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A Review on Forecasting Models and Forecast
Evaluation Criteria

Sharandeep S. Pandher Shakhawat Hossian Andrei Volodin
University of Regina University of Winnipeg University of Regina

ABSTRACT In the last two decades, researchers have worked on forecasting methods for
analyzing data generated from reallife problems. They used various versions of autoregressive
integrated moving average (ARIMA) and generalized autoregressive conditional heteroske-
dasticity (GARCH) models to know about the future trend of their research questions using the
data. These approaches helped them to solve future issues related to government, industry,
medical, agriculture and stock market, etc. In the present study, a review of hybrid forecasting
models has been studied to solve future issues and their performance based on the dataset.
However, this review paper studies nine forecast evaluation criteria for selecting models related
to the time series data. This review may help the researchers to know the new developments in
the forecasting methods for selecting models.

Keywords AIC and MSE; ARIMA; Forecasting models; GARCH.

1. Introduction

In forecasting, ARIMA and GARCH models are a widespread class of forecasting methods that
work about the future trends of time series by using past information. ARIMA (p,d,q) process of
the time series {x}can be defined as

0,(B)L-B)' X =4, (B)w,, (L.1)

where ¢, and ¢, are polynomials of degree p and g, respectively, w, is the white noise with
mean zero and variance o, d represents the integrated order of {x} and B is a backward shift
operator.

When p=d =0 in(1.1), it becomes moving average (MA) model; while q=d =0 in (1.1)
turns into autoregressive (AR) models. If only d =0 in (1.1), ARIMA becomes autoregressive
moving average (ARMA) model. On the other hand, GARCH (p,q) of {x} is defined as

[ Received September 2019, revised November 2019, in final form November 2019.

[]Sharandeep S. Pandher is affiliated to the Department of Mathematics and Statistics at the University of
Regina, Regina, Saskatchewan, Canada. Shakhawat Hossian is an Associate Professor in the Department
of Mathematics and Statistics at the University of Winnipeg, Winnipeg, MB, Canada. Andrei Volodin is a
Professor in the Department of Mathematics and Statistics at the University of Regina, Regina, Sas-
katchewan, Canada; email: andrei@uregina.ca.

© 2019 Susan Rivers’ Cultural Institute, Hsinchu, Taiwan, ROC. (##® * %% ¥ #%4 % (7) JPPS: ISSN 1607-7083



66 siit#F @  Journal of Propagations in Probability and Statistics Vol. 19 No.2 Dec. 2019 pp. 65-74

p q
Xt:Wt\/a0+ZaiXt2_i+Zﬁjh-i 1 (1.2)

where ¢ and g; are the model parameters of orders p and g respectively. For q=0, (1.2)
becomes the autoregressive conditional heteroscedasticity (ARCH) models of {xt} .

2. Review of Forecasting Models

Stevenson [26] compared the performance of ARIMA methods for foreseeing the trends of rents
throughout industrial branches, commercial and offices in the United Kingdom. The judgment level
and the outside pattern were used for assessing the performance of each model. The best fitting
model and reliable forecasting detected through the rank of the models. Outcomes showed that
forecasting performance and estimation have an optimistic relationship for the majority of cases.

Karakozova [16] used an error correlation model (ECM), an ARIMA with exogenous
explanatory variables (ARIMAX) and regression models for the study of office returning of small
scale market data over the period 1971-2001 in the capital of Finland (Helsinki). Results showed
that the forecasting performance of ARIMAX was preferable as compared to ECM.

Earnest et al. [10] worked on the data of the SARS outbreak in the provincial hospital in the
republic of Singapore using ARIMA model. A maximum likelihood estimation was used to study
the historical dataset using the Kalman filter. Results showed that ARIMAC(1,0,3) is appropriate for
accurate forecasting of severe acute respiratory syndrome (SARS) in terms of mean absolute per-
centage error.

Pantelidis and Pittis [24] presented the low foresee performance of the GARCH(1, 1) model as
compared to a naive model (homoscedastic) in several experimental studies. MSE was used to
check the forecasting reliability of the models that was based on true conditional volatility and
squared shocks. Apart from it, Monte Carlo Simulation experiments was conducted to evaluate the
size and power properties of statistical procedures for choosing the GARCH(1, 1) model over the
miss-specified naive model as homoscedastic is the one that experiences the problem of size dis-
tortion during the performance of nested models. Finally, the forecasting accuracy of the GARCH(1,
1) model is 60% as compared to 40% of the naive models on five bilateral exchange rates for US
dollars.

Ediger and Akar [11] evaluated the forthcoming trend in the initial energy requirement of
Turkey via ARIMA and seasonal ARIMA models for the period 2005-2020. Ten energy sources out
of 12 have a downward trend in the yearly average growth rate of energy in all situations while
animal plants and wood remain the same. Results also showed that fossil energy resources will
constantly contribute to leading role in the future energy needs of Turkey.

Chen et al. [6] presented a one-week prediction of offenses against the property in a city of
China. Fifty weeks of property offenses data were used to compare the ARIMA model with the holt
two-parameter exponential smoothing and the simple exponential smoothing. It showed that the
ARIMA model is more convenient than exponential smoothing in terms of forecasting clarity and
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adjustment. Error measurements of the models were checked via the root mean squared error
(RMSE) and mean absolute percent error (MAPE).

Fahimifard et al. [12] compared linear and non-linear forecasting models for predicting
future trends in the exchange rate of Iran Rail/EURO and Rail/$US. Authors selected Artificial
Neural Network (ANN) and Adaptive Neuro-fuzzy inference system (ANFIS) as nonlinear models
while ARIMA and GARCH are linear models. The accuracy of these models was assessed via mean
absolute deviations (MAD), R-Squared and RMSE. Results showed that ANFIS dominated as
compared to other approaches on the historical dataset.

Mariella and Tarantino [22] spatial-temporal conditional autoregressive (STCAR) model for
the trust of spatial between the sites and temporary addiction to realizations during the estimation of
each spatial position in the time domain. The introduction of the hypothesis of the hierarchical
model in the STCAR model enhances the quality of results.

Amado and Terasvirta [3] applied a conditional correlation to the GARCH model with a non-
stationary component that was related to the S&P composite index and traded. Lagrange multiplier
was used to find the parametric design of non-stationary elements in the modeling approach.
Results indicated that the multivariate conditional correlation GARCH approach is useful for the
data as compared to DCC-GARCH, STCC-GARCH, TVCC- GARCH and the others techniques
because a number of deterministic modifications in the uncon- ditional variances improve the
quality of multivariate conditional correlation GARCH approach.

Ibrahim et al. [15] studied autoregressive fractional integrated moving average strategy for the
mean daily temperature series of the Sokoto metropolis. The performance of the ARFIMA (3, 0.62,
1) and ARFIMA (1, 0.62, 3) was beneficial for outlining, make it clear and forecasting the tem-
perature. The authors also highlighted the importance of forecasting temperature for farming and
atmospheric temperature etc.

Liu et al. [20] proposed a forecasting method for adapting an analysis slide window of fuzzy
time series model (WTVS) to train the trend predictor in the training phase, and uses these trend
predictors to generate forecasting values in the forecasting phase. Data preprocessing, trend training
and the load forecasting are the key building blocks of the WTVS model. In the preprocessing stage
the founder’s effort to reduce the effect of random factors via leveling the dataset. Cyclic factors
and the previous weighted data are used in the remaining two components. Outcomes indicate that
the performance of WTVS models is better than the TVS models.

Corliss [8] focused on the elementary theories of the ARIMA model and the advancement of
the non-temporal ARIMA in statistical analysis. They also mentioned that non-temporal ARIMA
process used for research in biosciences, behavior sciences, business and other applications.

Vishwakarma [28] considered the ARIMA, ARIMAX including generalized autoregressive
conditional heteroskedastic (ARIMAX-GARCH) to know about forecasting trends and changing
points in Canadian real estate sector for the period 2002-2011. Outcomes showed that ARIMAX
models is superior to the other two. Overall, three models cannot use for long term forecasting in an
unstable environment.

Arumugam and Anithakumari [5] applied FARIMA model on the data of natural rubber
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production for forecasting demand for the production. AIC was used to check the best-fitted kind of
FARIMA for the dataset and it was concluded that FARIMA (2,1,2)(1,1,1),, perform better than
other kinds of FARIMA forms.

Ahmed et al. [2] developed James-stein shrinkage and pretest methods for estimating the
regression coefficients of the spatial conditional autoregressive model under the changeable facts
that are related to regression coefficients. They applied these methods to Boston housing price and
applied the bootstrapping technique to calculate relative MSE and prediction error. Numerical
results showed that the pretest and James-stein shrinkage estimators protect in opposition to the
hazard conditions of regression coefficients.

Zhang et al. [30] applied the hybrid approach for multi-stage ahead flow of traffic prediction
for the highway network along with real life dataset that was based on the concept of statistical
imbalance and spectral analysis. The data was split into three parts, an intraday by establishing a
spectral investigation approach, an imperative section through ARIMA and a changeability eva-
luation with the GJR-GARCH model. Experimental outcomes showed that the planned hybrid
technique is better than ARIMA and GARCH in terms of MAPE, RMSE, PICP and MPIL for
forecasting the accuracy of the dataset.

Pahlavani and Roshan [23] worked on ARIMA and ARIMA-GRACH methods to investigate
the exchange rate of Iran against U.S Dollar. The central bank of Iran provided the data during the
period of March 2014 to June 2015. Initially, they experienced the problem of non-stationary
exchange rate series that become stationary series by transform to exchange rate return. They used
RMSE, MAE and TIC Criteria to determine the best-fitted model for this data. Results showed that
ARIMA ((7,2),(12))-EGARCH(2,1) give the smallest value of RMSE, MAE and TIC as compared
to ARIMA-GARCH, ARIMA-IGARCH and ARIMA-GJR models.

Hossian [14] proposed shrinkage estimators approach with generalized autoregressive condi-
tional heteroscedastic error for linear regression model under the limitation of regression parameters
lie on a subspace. Large sample theory was applied to develop the theoretical biases and risks of
these estimators. Monte Carlo simulation experiments showed that the shrinkage estimators perform
better than the full model estimator if the shrinkage dimension is greater than two.

Correa et al. [9] worked to increase the forecast performance and accuracy of forecasting
model. They developed wavelet ARIMA with exogenous variables and generalized autoregressive
conditional heteroscedasticity models that perform better than ARIMA-GARCH and Atrtificial
Neural Network on the time series dataset that was related with dam displacement in Brazil. One
important characteristic of the new approach is that the utilization of exogenous variables improves
the efficiency of the new approach over the univariate method. This development provides assis-
tance to raise the prophetic performance.

Uwilingiyimana et al. [27] worked on the inflation rate of Kenya for the monthly data from
2004-2014 by using the ARIMA-GARCH model. Experimental results of the monthly data series
displayed that the combined approach of ARIMA(1,1,12) and GARCH(1,2) is much better than the
existing methods of forecasting in terms of optimum outcomes, more effective estimation and fore-
casting accuracy.
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Grzesica and Wiecek [13] applied spectral analysis to seek the fluctuation patterns and
prediction of the modern forecasting models. Authors considered a certain interval and trigono-
metric functions as the basic hypothesis of the models. Numerical outcomes indicate that the
accuracy of the proposed approach is at least three times greater as compared to the brown model
and ARIMA.. Patowary and Barman [25] used a seasonal autoregressive integrated moving average
(SARIMA) model on the quarterly data of tuberculosis detection rate in the Dibrugarh region of
India for the period 2001-2011. The conclusion of the experimental results showed that SARIMA
(0,0,0)x(1,1,0), is properly suited to the quarterly data. The lowest difference between the
observed and expected detection rate showed that all basic assumptions of model adequacy are true
for this data.

Wali et al. [29] studied space and manufacturing of cotton in India via the ARIMA model for
seeing the trend in the dataset during the period 1950-51 to 2015-16. The best-fitting form of the
ARIMA model was determined via equating mean absolute percentage error (MAPE), Akaike
information criterion (AIC), Normalized BIC, Schwartz’s Bayesian Criterion (SBC) and maximum
value of R® The study proved that two types of ARIMA models were appropriate for the
historical dataset which was ARIMA (1,1,1) and ARIMA (0,1,0).

Lac and Hossian [19] worked on the random-effects model for longitudinal data. They
established a non-penalty shrinkage esti- mation approach with autoregressive error when some of
the regression coefficients may be under linear restrictions. Monte Carlo simulation techniques
were used to examine the performance of the restricted, shrinkage, positive shrinkage and LASSO
estimators with respect to unrestricted estimator.

Ardia et al. [4] considered Markov switching GARCH (MSGARCH) model for forecasting
risk of management perspectives. The left tail forecast becomes better by using the uncertainty of
parameters in single regime model. Ahasan et al. [1] introduced a new approach of time series
model that combines wavelet GARCH(1, 1) for global climate data. The efficiency of the
Wavelet-GARCH (1, 1) is measured by the SC, AIC, RMSE and Hannan-Quinn Criterion. The
results showed that proposed approach perform better than GARCH (1, 2) in terms of accuracy of
the model. Kiregu et al. [17] developed point change modeling in GARCH models and analysis of
forecasting implemented on the USD/KES rates data of the central bank of Kenya for the period
2005-2018. Two kinds of change points used to check the performance of TGARCH, GJR-GARCH
and PGARCH models. Outcomes indicate that the modified version of GARCH model performs
better than the other.

Magsood et al. [21] examined the rate of inflation in Pakistan for the period 1998-2003 ARMA,
autoregressive fractionally an integrated moving average (ARFIMA) and GARCH models. The
performance of three univariate techniques verified on food and non-food inflation components of
the data in terms of AIC, SC , RMSE and SE criteria. It demonstrated that the performance of
GARCH is superior to the other two approaches.

Kushwaha and Pindoriya [18] worked on the hybridization of Seasonal autoregressive
integrated moving average and random vector functional link neural network for forecasting the
data of solar PV power generation. The motivation behind the hybridization of forecasting models
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was to provide the actual-time equilibrium functioning for energy consumers and distributors.
Decomposition of wavelet supported for hybridization of ARIMA and RVFL models.

3. Forecast Evaluation Criteria’s of Forecasting Models
3.1 Akaike’s Information Criteria (AIC)

This evaluation criteria was formulated by Japanese statistician Hirotugu Akaike in 1974. Firstly, it
was used in information theory. Today, AIC is applied widely by researchers for the study of time
series models. The selection of the model is the most challenging task in statistical inference that
may be solved via AIC. It can be defined in the following way:

AIC =2k —2In(L),

where k is the number of estimated parameters and L is the greatest value of the likelihood
function of the model.
3.2 Bayesian Information Criterion (BIC or SIC)

Gideon E. Schwarz introduced Schwarz Information Criteria but it is not appropriate in the complex
set of models but better than AIC.

BIC =k In(n) - 2In(L),

where n is the number of observations in the model.

3.3 Normalized BIC

In terms of normal distribution BIC can be defined in the following way: BIC =niIn(&?) +k In(n),
where &7 is called Error Variance.

3.4 Deviance Information Criteria (DIC)

It is an expansion of Akaike’s information criteria and superior to BIC as it is smoothly estimated
from the samples that is created via Markov chain Monte Carlo Simulation.

DIC=p,+D(9),
where

pD:%VarD(G) and D(@)=-2log[p(y|&)]+C,

y isthe data, @ are unknown parameters and C is constant.

3.5 Hannan Quinn Information Criterion (HQC)
It is an optional approach to AIC and BIC for the selection model in statistics.
HQC =-2L,_,, + 2k In[In(n)],

where L, represents likelihood function.
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3.6 Focused Information Criterion (FIC)

Claeskens and Hjort [7] introduced Focused Information Criterion in 2003 but it does not work to
find the general fitness of the model like others (AIC, BIC, and DIC). It emphasizes the primary
parameter setting of the models.

3.7 Mean Squared Error (MSE)

It is widely used to evaluate the quality of forecasting models and eliminate a number of predictor
variables without losing the predictive ability of forecasting models in time series analysis. The
value of MSE is nearest to zero indicates the quality of the forecasting model. The average squared
difference between the predicted values and the true values is known as MSE.
MSE =1i(\(i -Y,)?,
N4
where Y, is predicted value of the data. The square root of MSE is called the root mean squared

error (RSME)

3.8 Mean Absolute Percentage Error (MAPE)

The accuracy of forecasting models is predicted via mean absolute percentage error in time series. It
provides useful information about the trend of time series during the forecasting. It applied as a loss
function for regression problem but the major drawback of this evaluation is that it cannot work
with a zero value in time series.

100% | A — F,|
2 A |

where A s true value while F, is a forecast value.

MAPE =

3.9 Mean Absolute Error (MAE)
It is assessing the forecasting error in time series analysis as below:
e(t)=y(t)-y(t|t-1),
where y(t) represents observation and y(t|t—1) show forecast of y(t) based on all the previous
observations. In statistics, the mean absolute error is defined in the following way:

MAE == 3]y, ~x],
n'=

where vy, is predicted value and x; is true value.

4. Future Scope of Proposed Work

Presently, the use of forecasting models are growing to solve the future issue in the field of
government, medical, agriculture, industry, stock market, transportation, etc. The appropriate
selection of forecasting models and forecast evaluation criteria are required to settle the upcoming
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challenge. The proposed work reviews the latest progress in the field of forecasting that can
contribute to help the researchers and experts to examine the latest advances in this area and to
introduce another version of forecasting models.
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