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Abstract. For an array of dependent random variables satisfying a new
notion of uniform integrability, weak laws of large numbers are obtained.
Our results extend and sharpen the known results in the literature.

1. Introduction

The notion of the uniform integrability plays the central role in establishing
weak laws of large numbers. In this paper we introduce the new notion of
integrability and prove some weak laws of large numbers under this condition.

The classical notion of uniform integrability of a sequence {Xn, n ≥ 1} of
integrable random variables is defined through the condition

lim
a→∞

sup
n≥1

E|Xn|I(|Xn| > a) = 0.

Landers and Rogge [8] prove that the uniform integrability condition is suffi-
cient in order that a sequence of pairwise independent random variables verifies
the weak law of large numbers.

Chandra [1] obtains the weak law of large numbers under a new condition
which is weaker than uniform integrability: the condition of Cesàro uniform
integrability. A sequence {Xn, n ≥ 1} of integrable random variables is said to
be Cesàro uniformly integrable if

lim
a→∞

sup
n≥1

1
kn

kn∑

i=1

E|Xi|I(|Xi| > a) = 0,

where {kn, n ≥ 1} is a sequence of positive integers such that kn → ∞ as
n →∞.
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Ordóñez Cabrera [10], by studying the weak convergence for weighted sums
of random variables, introduces the condition of uniform integrability concern-
ing the weights, which is weaker than uniform integrability, and leads to Cesàro
uniform integrability as a special case.

In the following let {un, n ≥ 1} and {vn, n ≥ 1} be two sequences of in-
tegers (not necessary positive or finite) such that vn > un for all n ≥ 1 and
vn − un → ∞ as n →∞. Let {kn, n ≥ 1} be a sequence of positive numbers
such that kn →∞ as n →∞.

Definition 1.1. Let {Xni, un ≤ i ≤ vn, n ≥ 1} be an array of random variables
and {ani, un ≤ i ≤ vn, n ≥ 1} an array of constants with

∑vn

i=un
|ani| ≤ C for

all n ∈ N and some constant C > 0. The array {Xni, un ≤ i ≤ vn, n ≥ 1} is
{ani}-uniformly integrable if

lim
a→∞

sup
n≥1

vn∑

i=un

|ani|E|Xni|I(|Xni| > a) = 0.

Under the condition of {ani}-uniform integrability, Ordóñez Cabrera [10] ob-
tains the weak law of large numbers for weighted sums of pairwise independent
random variables; the condition of pairwise independence can be even dropped,
at the price of slightly strengthening the conditions on the weights.

Sung [13] introduces the concept of Cesàro type uniform integrability with
exponent r.

Definition 1.2. Let {Xni, un ≤ i ≤ vn, n ≥ 1} be an array of random variables
and r > 0. The array {Xni, un ≤ i ≤ vn, n ≥ 1} is said to be Cesàro type
uniformly integrable with exponent r if

sup
n≥1

1
kn

vn∑

i=un

E|Xni|r < ∞ and lim
a→∞

sup
n≥1

1
kn

vn∑

i=un

E|Xni|rI(|Xni|r > a) = 0.

Note that the conditions of Cesàro uniform integrability and Cesàro type
uniform integrability with exponent r are equivalent when un = 1, vn = kn, n ≥
1, and r = 1. Sung [13] obtains the weak law of large numbers for an array
{Xni} satisfying Cesàro type uniform integrability with exponent r for some
0 < r < 2.

Chandra and Goswami [2] introduce the concept of Cesàro α-integrability
(α > 0), and show that Cesàro α-integrability for any α > 0 is weaker than
Cesàro uniform integrability.

Definition 1.3. Let α > 0. A sequence {Xn, n ≥ 1} of random variables is
said to be Cesàro α-integrable if

sup
n≥1

1
n

n∑

i=1

E|Xi| < ∞ and lim
n→∞

1
n

n∑

i=1

E|Xi|I(|Xi| > iα) = 0.

Under the Cesàro α-integrability condition for some α > 1
2 , Chandra and

Goswami [2] obtain the weak law of large numbers for a sequence of pairwise
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independent random variables. They also prove that Cesàro α-integrability for
appropriate α is also sufficient for the weak law of large numbers to hold for
certain special dependent sequences of random variables.

Ordóñez Cabrera and Volodin [11] introduce the notion of h-integrability for
an array of random variables concerning an array of constant weights, and prove
that this concept is weaker than Cesàro uniform integrability, {ani}-uniform
integrability and Cesàro α-integrability.

Definition 1.4. Let {Xni, un ≤ i ≤ vn, n ≥ 1} be an array of random variables
and {ani, un ≤ i ≤ vn, n ≥ 1} an array of constants with

∑vn

i=un
|ani| ≤ C for

all n ∈ N and some constant C > 0. Let moreover {h(n), n ≥ 1} be an
increasing sequence of positive constants with h(n) ↑ ∞ as n ↑ ∞. The array
{Xni, un ≤ i ≤ vn, n ≥ 1} is said to be h-integrable with respect to the array of
constants {ani} if

sup
n≥1

vn∑

i=un

|ani|E|Xni| < ∞ and lim
n→∞

vn∑

i=un

|ani|E|Xni|I(|Xni| > h(n)) = 0.

Under appropriate conditions on the weights, Ordóñez Cabrera and Volodin
[11] prove that h-integrability concerning the weights is sufficient for the weak
law of large numbers to hold for weighted sums of an array of random vari-
ables, when these random variables are subject to some special kind of rowwise
dependence, and, of course, when the array of random variables is pairwise
independent.

The main idea of notions of {ani}-uniform integrability introduced in Ordóñ-
ez Cabrera [10] and h-integrability with respect to the array of constants {ani}
introduced in Ordóñez Cabrera and Volodin [11] is to deal with weighted sums
of random variables. We now introduce a new concept of integrability which
deals with usual normed sums of random variables.

Definition 1.5. Let {Xni, un ≤ i ≤ vn, n ≥ 1} be an array of random variables
and r > 0. Let moreover {h(n), n ≥ 1} be an increasing sequence of positive
constants with h(n) ↑ ∞ as n ↑ ∞. The array {Xni} is said to be h-integrable
with exponent r if

sup
n≥1

1
kn

vn∑

i=un

E|Xni|r < ∞ and lim
n→∞

1
kn

vn∑

i=un

E|Xni|rI(|Xni|r > h(n)) = 0.

Note that the notion of h-integrability with exponent r is strictly weaker than
the notion of Cesàro type uniform integrability with exponent r (cf. Lemma
2.1 and Remark 2.1 below).

One of the most interesting applications of all these concepts of integrability
is connected with Gut’s [4] general weak law of large numbers. In order to
formulate this result we need the following notations.

Consider an array {Xni, un ≤ i ≤ vn, n ≥ 1} of random variables defined on a
probability space (Ω,F , P ). Set Fnj = σ{Xni, un ≤ i ≤ j}, un ≤ j ≤ vn, n ≥ 1,
and Fn,un−1 = {∅,Ω}, n ≥ 1.
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When un = 1, vn = kn, n ≥ 1, weak laws of large numbers for the array
{Xni, un ≤ i ≤ vn, n ≥ 1} have been established by several authors (see, Gut
[4] and Hong and Oh [5]). Gut [4] proved that, for some 0 < r < 2

∑kn

i=1(Xni − ani)

k
1/r
n

→ 0 in Lr

if {|Xni|r, 1 ≤ i ≤ kn, n ≥ 1} is an array of Cesàro uniformly integrable random
variables, where ani = 0 if 0 < r < 1 and ani = E(Xni|Fn,i−1) if 1 ≤ r < 2.

For the more general array {Xni, un ≤ i ≤ vn, n ≥ 1} of random vari-
ables, weak laws of large numbers have been established by many authors (see,
Ordóñez Cabrera and Volodin [11], Sung [13], and Sung et al. [14]).

In this paper, we obtain weak laws of large numbers for the array of depen-
dent random variables (martingale difference sequence or negatively associated
random variables) satisfying the condition of h-integrability with exponent r.
Our results extend and sharpen the results of Sung [13] and Ordóñez Cabrera
and Volodin [11] connected with Gut’s general weak law of large numbers.

2. Preliminary lemmas

The following lemma shows that the notion of h-integrability with exponent
r is weaker than the notion of Cesàro type uniform integrability with exponent
r.

Lemma 2.1. If the array {Xni, un ≤ i ≤ vn, n ≥ 1} satisfies the condition
of Cesàro type uniform integrability with exponent r > 0, then it satisfies the
condition of h-integrability with exponent r.

Proof. Note that the first condition of the Cesàro type uniform integrability
with exponent r and the first condition of the h-integrability with exponent
r are same. Hence it suffices to show that the second condition of Cesàro
type uniform integrability with exponent r implies the second condition of h-
integrability with exponent r. If {Xni} satisfies the second condition of Cesàro
type uniform integrability with exponent r, then there exists A > 0 such that
sup
n≥1

1
kn

∑vn

i=un
E|Xni|rI(|Xni|r > a) < ε if a > A. Since h(m) ↑ ∞ as m ↑ ∞,

there exists M such that h(m) > A if m > M. For m > M,

1
km

vm∑

i=um

E|Xmi|rI(|Xmi|r > h(m)) ≤ sup
n≥1

1
kn

vn∑

i=un

E|Xni|rI(|Xni|r > h(m))

< ε.

Hence the second condition of h-integrability with exponent r is satisfied. ¤

Remark 2.1. The concept of h-integrability with exponent r is strictly weaker
than the concept of Cesàro type uniform integrability with exponent r, i.e.,
there exists an array {Xni, un ≤ i ≤ vn, n ≥ 1} which is h-integrable with ex-
ponent r, but not Cesàro type uniform integrability with exponent r. This can
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be obtained by a simple modification of the example in Remark 2 of Ordóñez
Cabrera and Volodin [11], which is a modification of Example 2.2 from Chandra
and Goswami [2].

The following lemma is needed to prove our main results.

Lemma 2.2. Suppose that {Xni, un ≤ i ≤ vn, n ≥ 1} be an array of h-
integrable with exponent r random variables for some r > 0, kn →∞, h(n) ↑ ∞,
and h(n)/kn → 0. Then the following statements hold.

(i)
∑vn

i=un
E|Xni|αI(|Xni|r > kn) = o(kα/r

n ) if 0 < α ≤ r,

(ii)
∑vn

i=un
E|Xni|βI(|Xni|r ≤ kn) = o(kβ/r

n ) if r < β.

Proof. The proof is similar to that of Sung [13]. Since h(n)/kn → 0 as n →∞,
there exists N such that h(n) ≤ kn if n > N. If 0 < α ≤ r, then for n > N

1

k
α/r
n

vn∑

i=un

E|Xni|αI(|Xni|r > kn) ≤ 1
kn

vn∑

i=un

E|Xni|rI(|Xni|r > kn)

≤ 1
kn

vn∑

i=un

E|Xni|rI(|Xni|r > h(n)),

hence (i) holds by the condition of h-integrability with exponent r.
Now we prove that (ii) holds. From the proof of Lemma 1 of Sung [13]

1

kn
β/r

vn∑

i=un

E|Xni|βI(|Xni|r ≤ kn)

≤ 1

kn
β/r

vn∑

i=un

E|Xni|rI(|Xni|r > 0)

+
1

kn
β/r

vn∑

i=un

kn−1∑

j=1

((j + 1)(β/r)−1 − j(β/r)−1)E|Xni|rI(|Xni|r > j)

=: An + Bn.

For An we have

An ≤ 1

kn
(β/r)−1

· sup
n≥1

{
1
kn

vn∑

i=un

E|Xni|r
}
→ 0

by β/r > 1 and the first condition of h-integrability with exponent r.
For Bn, the second condition of h-integrability with exponent r implies that

there exists N such that k−1
n

∑vn

i=un
E|Xni|rI(|Xni|r > h(n)) < ε if n > N. For

n > N we obtain
Bn

=
1

kn
β/r

vn∑

i=un

[h(n)]∑

j=1

((j + 1)(β/r)−1 − j(β/r)−1)E|Xni|rI(|Xni|r > j)
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+
1

kn
β/r

vn∑

i=un

kn−1∑

j=[h(n)]+1

((j + 1)(β/r)−1 − j(β/r)−1)E|Xni|rI(|Xni|r > j)

≤ 1

kn
β/r

vn∑

i=un

E|Xni|rI(|Xni|r > 1)(([h(n)] + 1)(β/r)−1 − 1)

+
1

kn
β/r

vn∑

i=un

E|Xni|rI(|Xni|r > [h(n)] + 1)(kn
(β/r)−1− ([h(n)] + 1)(β/r)−1)

≤
(

[h(n)] + 1
kn

)(β/r)−1

· sup
n≥1

1
kn

vn∑

i=un

E|Xni|r + ε,

where [a] denotes the integer part of a. Thus lim supn→∞Bn ≤ ε by h(n)/kn →
0 and the first condition of h-integrability with exponent r. Since ε > 0 is
arbitrary, Bn → 0 as n →∞. ¤

Mention that in Theorem 3.1 below, each row of the array {Xni − ani, un ≤
i ≤ vn, n ≥ 1} forms a martingale difference sequence. This is the main idea
behind the proof. In order to consider the weak law of large numbers for an
array of random variables satisfying other dependent conditions, we will need
the following definitions, cf. Joag-Dev and Proschan [6].

Two random variables X and Y are said to be negatively quadrant dependent
(NQD) or lower case negatively dependent (LCND) if

P (X ≤ x, Y ≤ y) ≤ P (X ≤ x)P (Y ≤ y) for all x and y.

A finite family {Xi, 1 ≤ i ≤ n} is said to be negatively associated (NA) if for
every pair of disjoint subsets A and B of {1, 2, . . . , n}

Cov(f(Xi, i ∈ A), g(Xj , j ∈ B)) ≤ 0

whenever f and g are coordinatewise increasing.
An infinite family of random variables is NA if every finite subfamily is NA.
The following lemma can be easily obtained by the definition of NA. Note

that, for a pair of random variables, NQD is equivalent to NA.

Lemma 2.3. Let {Xn, n ≥ 1} be a sequence of NA (pairwise NQD, resp.)
random variables. Let {fn, n ≥ 1} be a sequence of increasing functions. Then
{fn(Xn), n ≥ 1} is a sequence of NA (pairwise NQD, resp.) random variables.

The following lemma was proved by Shao [12].

Lemma 2.4. Let {Xi, 1 ≤ i ≤ n} be a sequence of NA random variables with
mean zero and E|Xi|p < ∞(1 ≤ i ≤ n) for some 1 < p ≤ 2. Then

E max
1≤k≤n

|
k∑

i=1

Xi|p ≤ 23−p
n∑

i=1

E|Xi|p.
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3. On the Gut’s general weak law of large numbers

Now, we state and prove one of our main results.

Theorem 3.1. Suppose that {Xni, un ≤ i ≤ vn, n ≥ 1} is an array of h-
integrable with exponent 0 < r < 2 random variables, kn → ∞, h(n) ↑ ∞, and
h(n)/kn → 0. Then ∑vn

i=un
(Xni − ani)

k
1/r
n

→ 0

in Lr and, hence, in probability as n → ∞, where ani = 0 if 0 < r < 1 and
ani = E(Xni|Fn,i−1) if 1 ≤ r < 2.

The proof of Theorem 3.1 is similar to that of Theorem 1 of Sung [13] and
is omitted.

The following corollary was proved by Sung [13].

Corollary 3.1. Suppose that {Xni, un ≤ i ≤ vn, n ≥ 1} is an array of ran-
dom variables satisfying the Cesàro type uniform integrability with exponent
0 < r < 2 and kn →∞. Then

∑vn

i=un
(Xni − ani)

k
1/r
n

→ 0

in Lr and, hence, in probability as n → ∞, where ani = 0 if 0 < r < 1 and
ani = E(Xni|Fn,i−1) if 1 ≤ r < 2.

Proof. By Lemma 2.1, the condition of Cesàro type uniform integrability with
exponent r implies the condition of h-integrability with exponent r, and so the
result follows from Theorem 3.1. ¤

The following theorem shows that, for the case of r = 1, a sequence of
martingale difference in Theorem 3.1 can be replaced by a sequence of pairwise
NQD random variables.

Theorem 3.2. Suppose that {Xni, un ≤ i ≤ vn, n ≥ 1} is an array of rowwise
pairwise NQD h-integrable with exponent r = 1 random variables, i.e.,

sup
n≥1

1
kn

vn∑

i=un

E|Xni| < ∞ and lim
n→∞

1
kn

vn∑

i=un

E|Xni|I(|Xni| > h(n)) = 0

where kn →∞, h(n) ↑ ∞, and h(n)/kn → 0. Then

1
kn

vn∑

i=un

(Xni − EXni) → 0

in L1 and, hence, in probability as n →∞.
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Proof. Let X ′
ni = XniI(|Xni| ≤ kn) − knI(Xni < −kn) + knI(Xni > kn) and

X ′′
ni = Xni − X ′

ni. Then {X ′
ni, un ≤ i ≤ vn, n ≥ 1} is an array of rowwise

pairwise NQD by Lemma 2.3. We can write that

1
kn

vn∑

i=un

(Xni − EXni) =
1
kn

vn∑

i=un

(X ′
ni − EX ′

ni) +
1
kn

vn∑

i=un

(X ′′
ni − EX ′′

ni)

=: An + Bn.

For An we actually prove that An → 0 in L2 and hence in L1. By Lemma 2.2
with α = r = 1 and β = 2, we have

E|An|2 =
1
k2

n

E|
vn∑

i=un

(X ′
ni − EX ′

ni)|2

=
1
k2

n

vn∑

i=un

E(X ′
ni − EX ′

ni)
2 +

1
k2

n

∑

i 6=j

Cov(X ′
ni, X

′
nj)

≤ 1
k2

n

vn∑

i=un

E(X ′
ni − EX ′

ni)
2

≤ 1
k2

n

vn∑

i=un

E|X ′
ni|2

=
1
k2

n

vn∑

i=un

{
E|Xni|2I(|Xni| ≤ kn) + k2

nP (|Xni| > kn)
}

≤ 1
k2

n

vn∑

i=un

E|Xni|2I(|Xni| ≤ kn) +
1
kn

vn∑

i=un

E|Xni|I(|Xni| > kn) → 0.

Noting that |X ′′
ni| ≤ |Xni|I(|Xni| > kn), we also have by Lemma 2.2 that

E|Bn| = 1
kn

E|
vn∑

i=un

(X ′′
ni − EX ′′

ni)|

≤ 2
kn

vn∑

i=un

E|X ′′
ni|

≤ 2
kn

vn∑

i=un

E|Xni|I(|Xni| > kn) → 0.

¤

Corollary 3.2. Suppose that {Xni, un ≤ i ≤ vn, n ≥ 1} is an array of rowwise
pairwise NQD random variables. Let {ani, un ≤ i ≤ vn, n ≥ 1} is an array of
constants. Assume that the following conditions hold.

(i) {Xni} is h-integrable concerning the array {ani},
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(ii) h(n) sup
un≤i≤vn

|ani| → 0.

Then
vn∑

i=un

ani(Xni − EXni) → 0

in L1 and, hence, in probability as n →∞.

Proof. Let kn = 1/ sup
un≤i≤vn

|ani|. Then kn → ∞ and h(n)/kn → 0 by (ii). We

can write that
vn∑

i=un

ani(Xni − EXni) =
vn∑

i=un

a+
ni(Xni − EXni)−

vn∑

i=un

a−ni(Xni − EXni)

=: An + Bn,

where a+ = max{a, 0} and a− = max{−a, 0}. Since {Xni} is an array of
rowwise pairwise NQD random variables, both {kna+

niXni} and {kna−niXni}
are arrays of rowwise pairwise NQD by Lemma 2.3.

Take kna+
niXni instead of Xni in Theorem 3.2. Then we have by (i) that

sup
n≥1

1
kn

vn∑

i=un

E|kna+
niXni| ≤ sup

n≥1

vn∑

i=un

|ani|E|Xni| < ∞.

Since kn|a+
ni| ≤ 1, we also have by (i) that

1
kn

vn∑

i=un

E|kna+
niXni|I(|kna+

niXni| > h(n))

≤
vn∑

i=un

|ani|E|Xni|I(|Xni| > h(n)) → 0.

Thus An → 0 in L1 by Theorem 3.2. Similarly, we have that Bn → 0 in L1. ¤
Remark 3.1. Ordóñez Cabrera and Volodin [11] proved Corollary 3.2 when
{ani} is an array of non-negative constants satisfying (i) and

∑vn

i=un
a2

nih(n)2

→ 0 as n →∞. Since the condition
∑vn

i=un
a2

nih(n)2 → 0 is stronger than (ii),
Corollary 3.2 extends and sharpens the result of Ordóñez Cabrera and Volodin
[11].

It is interesting to consider whether Theorem 3.2 can be extended to the
case 1 < r < 2. But this is not a simple problem. Even if the condition of
pairwise NQD in Theorem 3.2 is replaced by a stronger condition of pairwise
i.i.d., it is still not known does Theorem 3.2 hold for the case 1 < r < 2 or not.
The problem can be formulated in the following way.

Open problem. Let {Xn, n ≥ 1} be a sequence of pairwise i.i.d. random
variables with E|X1|r < ∞ for some 1 < r < 2. Define un = 1, vn = n, kn = n
for n ≥ 1, and Xni = Xi for 1 ≤ i ≤ n and n ≥ 1. Then {Xni, un ≤ i ≤ vn, n ≥



298 SOO HAK SUNG, SUPRANEE LISAWADI, AND ANDREI VOLODIN

1} is an array of rowwise pairwise NQD h-integrable with exponent r random
variables, and

∑vn

i=un
(Xni − EXni)

k
1/r
n

=
∑n

i=1(Xi − EXi)
n1/r

.

Can we generalize the law of large numbers to the pairwise i.i.d. random
variables with respect to Lr or almost sure convergence? For the case r = 1
the answer is positive, cf. the celebrated paper by Etemadi [3]. But for the
case 1 < r < 2, that is, for the case of Marcinkiewicz-Zygmund law of large
numbers, the answer is still unknown.

We would like to pay the interested reader attention to two recent manuscr-
ipts by Kruglov [7] (that contains a new interesting technique that may lead
to a solution of the problem mentioned above) and Li, Rosalsky, and Volodin
[9] (for a generalization of Etemadi’s [3] result on the case of pairwise NQD
random variables).

The following theorem shows that if we replace pairwise NQD by NA, The-
orem 3.2 holds for 1 < r < 2.

Theorem 3.3. Suppose that {Xni, un ≤ i ≤ vn, n ≥ 1} is an array of row-
wise NA h-integrable with exponent 1 ≤ r < 2 random variables, kn → ∞,
h(n) ↑ ∞, and h(n)/kn → 0. Then

∑vn

i=un
(Xni − EXni)

k
1/r
n

→ 0

in Lr and, hence, in probability as n →∞.

Proof. The proof is similar to that of Theorem 3.2. Let

X ′
ni = XniI(|Xni| ≤ k1/r

n )− k1/r
n I(Xni < −k1/r

n ) + k1/r
n I(Xni > k1/r

n )

and X ′′
ni = Xni − X ′

ni. By Lemma 2.3, both {X ′
ni} and {X ′′

ni} are arrays of
rowwise NA random variables. Observe that

1

k
1/r
n

vn∑

i=un

(Xni − EXni) =
1

k
1/r
n

vn∑

i=un

(X ′
ni − EX ′

ni) +
1

k
1/r
n

vn∑

i=un

(X ′′
ni − EX ′′

ni)

=: An + Bn.

By Lemma 2.2 with α = r and β = 2, we have

E|An|2 ≤ 1

k
2/r
n

vn∑

i=un

E|Xni|2I(|Xni|r ≤ kn)

+
1
kn

vn∑

i=un

E|Xni|rI(|Xni|r > kn) → 0.
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Using Lemma 2.4, the cr-inequality, Jensen’s inequality, and Lemma 2.2 with
α = r, we obtain

E|Bn|r ≤ 23−r

kn

vn∑

i=un

E|X ′′
ni − EX ′′

ni|r

≤ 22

kn

vn∑

i=un

E|X ′′
ni|r + |EX ′′

ni|r

≤ 23

kn

vn∑

i=un

E|X ′′
ni|r

≤ 23

kn

vn∑

i=un

E|Xni|rI(|Xni|r > kn) → 0.

¤

Corollary 3.3. Let 1 ≤ r < 2. Suppose that {Xni, un ≤ i ≤ vn, n ≥ 1} is an
array of NA random variables. Let {ani, un ≤ i ≤ vn, n ≥ 1} is an array of
constants. Assume that the following conditions hold.

(i) {|Xni|r} is h-integrable concerning the array {|ani|r},
(ii) h(n) sup

un≤i≤vn

|ani| → 0.

Then
vn∑

i=un

ani(Xni − EXni) → 0

in Lr and, hence, in probability as n →∞.

Proof. Let kn = 1/ sup
un≤i≤vn

|ani|. Then kn →∞ and h(n)/kn → 0 by (ii). Since

kn → ∞ as n → ∞, there exists N such that sup
un≤i≤vn

|ani| ≤ 1 if n > N. It

follows that for n > N

kn|ani|r =
|ani|r

sup
ui≤i≤vn

|ani| ≤
|ani|r

sup
ui≤i≤vn

|ani|r ≤ 1.

The rest of the proof is similar to that of Corollary 3.2 and is omitted. ¤
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