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ABSTRACT
Objectives: In Markov models that evaluate the cost-effectiveness of health-care technologies, it is
generally recommended to use probabilistic analysis instead of deterministic analysis. We sought to
compare the performance of probabilistic and deterministic analysis in estimating the expected rewards
in a Markov model.
Methods: We applied Jensen’s inequality to compare the expected Markov rewards between probabil-
istic and deterministic analysis and conducted a simulation study to compare the bias and accuracy
between the two approaches.
Results: We provided mathematical justification why probabilistic analysis is associated with greater
Markov rewards (life-years and quality-adjusted life-years) compared with deterministic analysis. In our
simulations, probabilistic analyses tended to generate greater life-years, bias, and mean square error for
the estimated rewards compared with deterministic analyses. When the expected values of transition
probabilities were the same, weaker evidence derived from smaller sample sizes resulted in larger
Markov rewards compared with stronger evidence derived from larger sample sizes. When longer time
horizons were applied in cases of weak evidence, there was a substantial increase in bias where the
rewards in both probabilistic and deterministic analysis were overestimated.
Conclusion: Authors should be aware that probabilistic analysis may lead to increased bias when the
evidence is weak.
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1. Introduction

In recent years, there has been a shift in economic modeling
from the use of deterministic analysis to probabilistic analysis for
evaluating the cost-effectiveness of health-care technologies.
Deterministic analysis considers only the expected values of
model inputs – that is, point estimates of costs and clinical inputs.
Probabilistic analysis considers model inputs as probability dis-
tributions (i.e., sampling distributions of the sample mean, not
the distributions of the samples) to account for parameter uncer-
tainty [1]. Model outputs (costs and effects) are subsequently
also distributions, obtained by Monte Carlo simulations. In each
run, one set of results is generated based on the values of the
model inputs randomly drawn from their pre-specified
distributions.

The use of probabilistic methods was mainly advocated to
represent parameter uncertainty, termed as ‘probabilistic sensitiv-
ity analysis’ (PSA) [2]. The results of a PSA can be summarized as
a cost-effectiveness acceptability curve (CEAC) or a scatter plot,
both of which show the probability of a health-care technology
being cost-effective compared with an alternative [3]. Many
advantages have been cited for PSA. Firstly, standard sensitivity
analysis becomes unwieldy when many parameters in a decision
analytic model are estimated with uncertainty. PSA can also
account for uncertainty from the joint distributions of correlated

parameters (e.g., from a regression analysis) [4]. Furthermore, it
can be a starting point tomeasure decision uncertainty in terms of
value of information, which can quantify the probability and con-
sequences of erroneous decision-making through additional cal-
culations of either net health benefit or net monetary benefit [1,5].
From a policy perspective, it may be important to not only gen-
erate results as point estimates (deterministic), but also under-
stand the uncertainty associated with the results, and ultimately
the decision being made. Recently, some guidelines state that
probabilistic analysis provides ‘best estimates’ [3] and ‘less biased
estimates’ [6] of costs and outcomes compared with
a deterministic analysis in a non-linear model (e.g., Markov
model). This encourages the use of the probabilistic approach
over the deterministic approach. Guidelines from some institu-
tions recommend probabilistic analysis not only for sensitivity
analyses, but also for the reference case to estimate the expected
cost and clinical outcomes [6,7]. These recommendations differ
from the International Society for Pharmacoeconomics and
Outcomes Research (ISPOR) Modeling Good Research Practices
Task Force, which is not definitive in its recommendation of
using deterministic versus probabilistic analysis [4].

Therefore, we sought to understand why probabilistic
analysis is less biased than deterministic analysis in the
Markov model. We considered the references provided in
the guidelines [3,6] and also conducted a literature search.
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Although several publications discuss the advantages of
probabilistic analysis over deterministic analysis [5,8–11],
we did not find any simulation studies that compared the
performance (i.e., bias and accuracy) of the two in estimat-
ing the expected cost and effectiveness in Markov models.
In the real world, evidence for decision-making is often not
strong, and the true distributions of parameters of interest
may not be adequately understood from the samples
obtained (e.g., due to small sample size studies that inform
input model parameters). Therefore, it may be challenging
to assign proper distributions for these parameters in
a probabilistic analysis. Furthermore, when the sample size
is small and the variance is large, the probabilistic analysis
may yield extreme values that tend to bias the results (i.e.,
the expected mean value of the model outputs) in some
types of non-linear models (e.g., f xð Þ ¼ 1

x ). The deterministic
analysis uses point estimates as model input parameters;
consequently, there is a smaller chance of observing
extreme results which potentially could yield a less biased
result. To better understand the performance of both the
probabilistic and deterministic analysis in a Markov model,
especially when model input parameters are informed by
weak evidence, we conducted a simulation study and com-
pared these two analytical approaches for estimating impor-
tant Markov rewards such as expected life-years.

Section 2 provides an example of a probabilistic analysis
generating greater life-years using weaker evidence (e.g., data
derived from smaller sample sizes). Section 3 introduces justifica-
tions of why the Markov rewards (life-years and quality-adjusted
life-years [QALYs]) in a probabilistic analysis are greater than in
a deterministic analysis, and why weaker evidence in
a probabilistic analysis generally leads to larger rewards com-
pared with stronger evidence. In Section 4, we present our
simulations to compare the bias and accuracy of the expected
reward (the model output) in probabilistic versus deterministic
analysis. In Section 5, we examine how the time horizon impacts
the bias of the estimated rewards in probabilistic and determi-
nistic analyses. We examine the limitations in Section 6 and
discuss our findings in Section 7. In the Supplementary
Materials, we provide additional explanation for the estimation
of the true estimand and bias for both analytical approaches for
a non-linear model in a simulation study.

2. Favorable results for weaker evidence in
probabilistic analysis

Probabilistic analysis is a powerful tool in decision-making
although its interpretation is not straightforward. Attention
should be given to the level of uncertainty associated with
parameter inputs, as they influence the expected rewards
generated probabilistically from a Markov model.

For example, a model input that uses a treatment effect
derived from weak evidence (e.g., based on a small sample
size) generally leads to misleadingly favorable results in terms
of life-years and QALYs in a probabilistic analysis. We illustrate
this in an example below.

We developed a simple Markov model that included three
states: healthy, disease, and dead (see Figure S1 in the

Supplementary Materials). All patients are initially in the healthy
state and only one-way transitions are allowed in the model (i.e.,
people can only move to worse health states and cannot move
back to better health states). Thus, there are three possible
transitions: P12 (from healthy state to disease state), P13 (from
healthy state to dead state), and P23 (from disease state to dead
state). We assumed the transition probabilities are constant. We
used the duration in the surviving states (i.e., life-years) as the
reward. We set the cycle length at 1 year, the time horizon to 100
years, and did not apply discounting and half-cycle correction.

Using this model, we compared the standard of care (Trt A)
with a new treatment (Trt B). Both treatments have the same
expected value of P12, 0.07. However, Trt B has weaker evi-
dence generated from a cohort with a smaller sample size
[distribution of PB12: Beta ~ (7, 93)], while Trt A has stronger
evidence [distribution of PA12: Beta ~ (70, 930)]. The distribu-
tions of Beta ~ (7, 93) and Beta ~ (70, 930) can be found in
Figure S2 in the Supplementary Materials. We also assumed
that Trt A and Trt B have the same parameters for the remain-
ing two transition probabilities, P13: Beta ~ (30, 970) and P23:
Beta ~ (50, 950). Probabilistic analysis shows that Trt B has
a greater expected reward than Trt A (24.38 versus 24.15 life-
years over a time horizon of 100 Markov cycles). Furthermore,
the probability of Trt B having a greater reward than Trt A was
54% in the probabilistic analysis. In simulations where the
evidence for Trt B was even weaker, the difference in reward
between Trt B and Trt A was even greater. If we test other
transition probabilities for P12, P13, and P23, we arrive at
a similar result: weaker evidence is associated with greater
rewards. The next section describes the reasons for this
finding.

3. Justifications for why probabilistic analyses
generate greater life-years and QALYs than
deterministic analyses

In linear relationships, we can use a straight line to represent the
relationship between the independent and dependent variables.
For every unit of change in the independent variable, the depen-
dent variable has a corresponding proportional change. This
relationship does not occur in a non-linear relationship, such as
Markov models. Therefore, the expected rewards (i.e., model
outputs) of a probabilistic or deterministic analysis in a Markov
model will be different.

Elbasha and Chhatwal characterized the conditions for
upward or downward bias using a three-state Markov model
and derived rewards (e.g., life-years, QALYs, lifetime disease
costs) using mathematical expressions for model inputs (e.g.,
transition probabilities) [12]. Further, the authors used
Jensen’s inequality to evaluate the curvature of each reward
function with model parameters. They demonstrated that life-
years and QALYs are convex functions of transition probabil-
ities. Based on these findings, we can deduce that life-years
and QALYs estimated using probabilistic analysis are greater
than those using deterministic analysis. The justification is
provided below.

If a function is convex on an interval, for all x1 and x2 in this
interval and 0 ≤ λ ≤ 1, the following inequality holds:
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f λx1 þ 1� λð Þx2ð Þ � λf x1ð Þ þ 1� λð Þf x2ð Þ (3:1)

Figure 1 illustrates the concept of convexity using a simple
geometric interpretation. If a function is convex, the graph of
this function is below the secant line.

Mercer then extended Jensen’s inequality, as shown
below [13]:

Let f(x) be a convex function. Let 0<x1 � x2 � . . . � xn and
wk be positive weights for xk , then:

f
X

wkxk
� �

�
X

wkf xkð Þ (3:2)

Let x be the transition probability and f(x) be the life-years in
a Markov model. Let us assume that n samples are simulated in
the probabilistic analysis, and let each simulation have the same
weight (i.e., 1/n) so that the sum of weights equals 1. When n is
large,

P
wkxk would equal the expected value of x (i.e. E(x)).

Then, f
P

wkxkð Þ would equal to f E xð Þð Þ, which represents the
expected rewards in the deterministic analysis. The right side of
the inequality expression 3.2,

P
wkf xkð Þ, is equal to the average

reward in the probabilistic analyses in n simulations. Based on
inequality 3.2, we can conclude that the rewards in life-years and
QALYs of a Markov model from deterministic analysis are less
than those from probabilistic analysis, irrespective of the distri-
butions used for transition probabilities.

When model inputs are obtained from strong evidence, the
parameter uncertainty is small and is concentrated around the
mean value, so the rewards (life-years and QALYs) derived
from probabilistic analysis will be close to the rewards derived
from deterministic analysis. However, if model inputs are
obtained from weak evidence, the range of model inputs is
wider, so the differences in rewards between probabilistic and
deterministic analyses can be larger. Therefore, weak evidence
generally leads to greater or equal life-years and QALYs com-
pared with strong evidence.

4. Assessing the bias and accuracy of probabilistic
versus deterministic analysis in a Markov model:
a simulation study

To estimate clinical and economic outcomes, economic mod-
els often include many model inputs including costs, health
utilities, and transition probabilities. With so many different

parameters in a simulation, it is difficult to predict how the
model inputs of interest will impact the many model outputs.
Using transition probabilities only (i.e., no costs and utilities),
we can estimate the duration of time spent in selected states.
In a disease progression Markov model, we can treat the
duration in the surviving states (i.e., life-years) as the reward.
The life-year generally has a strong correlation with other
outcomes in the economic evaluation. For instance, greater
life-years generally correspond to greater costs and QALYs. In
our simulation study, we generated transition probabilities
and chose life-years as the reward. However, we discuss
other model outcomes (QALYs and costs) at the end of this
section.

In the simulation described below, we compared probabil-
istic and deterministic analysis for estimating the reward in
a Markov model.

4.1 Markov model

We used the same model (Figure S1 in the Supplementary
Materials) as described in Section 2.

4.2 Data generation

We defined the true transition probabilities as 0.07, 0.03, and
0.05 for P12, P13, and P23, respectively. We assumed that these
three transition probabilities are obtained from three indepen-
dent cohorts with binomial data. Let X denote the number of
events of interest from a given sample size cohort (n) for
a given true transition probability. We considered three scenar-
ios with different cohort sizes: n = 100 for P12, P13, and P23 (i.e.,
weak evidence); n = 500 for P12, P13, and P23 (i.e., moderate
evidence), and n = 2,000 for P12, P13, and P23 (i.e., strong
evidence). We then estimated the transition probabilities for
the deterministic analysis (i.e., p = X ÷ n) and the probabilistic
analysis (i.e., p ~ Beta (X, n − X)). Since X is a random variable, it
can result in different transition probabilities (i.e., input para-
meter estimation) in different simulations. We calculated the
rewards for both types of analyses. Note that the rewards of the
probabilistic analysis were from the average value of 2,000
simulations. We repeated the deterministic and probabilistic
analysis 5,000 times (i.e., 5,000 repetitions). Figure 2 outlines
the steps of our simulation study in assessing the performance
of probabilistic analysis and deterministic analysis.

4.3 Methods

We used SAS 9.4 to generate datasets for the deterministic
and probabilistic analysis and calculated the true reward. The
SAS code for the simulation study is available upon request.

4.4 Estimand

The estimand of interest is the total reward (life-years) over
100 cycles (interpreted as the expected survival time for 100
years of follow-up) generated by the deterministic and prob-
abilistic analysis for the Markov model. We obtained the true
value of the reward, 23.83 life-years (the estimand), over 100
cycles based on the true P12, P13, and P23 [14]. In the main

Figure 1. Convex function of Jensen’s inequality.
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analysis, we used the fixed true transition probabilities in the
Markov model. In the sensitivity analysis, we used the true
random transition probabilities. We also discussed how to
define the true estimand as a fixed variable or a random
variable in a non-linear model in Supplement 2.

4.5 Performance measures

The main performance measures are bias and precision. We
compared the bias and mean square error (MSE) of the rewards
from the deterministic and probabilistic analysis [14,15]

δ ¼ β̂� β (3:1)

MSE ¼ β̂� β
� �2

þ 1
B� 1

�
XB

i¼1
bβi � β̂

� �2

¼ δ2 þ SE β̂
� �� �2

(3:2)

where δ is the bias, β is the true reward of the population in

life-years, β̂ is the sample mean reward estimated from deter-
ministic or probabilistic analysis, B is the number of simulated

samples (i.e., 5,000), bβi is the estimated reward in the simu-

lated sample 1, 2, 3… B, and SE β̂
� �

is the empirical standard

error of the reward in the simulated samples (calculated as the
standard deviation of all samples).

4.6 Main results

The results comparing the rewards from the deterministic and
probabilistic analysis are presented in Table 1. Although the
simulation generated unbiased estimates of P12, P13, and P23,
both deterministic and probabilistic analysis overestimated
the reward. Further, the probabilistic analysis is associated
with larger bias and MSE than the deterministic analysis. The
bias and MSE reduced as the sample size of the binomial data
increased. When the hypothetical cohort size was large (e.g.,
2,000, in the case of strong clinical evidence), the bias in both
analyses was small. However, when the sample size of the
hypothetical cohort was 100 (in the case of relatively weak
evidence), the bias in both analyses was large. In particular,
the bias in the probabilistic analysis was even larger.

Figure 2. The Process of Assessing the Bias and Accuracy of Probabilistic Analysis versus Deterministic Analysis in Markov Model.
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4.7. Sensitivity analyses results

● Using the same model (Figure S1 in the Supplementary
Materials), we also examined the one-way transition
Markov model using other underlying true values of
P12, P13, and P23, including using a high value for the
transition probability from healthy to disease state (P12).

● We conducted additional analyses to define themultinomial
distribution for P12 and P13 (the joint distribution to replace
the independent binomial data in the main analysis).

● We re-structured the model with the clinical event (i.e.,
P12) conditional on being alive in the healthy state.

In summary, the bias and MSE in the deterministic analysis are
generally smaller than in the probabilistic analysis and in the
sensitivity analyses above.

We used the random true transition probabilities [P12: Beta
~ (7, 93); PA13: Beta ~ (3, 97); and P23: Beta ~ (5, 95)], which
resulted in a larger true estimand (26.43 life-years) compared
with using the fixed true transition probabilities in the main
analysis. The true distributions of P12, P13, and P23, the method
used to estimate transition probabilities, and cohort sizes
affected the performance of the deterministic and probabilis-
tic analyses. In general, the deterministic analysis showed
smaller bias and MSE for smaller to moderate cohort sizes
(e.g., ≤2,000). When cohort sizes were large, both analyses
tended to result in estimands close to the true estimand.

4.8 Other model outcomes

When estimating model outputs of QALYs and costs, we need
to incorporate more parameters. Similar to life-years, rewards in
terms of QALYs are also convex functions of P12, P13, and P23
[12]. Elbasha and Chhatwal proved that there is no heteroge-
neity bias introduced in measuring cost and effectiveness if

heterogeneity only exists in disease cost and utilities [12].
Thus, probabilistic analyses estimating QALYs are likely to lead
to greater bias and larger MSE compared with deterministic
analyses. This is supported by our preliminary analyses of simu-
lations (data not shown). Total disease cost is concave (i.e.,
negative of a convex function) with respect to P12 (disease
progression) but is convex with respect to mortality (P13 and
P23). The concave and convex effects from different parameters
may partially be canceled out by each other, but the impact on
the direction of bias is not obvious. However, our preliminary
simulation results showed that probabilistic analyses also
resulted in greater bias and larger MSE compared with deter-
ministic analysis in estimating disease cost.

5. Impact of time horizon on bias in a Markov
model: a simulation study

Time horizon may substantially impact the cost-effectiveness
in economic evaluations. Wisløff et al. 2014 reviewed cost–
utility studies published in 2010 and found the magnitude of
QALYs gained was strongly associated with the time horizon
[16]. The mean QALYs gained were 0.04, 0.17, and 0.43 for
studies with a time horizon of ≤ 1 year (62 studies), >1 and ≤5
years (55 studies), and >5 years (190 studies), respectively. Kim
et al. 2017 reviewed US-based economic studies published
between 2005 and 2014. This study reported that 71% of
studies (552 out of 782) used a long-term time horizon (>5
years) and 25% (198 out of 782) used a short-term (≤5 years)
time horizon [17]. For studies with multiple time horizons, the
extension of the time horizon yielded more favorable cost-
effectiveness results in most cases (19 out of 23 studies).
Currently, most economic evaluation guidelines recommend
applying a long-term time horizon to capture the long-term
cost and effectiveness [3,6,7,18]. However, the accuracy of
outcomes derived probabilistically in a long-term model ver-
sus a short-term model has not been well investigated. Below,
we introduce an example and then describe how our simula-
tion study examines the impact of time horizon on bias for
life-years in a Markov model.

Continuing with the three-health state disease model
example, Trt A from Section 2 remains the standard care
treatment for this section. We assumed there is another new
treatment (Trt C) where the P12 is from weaker evidence with
an expected value of 0.08 [i.e., Beta ~ (4, 46)]. This transition
probability point estimate is higher than that of Trt A, 0.07 [i.e.,
Beta ~ (70, 930)]. The higher P12 means a higher chance of
moving from the healthy state to the disease state, and there-
fore leads to a lower reward (e.g., life-year and QALY). Again,
we assumed that P13 and P23 transitions were the same for
both Trt C and Trt A. Given a time horizon of 20 cycles, the
reward for Trt A is greater than Trt C (14.47 versus 14.43 life-
years). However, if we extend the time horizon to 100 cycles,
the reward of Trt A is less than Trt C (24.15 versus 24.20 life-
years). Interestingly, Trt A had a lower expected disease pro-
gression rate than Trt C (0.07 versus 0.08 annually), but Trt
C resulted in greater life-years than Trt A in the long term (100
cycles).

We aimed to understand the reasons leading to these results
through simulation. When the evidence is strong, the bias in

Table 1. Comparison of Deterministic and Probabilistic Analysis in a Markov
Model: a Simulation Study.

True
Reward

Deterministic
Analysis

Probabilistic
Analysis

Sample size of 100 for estimating the number of events from binomial data
with true P12, P13, and P23.

Reward, mean
(SD)

23.83 27.36 (10.01) 30.77 (10.85)

Bias – 3.52 6.93
MSE – 112.66 165.79
Sample size of 500 for estimating the number of events from binomial data
with true P12, P13, and P23.

Reward, mean
(SD)

23.83 24.43 (3.49) 25.08 (3.62)

Bias – 0.60 1.25
MSE – 12.53 14.67
Sample size of 2,000 for estimating the number of events from binomial data
with true P12, P13, and P23.

Reward, mean
(SD)

23.83 24.00 (1.64) 24.16 (1.66)

Bias – 0.17 0.33
MSE – 2.71 2.85

Abbreviations: MSE, mean square error; SD, standard deviation.
Note: We first developed a simple Markov model that included three states:
healthy, disease, and dead. There are three possible transitions: P12 (from
healthy state to disease state), P13 (from healthy state to dead state), and P23
(from disease state to dead state). The total reward was the life-years over 100
cycles.
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both deterministic and probabilistic analyses will be relatively
small. Therefore, we examined how time horizon impacts the
magnitude of bias given weaker evidence (i.e., hypothetical
cohort size of 100) for P12, P13, and P23. We used the same
model and true transition probabilities from Section 4. Figure 3
shows the reward for different time horizons (i.e., the number of
Markov cycles). In brief, the bias, which is the difference in
reward between the deterministic or probabilistic analysis and
the true value, dramatically increases as the time horizon
increases. Note that the increase is not proportional. Given
a time horizon of 20 cycles, the biases from the deterministic
and probabilistic analyses were 0.19 and 0.38, respectively;
given 50 cycles, the biases were 1.57 and 2.91, respectively;
and given 100 cycles, the biases were 3.73 and 7.21, respec-
tively. In summary, when the evidence is weak, a Markov model
run over the long term is often associated with large bias and
overestimates the reward.

6. Limitations

Our study has several limitations. Firstly, many aspects, includ-
ing the methodological approaches for defining the true esti-
mand and generating random variables, the sample size of
studies used to inform model input parameters, and the func-
tion of the model, can affect the results of simulation studies
that aim to evaluate the performance (bias and precision) of
deterministic and probabilistic analyses. We only selected
some typical situations in the simulations, so this may not
characterize the direction and magnitude of bias in probabil-
istic and deterministic analysis for other distributions and/or
more complex conditions. Secondly, model outcomes from
probabilistic analysis are more informative than point esti-
mates from a deterministic analysis. For example, the expected
value of perfect information from outputs of probabilistic
analysis provides the upper bound of the net health or net
monetary benefits of future research, which is very important
for decision-making [1,5]. It can also be extended to calculate
the expected value of perfect information of a parameter (or
parameters). Our simulation study did not reflect this impor-
tant advantage of probabilistic analysis.

7. Discussion

To our knowledge, this is the first simulation study to compare
the bias and accuracy of the rewards generated by probabil-
istic versus deterministic analysis in Markov models, and also
the first that explores the impact of time horizon on the
magnitude of bias. Although our examples are drawn from
simple one-way disease progression Markov models with
three health states, they illustrate cautionary tales of when
probabilistic and deterministic results can greatly diverge.

With the shift toward using probabilistic analyses in the
fields of decision analysis and health economics, we encou-
rage modelers to consider the limitations of estimating the
expected values in probabilistic analyses when there is weak
evidence. We are proponents of conducting both probabilistic
and deterministic analyses in economic evaluations to explore
possible discordance in the expected costs and effectiveness
between these two approaches. Our study indicates that if
discordance occurs, deterministic analysis may offer less
biased estimates in effectiveness.

In general, a lifetime model should be considered for eco-
nomic evaluations [3,6,7,18]. However, sometimes existing evi-
dence for an intervention is over the short term only and is
weak, while long-term consequences are unknown. Since our
simulation illustrated the potential for substantially increased
bias in a long-term model, researchers need to balance the
potential benefits and limitations of long-term disease model-
ing to justify the selection of the most appropriate time hor-
izon when the evidence is weak.

Key issues

● The average life-year rewards and QALYs in a probabilistic
analysis are generally larger than in a deterministic analysis.

● Based on the same expected values of transition probabil-
ities, weaker evidence results in larger life-years and QALYs
compared with stronger evidence in a probabilistic analysis.

● Bias and mean square error (MSE) of calculated rewards
(life-years) are generally smaller in a deterministic analysis
than a probabilistic analysis. Bias and MSE reduce as the
sample size increases in both deterministic and probabilistic
analyses.

● When the evidence is weak, longer time horizons are gen-
erally associated with substantially increased bias and over-
estimate the life-years in both probabilistic and deterministic
analyses.

● Researchers need to balance the potential benefits and
limitations of a long-term model to select the appropriate
time horizon in Markov models.
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