15\lambda + 105p - 87p^2 + 36p^3 - 6p^4).$$

Proof. Let X be a random variable of the crack distribution with parameters λ , θ and p. The first four cumulants of a random variable X are defined as

1st cumulant
$$K_1(X) = (\lambda + 1 - p)\theta$$

2nd cumulant $K_2(X) = (\lambda + 2 - p - p^2)\theta^2$

3th cumulant
$$K_3(X) = (3\lambda + 8 - 3p - 3p^2 - 2p^3)\theta^3$$

4th cumulant $K_4(X) = (15\lambda + 48 - 15p - 15p^2 - 12p^3 - 6p^4)\theta^4$.

According to the reciprocal random variable 1/X has $CR(\lambda, 1/(\lambda^2\theta), 1-p)$ distribution, hence we make the substitution $\theta \Rightarrow 1/(\lambda^2\theta)$, and $p \Rightarrow 1-p$. Finally, we double them, in order to get the cumulants of $\tau = X_1^{-1} + X_2^{-1}$. Therefore,

$$K_1(\tau) = 2(\lambda + 1 - (1 - p))\left(\frac{1}{\lambda^2 \theta}\right) = \frac{2}{\lambda^2 \theta}(\lambda + p).$$
(9)

$$K_{2}(\tau) = 2\left(\lambda + 2 - (1-p) - (1-p)^{2}\right) \left(\frac{1}{\lambda^{2}\theta}\right)^{2} = \frac{2}{\lambda^{4}\theta^{2}} \left(\lambda + 3p - p^{2}\right).$$
(10)

$$K_{3}(\tau) = 2\left(3\lambda + 8 - 3(1-p) - 3(1-p)^{2} - 2(1-p)^{3}\right) \left(\frac{1}{\lambda^{2}\theta}\right)^{2}$$
$$= \frac{2}{\lambda^{6}\theta^{3}} \left(3\lambda + 15p - 9p^{2} + 2P^{3}\right).$$
(11)

$$K_4(\tau) = 2\left(15\lambda + 48 - 15(1-p) - 15(1-p)^2 - 12(1-p)^3 - 6(1-p)^4\right) \left(\frac{1}{\lambda^2\theta}\right)^4$$
$$= \frac{2}{\lambda^8\theta^4} \left(15\lambda + 105p - 87p^2 + 36p^3 - 6p^4\right).$$
(12)

Theorem 3.2 Let τ be a random variable of the two-sided crack distribution with parameters λ , θ and p. Then based on theorem 3.1, the first four moments of τ are given by

$$\mu(\tau) = \frac{2}{\lambda^2 \theta} (\lambda + p), \qquad \sigma^2(\tau) = \frac{2}{\lambda^4 \theta^2} \left(\lambda + 3p - p^2\right)$$
$$\mu_3(\tau) = \frac{2}{\lambda^6 \theta^3} \left(3\lambda + 15p - 9p^2 + 2p^3\right)$$
$$\mu_4(\tau) = \frac{2}{\lambda^8 \theta^4} \left(15\lambda + 6\lambda^2 + 36\lambda p - 12\lambda p^2 + 105p - 33p^2\right).$$

Proof. The relations that express the moments as functions of the cumulants are

$$\mu(\tau) = K_1(\tau), \quad \sigma^2(\tau) = K_2(\tau), \quad \mu_3(\tau) = K_3(\tau), \quad \mu_4(\tau) = K_4(\tau) + 3\sigma^4(\tau).$$

Based on theorem 3.1, we make the substitution cumulants into the formulae above in order to get the first four central moments of two-sided crack distribution.

4. Parameter Estimation

Estimation of the parameters λ and θ with fixed the value of p by the method of moments for the two-sided crack distribution can be derived in the following way. Using formulae from the theorem 3.2 we obtain formulae for the expectation and variance

$$E(X) = \mu(X) = \frac{2}{\lambda^2 \theta} (\lambda + p), \quad Var(X) = \sigma^2(X) = \frac{2}{\lambda^4 \theta^2} \left(\lambda + 3p - p^2 \right).$$

Asymptotic Properties and Parameter Estimation Based on · · ·

Thus, the method of moments estimations are

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{2}{\lambda^2 \theta} (\lambda + p)$$
(13)

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \bar{X}^{2} = \frac{2}{\lambda^{4} \theta^{2}} \left(\lambda + 3p - p^{2} \right).$$
(14)

Let

$$T = \frac{S^2}{\bar{X}^2} \tag{15}$$

Next, we solve these equations for λ and θ by substituting (13), and (14) into (15). Hence we get

$$T = \frac{(\lambda + 3p - p^2)}{2\lambda^2 + 4\lambda p + 2p^2}$$

Therefore,

$$2T\lambda^{2} + (4Tp - 1)\lambda + (2Tp^{2} - 3p + p^{2}) = 0$$
(16)

Solving equation (16) for λ we obtain

$$\hat{\lambda}_n = \frac{(1 - 4Tp) + \sqrt{16Tp - 8Tp^2 + 1}}{4T}$$
(17)

By equation (13), and (17), we get

$$\hat{\theta} = \frac{2(\hat{\lambda}_n - p)}{\bar{X}\hat{\lambda}_n^2} \tag{18}$$

We will notice that the estimate $\hat{\lambda}_n$ is relatively stable whether the value of θ will be changed.

5. Two-Sided Crack Random Number Generation Procedure

First we discuss how to generate random numbers for the one-sided crack distribution. Fix the shape parameter λ , the scale parameter θ and the probability *p*. According to the Composite Method, then a random number with one-sided crack distribution can be obtained as the following procedure.

- 1. Generate a random number b from uniform [0, 1].
- 2. If b < p, then generate a random number with $IG(\lambda, \theta)$ distribution. Otherwise, generate a random number with $LB(\lambda, \theta)$ distribution.

For two-sided crack distribution, after we obtain a pair of one-sided crack random numbers τ_1 and τ_2 , we calculate $X = \tau_1^{-1} + \tau_2^{-1}$ that is a two-sided crack random numbers.

The following is the same procedure in more details for a $TS - CR(\lambda, \theta, p)$ random number generator procedure.

1. Generate a random number *a* from uniform [0,1] and an independent a standard normal random number α .

- 2. Calculate $u = \lambda \theta + \theta \left[\alpha^2 \sqrt{\alpha^4 + 4\lambda \alpha^2} \right] / 2$.
- 3. If $a < \lambda \theta / (\lambda \theta + u)$, then take CR = u, otherwise $CR = \lambda^2 \theta^2 / u$.
- 4. Generate a random number b from uniform [0, 1].
- 5. If b > p, then generate a standard normal random number α_1 and take $CR = CR + \theta \alpha_1^2$.
- 6. Repeat steps 1-5, for generating a pair of one-sided crack random numbers τ_1 and τ_2 .
- 7. Calculate $X = \tau_1^{-1} + \tau_2^{-1}$.

6. Computational Results

In order to appraise the performance of the proposed estimators, we performed a numerical study for different sample sizes and for different parameter values. Also, we calculated the biases and the MSE of proposed estimator from 5,000 simulated values of $(\hat{\lambda}, \hat{\theta})$ by using the R program version 3.2.0 for evaluation.

Note that the proposed estimators are consistent. Therefore, the proposed estimators are asymptotically unbiased. The simulated bias analysis is in agreement with the theoretical result since bias is a decreasing function of n. In other words, as sample size increases, the magnitude of the bias decreases and approaches to 0 as $n \to \infty$. Furthermore, the numerical values of the biases, the MSE of the proposed estimators are reported in appendix.

6.1 Application to Lifetime Data Set

Here, we apply the proposed distribution to a real data set which taken from Folks and Chhikara [7] data, and Rieck's [13] data. The Folks and Chhikara [7] data provides information on the fracture toughnesses of welds. The data are

fracture										
54.4	62.6	63.2	67.0	70.2	70.5	70.6	71.4	71.8		
74.1	74.1	74.3	78.8	81.8	83.0	84.4	85.3	86.9	87.3	

Table 1 Several data sets obtained from Folk and Chikkara (1977).

From Table 2, we see that the value of estimate parameters of two-sided crack distribution with fixed p = 0.5 and the value of estimate parameters of two-sided BS distribution presented in Lisawadi [12] are similar values. Rieck's [13] data correspond to biaxial fatigue life of metal piece (in cycles) to failure.

Table 2	Point estimates	for	Folk	and	Chikkara'	s [7]	data

Estimator	λ	$\hat{ heta}$
Two-sided crack with fixed $p = 0.1$	35.71619	0.0007515509
Two-sided crack with fixed $p = 0.5$	35.86204	0.0007401309
Two-sided crack with fixed $p = 0.9$	35.69111	0.0007351726
Two-sided BS [12]	35.86204	0.000761061

	fatigue life											
125	127	135	137	185	187	190	190	195	200	212		
242	245	255	283	316	327	355	373	386	456	482		
552	580	700	736	745	750	804	852	884	977	1040		
1066	1093	1114	1125	1300	1536	1583	2208	2266	2834	3280		
4707	5046											

Table 3 Biaxial fatigue life of metal pieces.

Table 4 Point estimates for Rieck's [13] data

Estimator	Â	$\hat{ heta}$
Two-sided crack with fixed $p = 0$	0.3683172	0.005757928
Two-sided crack with fixed $p = 0.1$	0.4064855	0.003933762
Two-sided crack with fixed $p = 0.3$	0.3550685	0.0009263336
Two-sided crack with fixed $p = 0.5$	0.2410718	-0.009448762
Two-sided crack with fixed $p = 0.7$	0.09168065	-0.1534845
Two-sided crack with fixed $p = 0.9$	-0.08453449	-0.2921806
Two-sided crack with fixed $p = 1$	-0.1816241	-0.07596625
Two-sided BS [12]	0.2410718	0.02704306

7. Conclusions

The computational results ensure us that the method of moments estimators works and provides consistent statistics. It also indicate the two-sided crack distribution fits the real data.

Acknowledgment

I gratefully acknowledge the financial support provided by Thammasat University under the TU Research Scholar, Contract No. 44/2558 and Science Achievement Scholarship of Thailand (SAST).

References

- Ahmed, S. E., Budsaba, K., Lisawadi, S., and Volodin, A. (2008). Parametric estimation for the birnbaum-saunders lifetime distribution based on new parametrization, *Thailand Statistician*, 6(2), 213-240.
- [2] Balakrishnan, N., Leiva, V., Sanhueza, A., and Cabrera, E. (2009). Mixture inverse gaussian distributions and its transformations, moments and applicatios, *Statistics*, 43(1), 91-104.
- [3] Birnbaum, Z. W. and Saunders, S. C. (1969). A new family of lifetime distribution, *Applied Probability*, **6**, 319-327.
- [4] Birnbaum, Z. W. and Saunders, S. C. (1969). Estimation for a family of life distributions with applications to fatigue, *Applied Probability*, **6**, 328-347.

- [5] Bowonrattanaset, P. and Budsaba, K. (2011). Some properties of the three- parameter crack distribution, *Thailand Statistician*, **9**(2), 195-203.
- [6] Duangsaphon, M. (2014). Improved Statistical Inference for Three-parameter Crack Lifetime Distribution, Ph.D. Thesis, Thammasat University.
- [7] Folks, J. L. and Chhikara, R. S. (1977). The inverse gaussian distribution as a lifetime model, *Technometrics*, 19(4), 461-468.
- [8] Gupta, R. C. and Kundu, D. (2011). Weighted inverse gaussian-a versatile lifetime model, *Journal of Applied Statistics*, 38, 2695-2708.
- [9] Gupta, R. C. and Olcay Akman, H. (1995). On the reliability studies of a weighted inverse gaussian model, *Joural of Statistical Planning and Inference*, 48, 69-83.
- [10] Gupta, R. C. and Olcay Akman, H. (1995). Bayes estimation in a mixture inverse gaussian model, Annals of the Institute of Statistical Mathematics, 47(3), 493-503.
- [11] Jorgensen, B., Seshadri, V., and Whitmore, G. A. (1991). On the mixture of the inverse Gaussian distribution with its complementary reciprocal, *Scandinavian Journal of Statistics*, 18, 77-89.
- [12] Lisawadi, S. (2009). Parameter Estimation for the Two-sided BS and IG Distribu- tion: and Laws of Large Numbers for Arrays under a Condition of Uniform Integrability, DM Verlag Dr. Muller.
- [13] Rieck, J. R. (1989). Statistical Analysis for the Birnbaum-saunders Fatigue Life Distribution, unpublished Ph.D. thesis, Clemson University, Department of Mathematical Sciences.
- [14] Saengthong, P. and Bodhisuwan, W. (2014). A new two-parameter crack distribution, *Applied Sciences*, **14**(8), 758-766.

Appendix

<u>**Table 5**</u> Simulation Results for n = 10.

					D'		MSE		
λ	θ	р	â	$\hat{\theta}$	î	â	î	ô	
-		0.1	2 1052	0.7551	λ	0.2440	λ	0.10(7	
2	1	0.1	3.1853	0.7551	1.1853	-0.2449	5.4652	0.1965	
2	1	0.3	3.1231	0.6188	1.1231	-0.3812	4.8065	0.2093	
2	1	0.5	3.0925	0.5027	1.0925	-0.4973	5.0931	0.2781	
2	1	0.7	3.1119	0.3824	1.1119	-0.6176	5.0294	0.4392	
2	1	0.9	3.1552	0.2232	1.1552	-0.7768	5.6312	1.7164	
2	5	0.1	3.1499	3.7765	1.1499	-1.2235	5.5226	4.7662	
2	5	0.3	3.0754	3.1056	1.0754	-1.8944	4.7884	5.1840	
2	5	0.5	3.1322	2.4721	1.1322	-2.5279	4.8940	7.2343	
2	5	0.7	3.1623	1.8692	1.1623	-3.1308	5.8871	13.4059	
2	5	0.9	3.1484	1.2059	1.1484	-3.7941	5.5342	53.4954	
2	10	0.1	3.1408	7.6539	1.1408	-2.3461	5.0793	19.4169	
2	10	0.3	3.1136	6.1943	1.1136	-3.8057	4.8427	21.0399	
2	10	0.5	3.1160	4.9880	1.1160	-5.0120	4.9473	28.2904	
2	10	0.7	3.1311	3.7966	1.1311	-6.2034	4.8990	52.3647	
2	10	0.9	3.1851	2.2925	1.1851	-7.7075	5.6604	176.4887	
2	20	0.1	3.1695	15.0085	1.1695	-4.9915	5.1107	76.5150	
2	20	0.3	3.1003	12.4336	1.1003	-7.5664	4.8347	83.0775	
2	20	0.5	3.0385	10.0848	1.0385	-9.9152	4.3840	110.7879	
2	20	0.7	3.1153	7.5331	1.1153	-12.4669	5.1470	200.8392	
2	20	0.9	3.1767	5.1259	1.1767	-14.8741	5.7261	421.1890	
2	50	0.1	3.1892	37.2545	1.1892	-12.7455	5.1869	480.4597	
2	50	0.3	3.1581	30.8248	1.1581	-19.1752	5,1866	532,3039	
2	50	0.5	3.1470	24.8072	1.1470	-25,1928	4.9460	721.9675	
2	50	0.7	3 1424	18 5758	1 1424	-31 4242	5 4252	1622 0867	
2	50	0.9	3 1938	12 5715	1 1938	-37 4285	5.7955	3165 7758	
5	1	0.1	7 4269	0.8330	2 4269	-0.1670	28 1120	0 1821	
5	1	0.1	7 3873	0.7670	2.4209	0.1070	20.1120	0.1720	
5	1	0.5	7.3375	0.7008	2.3873	0.2002	21.2926	0.1720	
5	1	0.5	7.4701	0.7098	2.4781	-0.2902	27.0802	0.1787	
5	1	0.7	7.4370	0.0550	2.4378	-0.3470	27.0692	0.1909	
5	1	0.9	7.3874	0.3911	2.3874	-0.4089	26.0402	0.2181	
5	5	0.1	7.4172	4.2041	2.4172	-0.7959	20.3400	4.8096	
5	5	0.3	7.4133	3.8535	2.4133	-1.1465	27.7301	4.3860	
5	5	0.5	7.3630	3.5737	2.3630	-1.4263	25.5022	4.4488	
5	5	0.7	7.3839	3.2690	2.3839	-1.7310	26.7426	4.7386	
5	5	0.9	7.5298	2.9800	2.5298	-2.0200	28.3959	5.4168	
5	10	0.1	7.5500	8.3179	2.5500	-1.6821	29.2963	18.6744	
5	10	0.3	7.3173	7.7548	2.3173	-2.2452	25.2256	17.1582	
5	10	0.5	7.4017	7.1116	2.4017	-2.8884	26.9563	17.7781	
5	10	0.7	7.4341	6.5022	2.4341	-3.4978	26.7063	19.1906	
5	10	0.9	7.3322	6.0182	2.3322	-3.9818	25.1540	20.9051	
5	20	0.1	7.4555	16.6968	2.4555	-3.3032	26.9712	75.3106	
5	20	0.3	7.4886	15.1914	2.4886	-4.8086	26.0789	69.7945	
5	20	0.5	7.3293	14.1907	2.3293	-5.8093	22.6684	71.0095	
5	20	0.7	7.4307	13.0003	2.4307	-6.9997	26.7710	76.8301	
5	20	0.9	7.3649	12.0380	2.3649	-7.9620	26.1624	84.2266	
5	50	0.1	7.4736	41.5773	2.4736	-8.4227	28.3511	457.8102	
5	50	0.3	7.4341	38.6020	2.4341	-11.3980	28.7482	436.7105	
5	50	0.5	7.4270	35.6685	2.4270	-14.3315	30.1333	436.9847	
5	50	0.7	7.4530	32.6076	2.4530	-17.3924	27.5745	480.9513	
5	50	0.9	7.5116	29.8032	2.5116	-20.1968	29.8025	540.3471	
10	1	0.1	14.3047	0.8693	4.3047	-0.1307	87.2673	0.1832	
10	1	0.3	14.5297	0.8292	4.5297	-0.1708	98.0161	0.1750	
10	1	0.5	14.5206	0.7895	4.5206	-0.2105	90.4070	0.1702	
10	1	0.7	14.5701	0.7642	4.5701	-0.2358	104.1126	0.1678	
10	1	0.9	14.6867	0.7336	4.6867	-0.2664	106.4748	0.1740	
10	5	0.1	14 3217	4,3468	4,3217	-0.6532	85 7740	4 5331	
	5	0.1	1			0.0002	00		

					Bias		M	MSE		
λ	θ	р	â	$\hat{ heta}$	λ	$\hat{\theta}$	λ	θ		
10	5	0.3	14.4229	4.1899	4.4229	-0.8101	99.4806	4.4726		
10	5	0.5	14.6313	3.9797	4.6313	-1.0203	104.8165	4.3370		
10	5	0.7	14.5128	3.8652	4.5128	-1.1348	101.2032	4.3081		
10	5	0.9	14.4433	3.7109	4.4433	-1.2891	110.7090	4.1924		
10	10	0.1	14.7624	8.5719	4.7624	-1.4281	112.5142	18.8457		
10	10	0.3	14.7593	8.2562	4.7593	-1.7438	108.2821	17.5611		
10	10	0.5	14.5282	7.9622	4.5282	-2.0378	94.8652	17.2861		
10	10	0.7	14.5171	7.6224	4.5171	-2.3776	97.8761	16.7780		
10	10	0.9	14.6440	7.3541	4.6440	-2.6459	105.6667	17.2259		
10	20	0.1	14.5876	17.3669	4.5876	-2.6331	106.9322	74.6460		
10	20	0.3	14.2622	16.8565	4.2622	-3.1435	92.3330	70.3560		
10	20	0.5	14.6123	15.8950	4.6123	-4.1050	110.5632	67.5213		
10	20	0.7	14.4319	15.3537	4.4319	-4.6463	108.3009	67.2336		
10	20	0.9	14.7649	14.6535	4.7649	-5.3465	123.1565	70.1562		
10	50	0.1	14.6505	43.6086	4.6505	-6.3914	109.5795	483.2746		
10	50	0.3	14.8079	41.3970	4.8079	-8.6030	110.8714	459.3223		
10	50	0.5	14.6063	39.8140	4.6063	-10.1860	104.0158	421.4282		
10	50	0.7	14.7160	38.1896	4.7160	-11.8104	108.7239	435.2705		
10	50	0.9	14.6016	36.9080	4.6016	-13.0920	115.8893	433.0773		
20	1	0.1	28.7059	0.8897	8.7059	-0.1103	417.8113	0.1915		
20	1	0.3	28.9068	0.8725	8.9068	-0.1275	429.1626	0.1878		
20	1	0.5	29.2144	0.8471	9.2144	-0.1529	540.6390	0.1806		
20	1	0.7	28.6726	0.8277	8.6726	-0.1723	373.0582	0.1679		
20	1	0.9	28.6420	0.8152	8.6420	-0.1848	373.7554	0.1702		
20	5	0.1	29.2183	4.3987	9.2183	-0.6013	420.4266	4.9474		
20	5	0.3	29.0134	4.2895	9.0134	-0./105	396.8150	4.4899		
20	5	0.5	29.0170	4.1945	9.0170	-0.8055	400.6196	4.3849		
20	5	0.7	28.9024	4.1304	8.9024	-0.8030	384.3999	4.3975		
20	10	0.9	28.0000	4.0090 9.9250	8.0000	-0.9510	303.0722	4.1393		
20	10	0.1	28.0885	8 6428	8 9787	-1.1041	304.0570	18 8105		
20	10	0.5	29.1389	8 3944	9 1389	-1.6056	421.0655	18 0267		
20	10	0.7	28 9070	8 3108	8 9070	-1 6892	419 7232	17 2926		
20	10	0.9	28.4198	8.2014	8.4198	-1.7986	374,5965	16.7405		
20	20	0.1	28.6784	17.7816	8.6784	-2.2184	374.1109	77.1937		
20	20	0.3	28.7525	17.2083	8.7525	-2.7917	369.4900	72.2152		
20	20	0.5	29.0585	16.9035	9.0585	-3.0965	433.0661	70.2034		
20	20	0.7	28.7328	16.5579	8.7328	-3.4421	393.6235	67.3829		
20	20	0.9	28.8944	16.3066	8.8944	-3.6934	413.2893	68.6396		
20	50	0.1	29.1116	44.3100	9.1116	-5.6900	466.6206	486.9272		
20	50	0.3	28.9047	43.3964	8.9047	-6.6036	434.9809	464.6527		
20	50	0.5	29.1485	42.0010	9.1485	-7.9990	426.7267	441.9250		
20	50	0.7	28.4885	41.4552	8.4885	-8.5448	357.3053	417.9877		
20	50	0.9	28.8791	40.6619	8.8791	-9.3381	387.2206	431.4579		
50	1	0.1	71.3499	0.9007	21.3499	-0.0993	2560.0353	0.1921		
50	1	0.3	71.8436	0.8883	21.8436	-0.1117	2629.3478	0.1903		
50	1	0.5	71.7143	0.8723	21.7143	-0.1277	2368.5805	0.1807		
50	1	0.7	70.0941	0.8840	20.0941	-0.1160	2076.6215	0.1869		
50	1	0.9	72.6119	0.8610	22.6119	-0.1390	2587.6243	0.1864		
50	5	0.1	71.6492	4.4838	21.6492	-0.5162	2551.6959	4.8485		
50	5	0.3	71.7982	4.4299	21.7982	-0.5701	2450.9821	4.8012		
50	5	0.5	71.6386	4.4135	21.6386	-0.5865	2490.5438	4.6713		
50	5	0.7	72.2285	4.3349	22.2285	-0.6651	2518.6428	4.6085		
50	5	0.9	71.9718	4.3162	21.9718	-0.6838	2571.9202	4.5175		
50	10	0.1	71.5407	8.8651	21.5407	-1.1349	2164.8256	18.8049		
50	10	0.3	72.0802	8.8537	22.0802	-1.1463	2486.2729	19.1472		
50	10	0.5	71.2839	8.9000	21.2839	-1.1000	2698.7333	18.5432		

<u>**Table 5**</u> (Continued) : Simulation Results for n = 10.

1		n	p $\hat{\lambda}$	Â	Bi	Bias		SE
λ	0	0 1		Ø	λ	$\hat{ heta}$	λ	$\hat{ heta}$
50	10	0.7	72.4741	8.7095	22.4741	-1.2905	2667.2910	18.6835
50	10	0.9	71.8814	8.5863	21.8814	-1.4137	2390.7220	17.7402
50	20	0.1	70.8078	18.0272	20.8078	-1.9728	2241.7810	77.7742
50	20	0.3	71.5415	17.7627	21.5415	-2.2373	2758.4477	73.2588
50	20	0.5	70.4998	17.7266	20.4998	-2.2734	2193.5106	72.1906
50	20	0.7	71.7106	17.4746	21.7106	-2.5254	2531.0676	72.6588
50	20	0.9	71.0213	17.5956	21.0213	-2.4044	2373.3667	75.4110
50	50	0.1	71.6998	44.7018	21.6998	-5.2982	2413.4657	477.6310
50	50	0.3	71.2539	44.5701	21.2539	-5.4299	2387.9950	472.0592
50	50	0.5	71.3713	43.6358	21.3713	-6.3642	2317.2949	444.8553
50	50	0.7	71.5842	43.5715	21.5842	-6.4285	2426.0398	449.2774
50	50	0.9	72.0617	43.2875	22.0617	-6.7125	3123.8055	441.5736

<u>**Table 5**</u> (Continued) : Simulation Results for n = 10.

<u>Table 6-1</u> Simulation Results for n = 50.

1	1 0 -		â	â	E	Bias	1	MSE	
л	0	p	λ	Ø	λ	$\hat{ heta}$	λ	$\hat{\theta}$	
2	1	0.1	2.2008	0.8738	0.2008	-0.1262	0.3464	0.0586	
2	1	0.3	2.1980	0.7121	0.1980	-0.2879	0.3315	0.1031	
2	1	0.5	2.1942	0.5771	0.1942	-0.4229	0.3438	0.1878	
2	1	0.7	2.2098	0.4569	0.2098	-0.5431	0.3851	0.2993	
2	1	0.9	2.2025	0.3530	0.2025	-0.6470	0.4027	0.4228	
2	5	0.1	2.2030	4.3692	0.2030	-0.6308	0.3449	1.4388	
2	5	0.3	2.2027	3.5452	0.2027	-1.4548	0.3217	2.6135	
2	5	0.5	2.1890	2.8914	0.1890	-2.1086	0.3417	4.6707	
2	5	0.7	2.2011	2.2941	0.2011	-2.7059	0.3672	7.4093	
2	5	0.9	2.2093	1.7660	0.2093	-3.2340	0.4159	10.5462	
2	10	0.1	2.2045	8.7159	0.2045	-1.2841	0.3467	5.6665	
2	10	0.3	2.1989	7.1110	0.1989	-2.8890	0.3298	10.3360	
2	10	0.5	2.1923	5.7762	0.1923	-4.2238	0.3356	18.7355	
2	10	0.7	2.1827	4.5983	0.1827	-5.4017	0.3482	29.5123	
2	10	0.9	2.2038	3.5209	0.2038	-6.4791	0.3977	43.1538	
2	20	0.1	2.2096	17.4196	0.2096	-2.5804	0.3530	22.8059	
2	20	0.3	2.1870	14.2818	0.1870	-5.7182	0.3183	40.5320	
2	20	0.5	2.1894	11.5595	0.1894	-8.4405	0.3233	74.7440	
2	20	0.7	2.1807	9.2316	0.1807	-10.7684	0.3384	117.2732	
2	20	0.9	2.2033	7.0809	0.2033	-12.9191	0.3853	168.8002	
2	50	0.1	2.1955	43.7138	0.1955	-6.2862	0.3325	138.0398	
2	50	0.3	2.1984	35.5992	0.1984	-14.4008	0.3298	257.3861	
2	50	0.5	2.1936	28.8359	0.1936	-21.1641	0.3342	469.8833	
2	50	0.7	2.1947	22.9464	0.1947	-27.0536	0.3492	740.3435	
2	50	0.9	2.2155	17.6453	0.2155	-32.3547	0.4220	1055.1268	
5	1	0.1	5.3916	0.9369	0.3916	-0.0631	1.6809	0.0459	
5	1	0.3	5.3691	0.8666	0.3691	-0.1334	1.6107	0.0495	
5	1	0.5	5.3842	0.7962	0.3842	-0.2038	1.6353	0.0657	
5	1	0.7	5.4293	0.7293	0.4293	-0.2707	1.7251	0.0916	
5	1	0.9	5.3840	0.6769	0.3840	-0.3231	1.7915	0.1191	
5	5	0.1	5.4087	4.6655	0.4087	-0.3345	1.6909	1.1281	
5	5	0.3	5.4096	4.2998	0.4096	-0.7002	1.6510	1.2521	
5	5	0.5	5.3987	3.9773	0.3987	-1.0227	1.6914	1.6633	
5	5	0.7	5.3786	3.6731	0.3786	-1.3269	1.6917	2.2314	
5	5	0.9	5.4157	3.3700	0.4157	-1.6300	1.8218	3.0201	
5	10	0.1	5.3825	9.3841	0.3825	-0.6159	1.6764	4.6011	
5	10	0.3	5.3815	8.6451	0.3815	-1.3549	1.6522	5.0605	
5	10	0.5	5.3731	7.9719	0.3731	-2.0281	1.5871	6.4794	
5	10	0.7	5.4126	7.3122	0.4126	-2.6878	1.7173	9.1363	
5	10	0.9	5.4032	6.7376	0.4032	-3.2624	1.7133	12.0526	

1	0		î	ô	F	Bias	М	ISE
λ	θ	р	λ	θ	λ	$\hat{ heta}$	λ	$\hat{ heta}$
5	20	0.1	5.3538	18.8744	0.3538	-1.1256	1.6786	18.4845
5	20	0.3	5.3969	17.2353	0.3969	-2.7647	1.6619	20.3410
5	20	0.5	5.3770	15.9406	0.3770	-4.0594	1.6130	26.4450
5	20	0.7	5.3975	14.6448	0.3975	-5.3552	1.6335	35.9495
5	20	0.9	5.4201	13.4692	0.4201	-6.5308	1.8376	48.5060
5	50	0.1	5.3955	46.8047	0.3955	-3.1953	1.7215	113.5838
5	50	0.3	5.3420	43.5195	0.3420	-6.4805	1.6145	125.2276
5	50	0.5	5.4186	39.6107	0.4186	-10.3893	1.7334	168.8810
5	50	0.7	5.3987	36.6944	0.3987	-13.3056	1.7145	224.5247
5	50	0.9	5.4045	33.7322	0.4045	-16.2678	1.8156	300.9989
10	1	0.1	10.6732	0.9618	0.6732	-0.0382	6.0529	0.0430
10	1	0.3	10.7428	0.9175	0.7428	-0.0825	6.1850	0.0426
10	1	0.5	10.7396	0.8797	0.7396	-0.1203	5.9807	0.0442
10	1	0.7	10.7495	0.8466	0.7495	-0.1534	6.1846	0.0521
10	1	0.9	10.6906	0.8168	0.6906	-0.1832	6.0961	0.0590
10	5	0.1	10.6672	4.8109	0.6672	-0.1891	6.0870	1.0785
10	5	0.3	10.6727	4.6119	0.6727	-0.3881	5.9135	1.0211
10	5	0.5	10.7558	4.4011	0.7558	-0.5989	6.1027	1.1381
10	5	0.7	10.6925	4.2410	0.6925	-0.7590	5.7912	1.2411
10	5	0.9	10.7231	4.0806	0.7231	-0.9194	6.5435	1.4905
10	10	0.1	10.7456	9.5418	0.7456	-0.4582	5.9787	4.1950
10	10	0.3	10.7280	9.1889	0.7280	-0.8111	6.0404	4.2572
10	10	0.5	10.7220	8.8412	0.7220	-1.1588	6.2866	4.5851
10	10	0.7	10.6439	8.5311	0.6439	-1.4689	5.6946	4.9077
10	10	0.9	10.6978	8.1597	0.6978	-1.8403	6.1070	5.8777
10	20	0.1	10.7160	19.1910	0.7160	-0.8090	6.2771	17.5934
10	20	0.3	10.6857	18.4615	0.6857	-1.5385	6.1046	17.1862
10	20	0.5	10.7078	17.6697	0.7078	-2.3303	6.0228	17.7686
10	20	0.7	10.7092	16.9564	0.7092	-3.0436	5.8168	20.0799
10	20	0.9	10.7222	16.2822	0.7222	-3.7178	6.2511	23.6884
10	50	0.1	10.7518	47.8117	0.7518	-2.1883	6.3731	110.2551
10	50	0.3	10.7236	45.9336	0.7236	-4.0664	6.0152	104.5120
10	50	0.5	10.7169	44.1663	0.7169	-5.8337	6.0546	112.4843
10	50	0.7	10.7159	42.3889	0.7159	-7.6111	5.9964	125.2522
10	50	0.9	10.6789	40.8635	0.6789	-9.1365	6.0397	146.4234
20	1	0.1	21.3413	0.9692	1.3413	-0.0308	22.8739	0.0406
20	1	0.3	21.2612	0.9539	1.2612	-0.0461	23.0337	0.0401
20	1	0.5	21.3172	0.9316	1.3172	-0.0684	22.8004	0.0397
20	1	0.7	21.4004	0.9101	1.4004	-0.0899	23.5323	0.0415
20	1	0.9	21.3181	0.8959	1.3181	-0.1041	23.1206	0.0426
20	5	0.1	21.4365	4.8276	1.4365	-0.1724	23.3673	1.0340
20	5	0.3	21.4476	4.7316	1.4476	-0.2684	24.07/02	1.0182
20	5	0.5	21.2912	4.0669	1.2912	-0.3331	22.8588	1.0065
20	5	0.7	21.4288	4.5413	1.4288	-0.4587	22.7464	1.0243
20	5	0.9	21.3023	4.4/38	1.3023	-0.5262	22.5522	2.0854
20	10	0.1	21.4119	9.6544	1.4119	-0.3456	23.2040	3.9854
20	10	0.3	21.3938	9.4662	1.3938	-0.5338	22.5204	3.8720
20	10	0.5	21.3001	9.3113	1.3001	-0.088/	22.1039	3.8033
20	10	0.7	21.3282	2.13/9 8.0272	1.3262	-0.0021	23.1014	4.1220
20	20	0.9	21.3701	0.92/3	1.3701	-1.0/2/	22.0900	4.2703
20	20	0.1	21.3300	18 0690	1.3300	-0.0005	23.0245	15 5725
20	20	0.5	21.3430	18 5292	1.3430	-1.0511	21.7042	16.0770
20	20	0.3	21.4463	18 3022	1.4465	-1.4/1/	23.3070	16.6597
20	20	0.7	21.3040	17 8/181	1.3040	-1.0977	23.1010	17 2430
20	50	0.9	21.4032	48 4567	1 3337	-1 5433	23.9391	101 5575
20	50	03	21.3340	47 5087	1 3340	-2 4913	22.5221	98 7841
20	50	0.5	21.3834	46.4313	1 3834	-3 5687	22.8988	100 6110

<u>**Table 6-2**</u> (Continued) Simulation Results for n = 50.

1	0		î	â	В	ias	М	SE
λ	θ	р	λ	θ	λ	$\hat{\theta}$	λ	$\hat{ heta}$
20	50	0.7	21.2636	45.7408	1.2636	-4.2592	22.4182	100.1175
20	50	0.9	21.3302	44.7740	1.3302	-5.2260	23.4276	106.7061
50	1	0.1	53.2599	0.9763	3.2599	-0.0237	142.1984	0.0409
50	1	0.3	53.2477	0.9681	3.2477	-0.0319	138.1550	0.0397
50	1	0.5	53.2847	0.9593	3.2847	-0.0407	136.7279	0.0392
50	1	0.7	53.1342	0.9549	3.1342	-0.0451	138.7436	0.0395
50	1	0.9	53.1350	0.9463	3.1350	-0.0537	133.3824	0.0388
50	5	0.1	53.3311	4.8782	3.3311	-0.1218	146.8944	1.0203
50	5	0.3	53.0590	4.8524	3.0590	-0.1476	132.6789	0.9765
50	5	0.5	53.3518	4.7879	3.3518	-0.2121	139.6218	0.9579
50	5	0.7	53.3981	4.7464	3.3981	-0.2536	137.5398	0.9651
50	5	0.9	53.1394	4.7298	3.1394	-0.2702	133.6584	0.9535
50	10	0.1	53.1377	9.7834	3.1377	-0.2166	140.0171	4.0517
50	10	0.3	53.1857	9.6873	3.1857	-0.3127	138.9848	3.8785
50	10	0.5	53.0658	9.6209	3.0658	-0.3791	132.1159	3.7926
50	10	0.7	53.2491	9.5156	3.2491	-0.4844	135.7625	3.8624
50	10	0.9	53.2154	9.4573	3.2154	-0.5427	138.2410	3.9399
50	20	0.1	53.1656	19.5635	3.1656	-0.4365	140.1232	16.4211
50	20	0.3	53.3042	19.3540	3.3042	-0.6460	140.4593	16.1576
50	20	0.5	53.3334	19.1712	3.3334	-0.8288	138.4936	15.4834
50	20	0.7	53.2217	19.0650	3.2217	-0.9350	137.9740	15.8858
50	20	0.9	53.6534	18.7669	3.6534	-1.2331	144.7583	15.8091
50	50	0.1	53.0421	49.0120	3.0421	-0.9880	140.5307	101.3126
50	50	0.3	53.3491	48.3058	3.3491	-1.6942	140.8540	97.1496
50	50	0.5	53.5462	47.7937	3.5462	-2.2063	145.4531	100.2113
50	50	0.7	52.9701	47.8554	2.9701	-2.1446	133.8940	97.5666
50	50	0.9	53.2744	47.2293	3.2744	-2.7707	138.9871	99.1340

<u>**Table 6-3**</u> (Continued) Simulation Results for n = 50.

<u>**Table 7-1**</u> Simulation Results for n = 100.

1	1 0 -	î	â	Bias		MSE		
л	Ø	p	λ	Ø	Â	$\hat{\theta}$	λ	$\hat{ heta}$
2	1	0.1	2.1008	0.8901	0.1008	-0.1099	0.1576	0.0358
2	1	0.3	2.1033	0.7245	0.1033	-0.2755	0.1542	0.0870
2	1	0.5	2.0931	0.5891	0.0931	-0.4109	0.1470	0.1736
2	1	0.7	2.1010	0.4700	0.1010	-0.5300	0.1643	0.2828
2	1	0.9	2.1066	0.3664	0.1066	-0.6336	0.1876	0.4023
2	5	0.1	2.1038	4.4353	0.1038	-0.5647	0.1549	0.8558
2	5	0.3	2.0940	3.6327	0.0940	-1.3673	0.1459	2.1412
2	5	0.5	2.0993	2.9390	0.0993	-2.0610	0.1544	4.3698
2	5	0.7	2.0969	2.3515	0.0969	-2.6485	0.1608	7.0572
2	5	0.9	2.0942	1.8360	0.0942	-3.1640	0.1752	10.0288
2	10	0.1	2.1009	8.8870	0.1009	-1.1130	0.1523	3.4204
2	10	0.3	2.0974	7.2549	0.0974	-2.7451	0.1469	8.6102
2	10	0.5	2.0903	5.8942	0.0903	-4.1058	0.1478	17.3383
2	10	0.7	2.0937	4.7047	0.0937	-5.2953	0.1554	28.2134
2	10	0.9	2.1079	3.6650	0.1079	-6.3350	0.1825	40.2061
2	20	0.1	2.1139	17.6886	0.1139	-2.3114	0.1551	14.1876
2	20	0.3	2.0984	14.5052	0.0984	-5.4948	0.1498	34.5677
2	20	0.5	2.0996	11.7590	0.0996	-8.2410	0.1511	69.8604
2	20	0.7	2.0973	9.3986	0.0973	-10.6014	0.1601	113.0883
2	20	0.9	2.1051	7.3263	0.1051	-12.6737	0.1818	160.9152
2	50	0.1	2.0948	44.5287	0.0948	-5.4713	0.1548	85.5551
2	50	0.3	2.0950	36.3294	0.0950	-13.6706	0.1470	214.7254
2	50	0.5	2.0862	29.4969	0.0862	-20.5031	0.1491	432.6398
2	50	0.7	2.0894	23.5161	0.0894	-26.4839	0.1551	705.7101
2	50	0.9	2.1020	18.3355	0.1020	-31.6645	0.1815	1004.5408

			^	^	F	Bias	М	ISE
λ	θ	р	λ	θ	λ	$\hat{\theta}$	λ	$\hat{\theta}$
5	1	0.1	5.2004	0.9478	0.2004	-0.0522	0.7670	0.0248
5	1	0.3	5.2156	0.8710	0.2156	-0.1290	0.7274	0.0327
5	1	0.5	5.1801	0.8079	0.1801	-0.1921	0.6936	0.0493
5	1	0.7	5.1900	0.7442	0.1900	-0.2558	0.7265	0.0751
5	1	0.9	5.1859	0.6856	0.1859	-0.3144	0.7609	0.1063
5	5	0.1	5.2172	4.7282	0.2172	-0.2718	0.7745	0.6306
5	5	0.3	5.1941	4.3769	0.1941	-0.6231	0.7258	0.7949
5	5	0.5	5.1781	4.0460	0.1781	-0.9540	0.7238	1.2330
5	5	0.7	5.1845	3.7215	0.1845	-1.2785	0.7057	1.8716
5	5	0.9	5.1946	3.4244	0.1946	-1.5756	0.7641	2.6671
5	10	0.1	5.2072	9.4698	0.2072	-0.5302	0.7628	2.4834
5	10	0.3	5.1916	8.7548	0.1916	-1.2452	0.7095	3.1790
5	10	0.5	5.1656	8.0970	0.1656	-1.9030	0.6784	4.8440
5	10	0.7	5.1719	7.4566	0.1719	-2.5434	0.7195	7.4129
5	10	0.9	5.2036	6.8418	0.2036	-3.1582	0.7922	10.7443
5	20	0.1	5.2148	18.8963	0.2148	-1.1037	0.7242	9.4987
5	20	0.3	5.1926	17.5149	0.1926	-2.4851	0.7469	12.9780
5	20	0.5	5.1911	16.1300	0.1911	-3.8700	0.7124	19.9501
5	20	0.7	5.1863	14.8865	0.1863	-5.1135	0.7036	29.8845
5	20	0.9	5.2000	13.7024	0.2000	-6.2976	0.7782	42.7325
5	50	0.1	5.1804	47.5289	0.1804	-2.4711	0.7215	59.1315
5	50	0.3	5.1968	43.7328	0.1968	-6.2672	0.7213	80.1411
5	50	0.5	5.1949	40.3278	0.1949	-9.6722	0.7277	124.9289
5	50	0.7	5.1975	37.1914	0.1975	-12.8086	0.7726	189.3742
5	50	0.9	5.1850	34.3153	0.1850	-15.6847	0.7930	265.4167
10	1	0.1	10.3230	0.9720	0.3230	-0.0280	2.6500	0.0222
10	1	0.3	10.3382	0.9316	0.3382	-0.0684	2.5993	0.0229
10	1	0.5	10.3337	0.8949	0.3337	-0.1051	2.5950	0.0270
10	1	0.7	10.3410	0.8588	0.3410	-0.1412	2.6318	0.0340
10	1	0.9	10.3456	0.8248	0.3456	-0.1752	2.5939	0.0429
10	5	0.1	10.3511	4.8465	0.3511	-0.1535	2.6979	0.5497
10	5	0.3	10.3467	4.6498	0.3467	-0.3502	2.5521	0.5678
10	5	0.5	10.3210	4.4796	0.3210	-0.5204	2.5742	0.6706
10	5	0.7	10.3619	4.2909	0.3619	-0.7091	2.6685	0.8641
10	5	0.9	10.3914	4.1135	0.3914	-0.8865	2.8304	1.1136
10	10	0.1	10.3240	9.7146	0.3240	-0.2854	2.6228	2.1473
10	10	0.3	10.3325	9.3230	0.3325	-0.6770	2.6174	2.3272
10	10	0.5	10.3572	8.9291	0.3572	-1.0709	2.5875	2.7286
10	10	0.7	10.3517	8.5819	0.3517	-1.4181	2.6749	3.4120
10	10	0.9	10.3356	8.2627	0.3356	-1.7373	2.7084	4.3118
10	20	0.1	10.3250	19.4248	0.3250	-0.5752	2.5398	8.4516
10	20	0.3	10.3016	18.6776	0.3016	-1.3224	2.5046	8.9037
10	20	0.5	10.3821	17.8336	0.3821	-2.1664	2.6649	11.1272
10	20	0.7	10.3446	17.1867	0.3446	-2.8133	2.6185	13.5903
10	20	0.9	10.3814	16.4543	0.3814	-3.5457	2.7660	17.6688
10	50	0.1	10.3438	48.4536	0.3438	-1.5464	2.6115	53.8121
10	50	0.3	10.3560	46.5314	0.3560	-3.4686	2.6879	58.5720
10	50	0.5	10.3227	44.7591	0.3227	-5.2409	2.4452	65.7103
10	50	0.7	10.3314	43.0107	0.3314	-6.9893	2.6477	85.2185
10	50	0.9	10.3530	41.2344	0.3530	-8.7656	2.6697	108.3043
20	1	0.1	20.5949	0.9817	0.5949	-0.0183	9.6383	0.0205
20	1	0.3	20.6387	0.9602	0.6387	-0.0398	9.6639	0.0200
20	1	0.5	20.7258	0.9380	0.7258	-0.0620	10.1197	0.0216
20	1	0.7	20.6183	0.9243	0.6183	-0.0757	10.0460	0.0230
20	1	0.9	20.6503	0.9040	0.6503	-0.0960	9.8970	0.0251
20	5	0.1	20.6822	4.8931	0.6822	-0.1069	10.0698	0.5255
20	5	0.3	20.6657	4.7965	0.6657	-0.2035	9.7866	0.5087
20	5	0.5	20.6839	4.6989	0.6839	-0.3011	9.9385	0.5380

<u>**Table 7-2**</u> (Continued) Simulation Results for n = 100.

			^	^	В	ias	М	SE
λ	θ	р	λ	θ	â	$\hat{\theta}$	â	$\hat{\theta}$
20	5	0.7	20.7005	4.6038	0.7005	-0.3962	10.1801	0.5809
20	5	0.9	20.6710	4.5215	0.6710	-0.4785	10.5055	0.6480
20	10	0.1	20.6875	9.7841	0.6875	-0.2159	10.0491	2.0749
20	10	0.3	20.7642	9.5446	0.7642	-0.4554	9.9334	2.0354
20	10	0.5	20.6232	9.4279	0.6232	-0.5721	10.0398	2.1383
20	10	0.7	20.6222	9.2328	0.6222	-0.7672	10.1015	2.3191
20	10	0.9	20.6322	9.0476	0.6322	-0.9524	9.8935	2.4801
20	20	0.1	20.5731	19.6702	0.5731	-0.3298	9.8212	8.4064
20	20	0.3	20.6576	19.1893	0.6576	-0.8107	9.7402	8.0677
20	20	0.5	20.6245	18.8391	0.6245	-1.1609	9.6318	8.3513
20	20	0.7	20.6472	18.4506	0.6472	-1.5494	9.8212	9.1124
20	20	0.9	20.6377	18.0858	0.6377	-1.9142	9.7831	9.9416
20	50	0.1	20.7151	48.8423	0.7151	-1.1577	10.1605	51.7958
20	50	0.3	20.5457	48.2540	0.5457	-1.7460	9.5970	51.1297
20	50	0.5	20.6249	47.0779	0.6249	-2.9221	9.6399	53.0815
20	50	0.7	20.6751	46.0890	0.6751	-3.9110	10.1358	57.2629
20	50	0.9	20.6413	45.2366	0.6413	-4.7634	10.0629	62.9848
50	1	0.1	51.6628	0.9843	1.6628	-0.0157	60.1677	0.0201
50	1	0.3	51.4497	0.9803	1.4497	-0.0197	59.3034	0.0201
50	1	0.5	51.7160	0.9675	1.7160	-0.0325	59.2288	0.0196
50	1	0.7	51.5228	0.9638	1.5228	-0.0362	61.4466	0.0206
50	1	0.9	51.7746	0.9515	1.7746	-0.0485	62.3935	0.0206
50	5	0.1	51.6224	4.9248	1.6224	-0.0752	59.6085	0.5056
50	5	0.3	51.5961	4.8877	1.5961	-0.1123	59.9215	0.4881
50	5	0.5	51.6380	4.8514	1.6380	-0.1486	64.4005	0.5261
50	5	0.7	51.7268	4.7991	1.7268	-0.2009	61.3706	0.5078
50	5	0.9	51.5271	4.7786	1.5271	-0.2214	60.5759	0.5069
50	10	0.1	51.5224	9.8750	1.5224	-0.1250	60.8840	2.1061
50	10	0.3	51.8382	9.7409	1.8382	-0.2591	64.0959	2.0619
50	10	0.5	51.6256	9.6900	1.6256	-0.3100	59.2610	1.9680
50	10	0.7	51.6332	9.6133	1.6332	-0.3867	60.6028	1.9911
50	10	0.9	51.4472	9.5736	1.4472	-0.4264	60.1952	2.0191
50	20	0.1	51.7134	19.6631	1.7134	-0.3369	59.9332	8.0347
50	20	0.3	51.8343	19.4659	1.8343	-0.5341	61.5694	8.0075
50	20	0.5	51.3610	19.4843	1.3610	-0.5157	59.2228	7.8303
50	20	0.7	51.4763	19.2874	1.4763	-0.7126	59.1351	8.0359
50	20	0.9	51.6404	19.0746	1.6404	-0.9254	59.6829	8.1649
50	50	0.1	51.4926	49.3810	1.4926	-0.6190	59.5726	50.6393
50	50	0.3	51.5176	48.9509	1.5176	-1.0491	58.7331	48.7955
50	50	0.5	51.8381	48.2691	1.8381	-1.7309	61.7338	50.2385
50	50	0.7	51.5955	48.1006	1.5955	-1.8994	59.0513	49.9677
50	50	0.9	51.5815	47.7741	1.5815	-2.2259	61.8902	52.3970

<u>**Table 7-3**</u> (Continued) Simulation Results for n = 100.

<u>Table 8-1</u> Simulation Results for n = 200.

1	ρ	0	λ	$\hat{\theta}$	Bias		MSE	
λ	Ø	p			λ	$\hat{ heta}$	λ	$\hat{ heta}$
2	1	0.1	2.0528	0.8967	0.0528	-0.1033	0.0764	0.0229
2	1	0.3	2.0460	0.7331	0.0460	-0.2669	0.0684	0.0768
2	1	0.5	2.0530	0.5929	0.0530	-0.4071	0.0719	0.1684
2	1	0.7	2.0451	0.4761	0.0451	-0.5239	0.0772	0.2754
2	1	0.9	2.0460	0.3735	0.0460	-0.6265	0.0838	0.3928
2	5	0.1	2.0494	4.4858	0.0494	-0.5142	0.0724	0.5521
2	5	0.3	2.0457	3.6648	0.0457	-1.3352	0.0686	1.9227
2	5	0.5	2.0534	2.9661	0.0534	-2.0339	0.0732	4.2025
2	5	0.7	2.0470	2.3789	0.0470	-2.6211	0.0792	6.8944
2	5	0.9	2.0515	1.8643	0.0515	-3.1357	0.0849	9.8394

	_		â	â	E	lias	Ν	/ISE
λ	θ	р	λ	θ	λ	$\hat{ heta}$	λ	$\hat{ heta}$
2	10	0.1	2.0461	8.9794	0.0461	-1.0206	0.0713	2.1718
2	10	0.3	2.0410	7.3399	0.0410	-2.6601	0.0678	7.6381
2	10	0.5	2.0512	5.9376	0.0512	-4.0624	0.0718	16.7639
2	10	0.7	2.0520	4.7543	0.0520	-5.2457	0.0762	27.6085
2	10	0.9	2.0488	3.7303	0.0488	-6.2697	0.0842	39.3367
2	20	0.1	2.0574	17.9032	0.0574	-2.0968	0.0743	9.0530
2	20	0.3	2.0469	14.6602	0.0469	-5.3398	0.0692	30.8039
2	20	0.5	2.0467	11.8913	0.0467	-8.1087	0.0697	66.7856
2	20	0.7	2.0473	9.5188	0.0473	-10.4812	0.0759	110.2216
2	20	0.9	2.0531	7.4577	0.0531	-12.5423	0.0842	157.4129
2	50	0.1	2.0567	44.7545	0.0567	-5.2455	0.0746	56.7380
2	50	0.3	2.0522	36.5533	0.0522	-13.4467	0.0711	194.8925
2	50	0.5	2.0451	29.7416	0.0451	-20.2584	0.0686	416.6594
2	50	0.7	2.0535	23.7693	0.0535	-26.2307	0.0767	690.3681
2	50	0.9	2.0475	18.6479	0.0475	-31.3521	0.0872	983.6510
5	1	0.1	5.0915	0.9558	0.0915	-0.0442	0.3515	0.0131
5	1	0.3	5.1056	0.8786	0.1056	-0.1214	0.3357	0.0229
5	1	0.5	5.0951	0.8129	0.0951	-0.1871	0.3432	0.0416
5	1	0.7	5.0959	0.7486	0.0959	-0.2514	0.3447	0.0681
5	1	0.9	5.1078	0.6893	0.1078	-0.3107	0.3785	0.1005
5	5	0.1	5.0832	4.7851	0.0832	-0.2149	0.3388	0.3181
5	5	0.3	5.1010	4.3974	0.1010	-0.6026	0.3303	0.5647
5	5	0.5	5.0894	4.0684	0.0894	-0.9316	0.3296	1.0277
5	5	0.7	5.0927	3.7467	0.0927	-1.2533	0.3461	1.6947
5	5	0.9	5.1121	3.4432	0.1121	-1.5568	0.3729	2.5202
5	10	0.1	5.0947	9.5465	0.0947	-0.4535	0.3436	1.2878
5	10	0.3	5.0894	8.8173	0.0894	-1.1827	0.3299	2.2203
5	10	0.5	5.0809	8.1377	0.0809	-1.8623	0.3210	4.0892
5	10	0.7	5.0954	7.4882	0.0954	-2.5118	0.3402	6.7926
5	10	0.9	5.0900	6.9060	0.0900	-3.0940	0.3626	9.9636
5	20	0.1	5.1092	19.0570	0.1092	-0.9430	0.3666	5.5418
5	20	0.3	5.0985	17.6123	0.0985	-2.3877	0.3337	8.9918
5	20	0.5	5.1010	16.2395	0.1010	-3.7605	0.3484	16.7635
5	20	0.7	5.0979	14.9741	0.0979	-5.0259	0.3375	27.1905
5	20	0.9	5.0882	13.8074	0.0882	-6.1926	0.3613	39.9078
5	50	0.1	5.0897	47.7911	0.0897	-2.2089	0.3418	32.5515
5	50	0.3	5.0918	44.0843	0.0918	-5.9157	0.3411	56.0588
5	50	0.5	5.0942	40.6377	0.0942	-9.3623	0.3374	103.8521
5	50	0.7	5.0812	37.5244	0.0812	-12.4756	0.3363	167.9578
5	50	0.9	5.0993	34.4986	0.0993	-15.5014	0.3591	249.8315
10	1	0.1	10.1815	0.9735	0.1815	-0.0265	1.2133	0.0111
10	1	0.3	10.1707	0.9363	0.1707	-0.0637	1.2165	0.0133
10	1	0.5	10.1930	0.8976	0.1930	-0.1024	1.2460	0.0186
10	1	0.7	10.1823	0.8638	0.1823	-0.1362	1.2965	0.0260
10	1	0.9	10.1833	0.8291	0.1833	-0.1709	1.2959	0.0358
10	5	0.1	10.1805	4.8696	0.1805	-0.1304	1.2441	0.2811
10	5	0.3	10.1762	4.6781	0.1762	-0.3219	1.2093	0.3292
10	5	0.5	10.1650	4.4984	0.1650	-0.5016	1.1852	0.4460
10	5	0.7	10.1802	4.3161	0.1802	-0.6839	1.2142	0.6436
10	5	0.9	10.1695	4.1512	0.1695	-0.8488	1.2510	0.8821
10	10	0.1	10.1482	9.7705	0.1482	-0.2295	1.2193	1.1080
10	10	0.3	10.1904	9.3475	0.1904	-0.6525	1.2254	1.3460
10	10	0.5	10.1696	8.9978	0.1696	-1.0022	1.2031	1.8060
10	10	0.7	10.1714	8.6380	0.1714	-1.3620	1.2083	2.5578
10	10	0.9	10.1530	8.3110	0.1530	-1.6890	1.2690	3.5045
10	20	0.1	10.1631	19.5106	0.1631	-0.4894	1.2366	4.4552
10	20	0.3	10.1856	18.7095	0.1856	-1.2905	1.2573	5.4148
10	20	0.5	10.1707	17.9850	0.1707	-2.0150	1.1973	7.2523

<u>**Table 8-2**</u> (Continued) Simulation Results for n = 200.

					В	ias	м	SF
λ	θ	р	Â	$\hat{ heta}$	â	Â	â	Â
10	20	0.7	10 1540	17 3050	0.1540	-2 6950	1 2092	10 1224
10	20	0.7	10.1756	16 5846	0.1756	-3 4154	1.2315	14 1685
10	50	0.9	10.1750	18 60/3	0.1750	-1.3057	1.2208	27 5285
10	50	0.1	10.1780	46.0943	0.1780	2 2080	1.2208	27.5265
10	50	0.5	10.1704	40.7920	0.1704	-5.2080	1.2551	35.1515
10	50	0.5	10.1794	44.9438	0.1794	-5.0562	1.2034	40.5801
10	50	0.7	10.1605	43.2348	0.1605	-6.7652	1.2194	63.5904
10	50	0.9	10.1853	41.4600	0.1853	-8.5400	1.2481	88.8323
20	1	0.1	20.3359	0.9844	0.3359	-0.0156	4.7235	0.0108
20	1	0.3	20.2522	0.9685	0.2522	-0.0315	4.4696	0.0105
20	1	0.5	20.3934	0.9426	0.3934	-0.0574	4.6228	0.0121
20	1	0.7	20.3224	0.9272	0.3224	-0.0728	4.5725	0.0137
20	1	0.9	20.3310	0.9087	0.3310	-0.0913	4.7491	0.0165
20	5	0.1	20.3750	4.9123	0.3750	-0.0877	4.7324	0.2665
20	5	0.3	20.3033	4.8299	0.3033	-0.1701	4.5800	0.2698
20	5	0.5	20.3869	4.7154	0.3869	-0.2846	4.6621	0.3031
20	5	0.7	20.3249	4.6352	0.3249	-0.3648	4.5129	0.3419
20	5	0.9	20.2466	4.5602	0.2466	-0.4398	4.5860	0.3981
20	10	0.1	20.3264	9.8451	0.3264	-0.1549	4.5672	1.0180
20	10	0.3	20.3719	9.6303	0.3719	-0.3697	4.6120	1.0900
20	10	0.5	20.3722	9.4434	0.3722	-0.5566	4.8667	1.2479
20	10	0.7	20.2878	9.2919	0.2878	-0.7081	4.6660	1.3716
20	10	0.9	20.2895	9.1066	0.2895	-0.8934	4.8255	1.6389
20	20	0.1	20.3322	19.6848	0.3322	-0.3152	4.4099	3.9817
20	20	0.3	20.3332	19.2935	0.3332	-0.7065	4.6131	4.3481
20	20	0.5	20.3378	18.9089	0.3378	-1.0911	4.5731	4.7535
20	20	0.7	20.3323	18.5392	0.3323	-1.4608	4.6567	5.5488
20	20	0.9	20.3483	18.1613	0.3483	-1.8387	4.6904	6.5863
20	50	0.1	20.3842	49.0906	0.3842	-0.9094	4.6848	26.4050
20	50	0.3	20.3421	48.2101	0.3421	-1.7899	4.5343	27.1846
20	50	0.5	20.3079	47.3069	0.3079	-2.6931	4.3433	28.5582
20	50	0.7	20.3179	46.3771	0.3179	-3.6229	4.6183	34.3898
20	50	0.9	20.3269	45.4425	0.3269	-4.5575	4.6637	40.8439
50	1	0.1	50.7357	0.9915	0.7357	-0.0085	27.1533	0.0099
50	1	0.3	50.6995	0.9841	0.6995	-0.0159	26.8452	0.0099
50	1	0.5	50.9453	0.9721	0.9453	-0.0279	28.4424	0.0104
50	1	0.7	50.9466	0.9641	0.9466	-0.0359	28.0030	0.0105
50	1	0.9	50.8182	0.9590	0.8182	-0.0410	28.3475	0.0110
50	5	0.1	50.7329	4.9586	0.7329	-0.0414	27.2190	0.2490
50	5	0.3	50.6883	4.9247	0.6883	-0.0753	27.8446	0.2530
50	5	0.5	50.8915	4.8637	0.8915	-0.1363	27.5687	0.2534
50	5	0.7	50.7329	4.8402	0.7329	-0.1598	27.2399	0.2556
50	5	0.9	50.7623	4.8002	0.7623	-0.1998	27.8432	0.2701
50	10	0.1	50.6705	9.9275	0.6705	-0.0725	26.4886	0.9837
50	10	0.3	50.9294	9.8005	0.9294	-0.1995	27.5778	0.9975
50	10	0.5	50.9350	9.7220	0.9350	-0.2780	28.5851	1.0428
50	10	0.7	50.8244	9.6654	0.8244	-0.3346	28.0574	1.0465
50	10	0.9	50.7103	9.6108	0.7103	-0.3892	28.1603	1.0851
50	20	0.1	50.7498	19.8305	0,7498	-0.1695	27.7509	4.0412
50	20	0.3	50.7520	19.6817	0.7520	-0.3183	29.2924	4.2310
50	20	0.5	50,8101	19,4883	0.8101	-0.5117	27,3516	3,9978
50	20	0.7	50,9056	19,3005	0,9056	-0.6995	28.0533	4,2337
50	20	0.9	50,7151	19,2185	0.7151	-0.7815	28,2428	4,3480
50	50	0.1	50.6787	49.6386	0.6787	-0.3614	27.0795	24.9514
50	50	03	50,7107	49 2158	0.7107	-0 7842	27.2667	25.0151
50	50	0.5	50,7532	48 7634	0.7532	-1 2366	26.8253	24 7421
50	50	0.7	50.7775	48 3614	0.7775	-1 6386	27 4480	25 9053
50	50	0.0	50.7590	48 0026	0.7590	-1 0074	28.0162	26.8014
50	50	0.9	50.7560	40.0020	0.7580	-1./7/4	20.0105	20.0714

<u>**Table 8-3**</u> (Continued) Simulation Results for n = 200.

	r —						1	
λ	θ	р	â	$\hat{\theta}$	Ê	Bias	Â	ASE â
				0.0044	λ	θ	λ	θ
2	1	0.1	2.0208	0.9014	0.0208	-0.0986	0.0294	0.0146
2	1	0.3	2.0180	0.7370	0.0180	-0.2630	0.02/4	0.0715
2	1	0.5	2.0172	0.5980	0.0172	-0.4020	0.0276	0.1627
2	1	0.7	2.0209	0.4789	0.0209	-0.5211	0.0306	0.2719
2	1	0.9	2.0146	0.3767	0.0146	-0.6233	0.0333	0.3885
2	5	0.1	2.0218	4.5051	0.0218	-0.4949	0.0287	0.3644
2	5	0.3	2.0201	3.6827	0.0201	-1.3173	0.0272	1.7940
2	5	0.5	2.0184	2.9886	0.0184	-2.0114	0.0274	4.0719
2	5	0.7	2.0213	2.3955	0.0213	-2.6045	0.0293	6.7929
2	5	0.9	2.0200	1.8842	0.0200	-3.1158	0.0330	9.7106
2	10	0.1	2.0213	9.0077	0.0213	-0.9923	0.0279	1.4431
2	10	0.3	2.0206	7.3634	0.0206	-2.6366	0.0262	7.1768
2	10	0.5	2.0188	5.9777	0.0188	-4.0223	0.0272	16.2832
2	10	0.7	2.0208	4.7920	0.0208	-5.2080	0.0303	27.1633
2	10	0.9	2.0205	3.7666	0.0205	-6.2334	0.0331	38.8650
2	20	0.1	2.0174	18.0496	0.0174	-1.9504	0.0285	5.6996
2	20	0.3	2.0239	14.7071	0.0239	-5.2929	0.0271	28.9459
2	20	0.5	2.0185	11.9539	0.0185	-8.0461	0.0272	65.1563
2	20	0.7	2.0185	9.5822	0.0185	-10.4178	0.0297	108.6863
2	20	0.9	2.0185	7.5399	0.0185	-12.4601	0.0319	155.2906
2	50	0.1	2.0226	45.0172	0.0226	-4.9828	0.0283	36.6836
2	50	0.3	2.0199	36.7995	0.0199	-13.2005	0.0268	179.9762
2	50	0.5	2.0194	29.8759	0.0194	-20.1241	0.0272	407.6160
2	50	0.7	2.0215	23.9525	0.0215	-26.0475	0.0283	679.4163
2	50	0.9	2.0184	18.8425	0.0184	-31.1575	0.0333	971.0154
5	1	0.1	5.0342	0.9591	0.0342	-0.0409	0.1329	0.0061
5	1	0.3	5.0380	0.8845	0.0380	-0.1155	0.1301	0.0167
5	1	0.5	5.0292	0.8170	0.0292	-0.1830	0.1250	0.0360
5	1	0.7	5.0429	0.7517	0.0429	-0.2483	0.1356	0.0637
5	1	0.9	5.0385	0.6930	0.0385	-0.3070	0.1410	0.0958
5	5	0.1	5.0410	4.7891	0.0410	-0.2109	0.1361	0.1567
5	5	0.3	5.0339	4.4257	0.0339	-0.5743	0.1296	0.4139
5	5	0.5	5.0376	4.0795	0.0376	-0.9205	0.1317	0.9125
5	5	0.7	5.0316	3.7642	0.0316	-1.2358	0.1343	1.5787
5	5	0.9	5.0429	3.4625	0.0429	-1.5375	0.1431	2.4031
5	10	0.1	5.0334	9,5944	0.0334	-0.4056	0.1397	0.6278
5	10	0.3	5.0429	8.8385	0.0429	-1.1615	0.1307	1.6861
5	10	0.5	5,0410	8,1559	0.0410	-1.8441	0,1315	3.6587
5	10	0.7	5.0363	7,5218	0.0363	-2.4782	0.1317	6.3423
5	10	0.9	5.0406	6,9263	0.0406	-3.0737	0.1390	9,6031
5	20	0.1	5.0363	19.1686	0.0363	-0.8314	0.1339	2.4689
5	20	0.3	5.0474	17.6569	0.0474	-2.3431	0.1316	6.8181
5	20	0.5	5.0391	16.3133	0.0391	-3.6867	0.1286	14,6255
5	20	0.7	5.0377	15.0475	0.0377	-4.9525	0.1393	25,3682
5	20	0.0	5.0397	13 8584	0.0397	-6 1416	0.1425	38 3630
5	50	0.1	5 0431	47 8747	0.0431	-2 1253	0 1364	15 7402
5	50	0.1	5 0371	44 2324	0.0371	-5 7676	0 1335	41 9598
5	50	0.5	5.0371	40 73 92	0.0371	-9.7617	0.1333	97 3859
5	50	0.7	5 0310	37 6477	0.0310	-12 3523	0.1340	157 7020
5	50	0.7	5.0254	34 6560	0.0317	-15 2421	0.1349	230 2764
10	1	0.9	10 0895	0.0761	0.0354	-0.0220	0.1405	0.0049
10	1	0.1	10.0683	0.9701	0.0683	-0.0239	0.4605	0.0048
10	1	0.5	10.0033	0.9400	0.0633	-0.0000	0.4603	0.0073
10	1	0.5	10.0023	0.9030	0.0023	-0.0970	0.4512	0.0120
10	1	0.7	10.0704	0.8008	0.0704	-0.1552	0.4802	0.0207
10	-	0.9	10.05/1	0.8337	0.05/1	-0.1003	0.4725	0.0302
10	5 -	0.1	10.0758	4.8870	0.0758	-0.1130	0.4/35	0.1000
10	5	0.3	10.0689	4.6977	0.0689	-0.3023	0.4499	0.1800
10	5	0.5	10.0637	4.5152	0.0637	-0.4848	0.4669	0.3176

<u>**Table 9-1**</u> Simulation Results for n = 500.

	_		â	2	В	ias	М	SE
λ	θ	р	λ	θ	λ	$\hat{ heta}$	λ	$\hat{ heta}$
10	5	0.7	10.0757	4.3324	0.0757	-0.6676	0.4688	0.5173
10	5	0.9	10.0611	4.1673	0.0611	-0.8327	0.4789	0.7580
10	10	0.1	10.0669	9.7822	0.0669	-0.2178	0.5032	0.4947
10	10	0.3	10.0780	9.3867	0.0780	-0.6133	0.4607	0.7399
10	10	0.5	10.0558	9.0357	0.0558	-0.9643	0.4496	1.2461
10	10	0.7	10.0654	8.6729	0.0654	-1.3271	0.4594	2.0444
10	10	0.9	10.0752	8.3228	0.0752	-1.6772	0.4781	3.0699
10	20	0.1	10.0746	19.5512	0.0746	-0.4488	0.4676	1.8635
10	20	0.3	10.0668	18.7946	0.0668	-1.2054	0.4724	2.9418
10	20	0.5	10.0722	18.0490	0.0722	-1.9510	0.4591	5.0807
10	20	0.7	10.0804	17.3232	0.0804	-2.6768	0.4736	8.3205
10	20	0.9	10.0715	16.6579	0.0715	-3.3421	0.4958	12.2319
10	50	0.1	10.0638	48.9233	0.0638	-1.0767	0.4664	11.6694
10	50	0.3	10.0483	47.0755	0.0483	-2.9245	0.4660	17.8674
10	50	0.5	10.0810	45.0810	0.0810	-4.9190	0.4806	32.5329
10	50	0.7	10.0793	43.3062	0.0793	-6.6938	0.4676	51.9238
10	50	0.9	10.0703	41.6391	0.0703	-8.3609	0.4809	76.3844
20	1	0.1	20.1150	0.9885	0.1150	-0.0115	1.7352	0.0042
20	1	0.3	20.1341	0.9682	0.1341	-0.0318	1.8333	0.0050
20	1	0.5	20.1353	0.9489	0.1353	-0.0511	1.7879	0.0063
20	1	0.7	20.1171	0.9310	0.1171	-0.0690	1.7283	0.0081
20	1	0.9	20.1250	0.9120	0.1250	-0.0880	1.7777	0.0110
20	5	0.1	20.1211	4.9417	0.1211	-0.0583	1.7721	0.1067
20	5	0.3	20.1467	4.8365	0.1467	-0.1635	1.7203	0.1203
20	5	0.5	20.1342	4.7459	0.1342	-0.2541	1.7981	0.1571
20	5	0.7	20.1407	4.6490	0.1407	-0.3510	1.7762	0.2086
20	5	0.9	20.1285	4.5596	0.1285	-0.4404	1.7698	0.2742
20	10	0.1	20.1348	9.8803	0.1348	-0.1197	1.8007	0.4349
20	10	0.3	20.1304	9.6829	0.1304	-0.3171	1.8138	0.4944
20	10	0.5	20.1391	9.4842	0.1391	-0.5158	1.7110	0.6170
20	10	0.7	20.1494	9.2947	0.1494	-0.7053	1.7861	0.8422
20	10	0.9	20.1197	9.1230	0.1197	-0.8770	1.7998	1.0972
20	20	0.1	20.1461	19.7482	0.1461	-0.2518	1.7935	1.7090
20	20	0.3	20.1273	19.3731	0.1273	-0.6269	1.8124	1.9759
20	20	0.5	20.1615	18.9553	0.1615	-1.0447	1.7626	2.5215
20	20	0.7	20.1328	18.6027	0.1328	-1.3973	1.7404	3.2943
20	20	0.9	20.1267	18.2396	0.1267	-1.7604	1.8074	4.4055
20	50	0.1	20.1523	49.3364	0.1523	-0.6636	1.7390	10.4190
20	50	0.3	20.1358	48.4009	0.1358	-1.5991	1.7588	12.1044
20	50	0.5	20.1406	47.4341	0.1406	-2.5659	1.7905	15.7581
20	50	0.7	20.1225	46.5233	0.1225	-3.4767	1.7106	20.4048
20	50	0.9	20.0997	45.6570	0.0997	-4.3430	1.8167	27.1974
50	1	0.1	50.3407	0.9933	0.3407	-0.0067	10.5258	0.0040
50	1	0.3	50.3289	0.9856	0.3289	-0.0144	10.6942	0.0041
50	1	0.5	50.2420	0.9796	0.2420	-0.0204	10.6093	0.0043
50	1	0.7	50.3641	0.9694	0.3641	-0.0306	10.7118	0.0047
50	1	0.9	50.3485	0.9619	0.3485	-0.0381	10.6592	0.0051
50	5	0.1	50.2285	4.9767	0.2285	-0.0233	9.9770	0.0966
50	5	0.3	50.2880	4.9315	0.2880	-0.0685	10.4850	0.1035
50	5	0.5	50.3096	4.8907	0.3096	-0.1093	10.6810	0.1091
50	5	0.7	50.2957	4.8530	0.2957	-0.1470	10.7213	0.1172
50	5	0.9	50.3032	4.8140	0.3032	-0.1860	10.4948	0.1255
50	10	0.1	50.2918	9.9433	0.2918	-0.0567	10.6469	0.4102
50	10	0.3	50.3215	9.8577	0.3215	-0.1423	10.7118	0.4166
50	10	0.5	50.2818	9.7869	0.2818	-0.2131	10.4970	0.4304
50	10	0.7	50.3180	9.7017	0.3180	-0.2983	10.7697	0.4678
50	10	0.9	50.3355	9.6197	0.3355	-0.3803	10.0872	0.4951
50	20	0.1	50.3302	19.8690	0.3302	-0.1310	10.2444	1.5742

<u>**Table 9-2**</u> (Continued) Simulation Results for n = 500.

1 0	A		î	â	Bias		MSE	
Å	0	p	λ	0	λ	$\hat{ heta}$	λ	$\hat{ heta}$
50	20	0.3	50.3001	19.7254	0.3001	-0.2746	10.5807	1.6663
50	20	0.5	50.2952	19.5676	0.2952	-0.4324	10.4352	1.7027
50	20	0.7	50.2701	19.4229	0.2701	-0.5771	10.4384	1.8172
50	20	0.9	50.2928	19.2597	0.2928	-0.7403	10.8204	2.0486
50	50	0.1	50.2687	49.7346	0.2687	-0.2654	10.4818	10.0339
50	50	0.3	50.3336	49.2876	0.3336	-0.7124	10.9804	10.6607
50	50	0.5	50.2886	48.9274	0.2886	-1.0726	10.4504	10.5873
50	50	0.7	50.4218	48.4156	0.4218	-1.5844	10.8209	11.8605
50	50	0.9	50.3274	48.1235	0.3274	-1.8765	10.8761	12.8665

<u>**Table 9-3**</u> (Continued) Simulation Results for n = 500.