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1 Introduction

Studying extreme values of random processes and fields always attracted a lot of attention
by probabilists and statisticians. The obtained theoretical results have been utilised in a
variety of applications, including insurance, finance, engineering, environmetrics, just to
name few. The roots of the subject are in classical probability theory, and can be traced
back to Gnedenko’s theory of limiting behaviour of maximas of random variables. We refer
to the excellent books by Leadbetter et al. (1983) and Embrechts et al. (1997) that contain
classical and more recent results on limit theorems of maximas of random variables with
numerous examples of important practical applications in finance, economics, insurance
and other fields.

Gaussian and stationary models are the most popular in studying extremes, see Hashorva
and Hüsler (2000) and Piterbarg (1996). The reason for this popularity is their simplicity
and availability of closed-form results in many cases. However, more general classes of
distributions and assumptions are required in numerous applications. The main focus of this
investigation is to obtain results for the running maxima of ϕ-subgaussian random fields
with unboundedly increasing norms.

Let {Xk,n, k ≥ 1, n ≥ 1} be a double array of centered random variables (a 2D ran-
dom field defined on the grid N × N) that are not necessarily independent or identically
distributed. We assume that these variables are defined on the same probability space
{Ω,F , P }.

Studying properties of normalised maxima of random sequences and processes is one
of the classical problems in probability theory that attracted considerable interest in the
literature, see, for example, Kratz (2006), Leadbetter et al. (1983), Piterbarg (1996), and
Talagrand (2014) and the references therein. The known asymptotic results broadly belong
to three classes that use different probabilistic tools to study properties of

(1) expected maxima (see, for example, Borovkov et al. (2017) and Talagrand (2014)),
(2) convergence almost surely (see Giuliano et al. (2013) and Pickands (1967)),
(3) asymptotic distributions of normalised maximas (see, for example, a comprehensive

collection of results in Piterbarg (1996)).

The case of Gaussian random variables has been extensively investigated for each of
these classes. However, there are still numerous open problems, in particular about an
extension of the known results to non-Gaussian scenarios and multidimensional arrays.

This article studies sufficient conditions on the tail distributions of Xk,n that guarantee
the existence of such a sequence {am,j ,m ≥ 1, j ≥ 1} that the random variables

Ym,j = max
1≤k≤m,1≤n≤j

Xk,n − am,j

converge to 0 almost surely as the number of random variables Xk,n in the above maximum
tends to infinity. This type of convergence is called the convergence of running maxima.

Contrary to the majority of classical results on the limiting behaviour of the maxima
of random variables, where the convergence in distribution was considered (the third item
above), we are interested in the almost surely convergence to zero. First results of this type
were obtained by Pickands (1967), where the classical case of Gaussian random variables
was considered. Later this result was generalized to wider classes of distributions. In Giu-
liano (1995) running maxima of one-dimensional random sequences were considered and
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the generalization to the subgaussian case was studied. In Giuliano et al. (2013), the results
of Giuliano (1995) were generalized to the case of ϕ-subgaussian random variables. For
recent publications on this subject we refer to Giuliano and Macci (2014) and Csáki and
Gonchigdanzan (2002) and references therein.

The class of subgaussian and ϕ-subgaussian random variables is a natural extension of
the Gaussian class. The popularity of the Gaussian distribution was justified by the central
limit theorem for sums of random variables with small variances. However, asymptotics
can be non-Gaussian if summands have large variances. Nevertheless, ϕ-subgaussianity
still can be an appropriate assumption. Numerous probability distributions belong to the
ϕ-subgaussian class. For example, reflected Weibull, centered bounded-supported, and
sums of independent Gaussian and centered bounded random variables are in this class.
ϕ-subgaussian random variables were introduced to generalize various properties of sub-
gaussian class considered by Dudley (1967), Fernique (1975), Kahane (1960), and Ledoux
and Talagrand (2013). Then, several publications used this class of random variables to con-
struct stochastic processes and fields, see Kozachenko and Olenko (2016a), Kozachenko and
Olenko (2016b), and Kozachenko et al. (2015). The monograph (Buldygin and Kozachenko
2000) discusses subgaussianity and ϕ-subgaussianity in detail and provides numerous
important examples and properties.

The main aim of this paper is to investigate the convergence of the running maxima of
centered double arrays with more general exponential types of the tail distributions of Xk,n

than in Giuliano et al. (2013). The integrability conditions on the subgaussian function ϕ

will obviously change.
The main results of the paper are Theorems 1–5. In these results the array {Ym,j , m ≥

1, j ≥ 1} is split into two parts:

Y+
m,j = max

(
Ym,j , 0

)
, Y−

m,j = max
(−Ym,j , 0

)
, m ≥ 1, j ≥ 1,

and the convergence of the arrays
{
Y+

m,j ,m ≥ 1, j ≥ 1
}

,
{
Y−

m,j ,m ≥ 1, j ≥ 1
}
is investi-

gated. The obtained results clearly show how the running maxima behaves depending on the
right and left tail distributions of Xn,k . The dependence of the array

{
am,j ,m ≥ 1, j ≥ 1

}

on the function ψ(·) which is the Young-Fenchel transform of ϕ, and ϕ-subgaussian norm
of Xk,n is demonstrated. The paper also examines the rate of convergence of the positive

parts array
{
Y+

m,j ,m ≥ 1, j ≥ 1
}
.

This paper investigates almost sure and lim(max) convergence of random functionals of
double arrays. More details about these and other types of convergence and their applica-
tions can be found in the publications (Donhauzer et al. 2021; Hu et al. 2021; Klesov 2014)
and the references therein.

The novelty of the paper compared to the known in the literature results for one-
dimensional sequences are:

– the case of random double arrays is studied,
– lim(max) convergence is used,
– ϕ-subgaussian norms of random variables in the arrays can unboundedly increase,
– conditions on exponential-type bounded tails are weaker than in the literature,
– several assumptions are less restrictive than even in the known results for the one-

dimensional case,
– specifications for various important cases and particular scenarious are given.
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This paper is organized as follows. Section 2 provides required definitions and notations.
The main results of this article are proved in Sections 3 and 4. Conditions on the conver-
gence of running maxima are presented in Section 3. Estimates of the rate of convergence
are given in Section 4. Specifications of the main results and important particular cases are
considered in Section 5. Section 6 presents some simulation studies. Finally, conclusions
and some problems for future investigations are given in the last section.

Throughout the paper, u ∨ v denotes max(u, v), R+ stands for the set of positive real
numbers {c ∈ R : c > 0}, and C represents a generic finite positive constant, which is not
necessarily same in each appearance.

All computations, plotting, and simulations in this article were performed using the soft-
ware R version 4.0.3. A reproducible version of the code in this paper is available in the
folder “Research materials” from the website https://sites.google.com/site/olenkoandriy/.

2 Definitions and Auxiliary Results

This section presents definitions, notations, and technical results that will be used in the
proofs of the main results later.

For double arrays of random variables, due to the lack of linear ordering of N×N, there
are multiple ways to define different modes of convergence. See the monograph (Klesov
2014) for a comprehensive discussion.

This paper considers lim(max) convergence. Let
{
am,j , m ≥ 1, j ≥ 1

}
be a double array

of real numbers.

Definition 1 The array
{
am,j ,m ≥ 1, j ≥ 1

}
converges to a ∈ R as m ∨ j → ∞ if for

every ε > 0 there exists an integer N such that if m ∨ j ≥ N then

|am,j − a| < ε.

In the following this convergence will be denoted by limm∨j→∞ am,j = a or by am,j →
a as m ∨ j → +∞.

This paper uses the next notations of ϕ-subgaussianity.

Definition 2 A continuous function ϕ(x), x ∈ R, is called an Orlicz N -function if

a) it is even and convex,
b) ϕ(0) = 0,
c) ϕ(x) is a monotone increasing function for x > 0,
d) lim

x→0

ϕ(x)
x

= 0 and lim
x→+∞

ϕ(x)
x

= +∞.

In the following the notation ϕ(x) is used for an Orlicz N -function.

Example 1 The function ϕ(x) = |x|r
r

, r > 1, is an Orlicz N -function.

Definition 3 A function ψ(x), x ∈ R, given by ψ(x) := supy∈R (xy − ϕ(y)) is called the
Young-Fenchel transform of ϕ(x).

It is well-known that ψ(·) is an Orlicz N -function.

https://sites.google.com/site/olenkoandriy/
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Example 2 If ϕ(x) = |x|r
r

, r > 1, then ψ(x) = |x|q
q

, where 1
r

+ 1
q

= 1.

Any Orlicz N -function ϕ(x) can be represented in the integral form

ϕ(x) =
∫ |x|

0
pϕ(t) dt

where pϕ(t), t ≥ 0, is its density. The density pϕ(·) is non-decreasing and there exists a
generalized inverse qϕ(·) defined by

qϕ(t) := sup{u ≥ 0 : pϕ(u) ≤ t}.
Then,

ψ(x) =
∫ |x|

0
qϕ(t) dt .

As a consequence, the function ψ(·) is increasing, differentiable, and ψ ′(·) = qϕ(·).

Definition 4 A random variable X is ϕ-subgaussian if E(X) = 0 and there exists a finite
constant a > 0 such that E exp (tX) ≤ exp (ϕ(at)) for all t ∈ R. The ϕ-subgaussian norm
τϕ(X) is defined as

τϕ(X) := inf {a > 0 : E exp (tX) ≤ exp (ϕ(at)) , t ∈ R} .

The definition of a ϕ-subgaussian random variable is given in terms of expectations, but
it is essentially a condition on the tail of the distribution. Namely, the following result holds,
see (Buldygin and Kozachenko 2000, Lemma 4.3, p. 66).

Lemma 1 If ϕ(·) is an Orlicz N -function and a random variable X is ϕ-subgaussian, then
for all x > 0 the following inequality holds

P (X ≥ x) ≤ exp

(
−ψ

(
x

τϕ(X)

))
.

Remark 1 We refer to the monograph (Buldygin and Kozachenko 2000) where the notion
of ϕ-subgaussianity was introduced and discussed in detail. Various examples were also

provided in Buldygin and Kozachenko (2000). In the case ϕ(x) = x2

2 the notion of
ϕ-subgaussianity reduces to the classical subgaussianity (see, for example, (Hoffmann-
Jørgensen 1994, Section 4.29)).

For readers’ convenience, we present a brief discussion of recent relevant results in the
literature on one-dimensional sequences of ϕ-subgaussian random variables.

Consider a zero-mean sequence {Xk, k ≥ 1} of random variables, and set

Yn = max
1≤k≤n

Xk − √
2 ln n.

If Xk are independent and Gaussian random variables, then limn→∞ Yn = 0 a.s., see, for
instance, Pickands (1967).

In Giuliano et al. (2013) the following proposition was proved for Y+
n = max(Yn, 0).

Proposition 1 Suppose that there exists ε0 > 0 such that for every ε ≤ ε0, the generalized
inverse of the density pϕ(·) of the Orlicz N -function ϕ(·) satisfies the conditions

∫ ∞

0
qϕ(x) exp

(−εqϕ(x)
)

dx < +∞
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and

sup
k≥1

τϕ(Xk) = C ≤ 1.

Then limn→∞ Y+
n = 0 a.s.

It is natural to try to extend Proposition 1 to the multidimensional arrays. This is done in
the next section.

Next, the behaviour of Y−
n = max(−Yn, 0), n ≥ 1, was also studied in Giuliano et al.

(2013), but some additional assumptions on the left tail distribution of Xn were required.
Unfortunately, these assumptions cannot be derived from the ϕ-subgaussianity assumption
(see Remark 2 in Giuliano et al. (2013)). In contrast to Proposition 1, the independence
assumption is also required.

Proposition 2 Assume that {Xk, k ≥ 1} is a sequence of zero-mean independent random
variables and there exists a number C > 0 such that, for every k ≥ 1 and all x > 0, we have

P (Xk < x) ≤ exp
(
−Ce−ψ(x)

)
,

where ψ(·) is a positive differentiable function with q(x) = ψ ′(x) non-decreasing for x >

0. Suppose that there exists an ε0 > 0 such that for every ε ≤ ε0 it holds

∫ +∞

0
exp
(
ψ(x) − Ceεq(x−ε)

)
q(x)dx < +∞.

Then limn→∞ Y−
n = 0 a.s.

In the exponential-type tail condition Proposition 2 uses the same function ψ(·) as in the
definition of ϕ-subgaussianity of Xk . The next section will extend it to the case of arbitrary
functions.

Proposition 3 Let {Xk, k ≥ 1} be a sequence of ϕ-subgaussian random variables such that
supk≥1 τϕ(Xk) = c and let α > 2 − 1

c
. Then

+∞∑

k=1

k−αP
(
Y+

k > 0
)

< +∞.

Remark 2 The statement of Proposition 3 is obvious for α > 1. Hence, only the case of
α < 1 i.e. c < 1, is interesting.

Note that (Giuliano et al. 2013) also examined the rate of convergence of the sequence
{Y+

n , n ≥ 1}. In Proposition 3, the rate of convergence for P
(
Y+

n > 0
)
is given, while

usually only results for P
(
Y+

n > ε
)
, ε > 0, were obtained in the existing literature. As

P
(
Y+

n > ε
) ≤ P

(
Y+

n > 0
)
for any ε > 0 it also follows from the assumptions of the

proposition that
∑+∞

k=1k
−αP

(
Y+

k > ε
)

< +∞.
It was also shown in Giuliano et al. (2013) that, Proposition 3 is sharp in some sense.

Namely, the following result is true.
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Proposition 4 Let {Xk, k ≥ 1} be a zero-mean sequence of independent random variables
and there exists a strictly increasing differentiable function ψ : R+ → R

+ and t0 > 0 such
that, for every k ≥ 1 and t > t0 it holds

P (Xk > t) ≥ exp (−ψ(t)) .

Assume that there exists ε0 > 0 such that

lim sup
x→+∞

maxx≤ξ≤x+ε0 ψ ′(ξ)

ψ(x)
= l < ∞.

Then, for every real number α < 1 and for every 0 < ε < (1 − α)/l it holds

∞∑

k=1

k−αP
(
Y+

k > ε
) = +∞.

3 On Asymptotic Behaviour of RunningMaxima of ϕ-Subgaussian
Double Arrays

In this section, we establish sufficient conditions on the tail distributions of Xk,n that guar-
antee that positive and negative parts of random variables Ym,j converge to 0 almost surely
as m ∨ j → ∞.

Let ϕ(·) be an Orlicz N -function, pϕ(·) be its density, the function ψ(·) is the Young-
Fenchel transform of ϕ(·), and the function qϕ(·) be the generalized inverse of the density
pϕ(·).

Let us consider a double array (2D random field defined on the integer grid N × N)
of zero-mean random variables

{
Xk,n, k ≥ 1, n ≥ 1

}
. The next notations will be used to

formulate the main results

Ym,j : = max
1≤k≤m,1≤n≤j

Xk,n − am,j ,

Zm,j : = Xm,j − am,j ,

where am,j is an increasing function with respect to each of m and j variables, where
m, j ≥ 1.

Let

Y+
m,j := max

(
Ym,j , 0

)
and Y−

m,j := max
(−Ym,j , 0

)
.

Indices m and j of the random variables Ym,j can be viewed as the parameters defining
the rectangular observation window {(k, n) : k ≤ m, n ≤ j, k, n ∈ N} of the random field
Xk,n on N × N.

The following proofs will use the next extension of Lemma 2 from Giuliano et al. (2013)
to the case of double arrays.

Lemma 2 For any ε > 0
{
ω ∈ Ω : Y+

m,j > ε i.o.
}

= {ω ∈ Ω : Z+
m,j > ε i.o.},

where i.o. stands for infinitely often.
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Proof It is easy to see that
{
ω ∈ Ω : Z+

m,j > ε i.o.
}

= {
ω ∈ Ω : Xm,j > ε + am,j i.o.

}

⊂
{
ω ∈ Ω : max

1≤k≤m,1≤n≤j
Xk,n > ε + am,j i.o.

}
=
{
ω ∈ Ω : Y+

m,j > ε i.o.
}
.

Also, as am,j is an increasing function of m and j , it holds
{
ω ∈ Ω : Y+

m,j > ε i.o.
}

= {
ω ∈ Ω : Xk,n > ε + am,j , for 1 ≤ k ≤ m, 1 ≤ n ≤ j i.o.

}

⊂ {ω ∈ Ω : Xk,n > ε + ak,n i.o.
} =

{
ω ∈ Ω : Z+

m,j > ε i.o.
}

,

which completes the proof.

Remark 3 Let {An}∞n=1 be an infinite sequence of events. By {An i.o.} we denote an event
that infinitely many events from {An}∞n=1 holds true. The importance of the notion i.o. can
be explained by the following well-known statement, which is crucial for proving the almost
sure convergence: Xk,n → 0 almost surely, when k ∨ n → +∞, if and only if for all
ε > 0, P (|Xk,n| ≥ ε i.o.) = 0.

The following result extends Proposition 1 to the case of double arrays of random
variables.

Theorem 1 Let {Xk,n, k ≥ 1, n ≥ 1} be a double array of ϕ-subgaussian random variables
and g(·) be a non-decreasing function such that for all k, n ≥ 1

τϕ(Xk,n) ≤ g(ln(kn)) (1)

and
am,j = g(ln (mj))ψ−1(ln (mj)).

Suppose that there exists an ε0 > 0 such that for every ε ∈ (0, ε0]
∫ ∞

0
ψ(x)qϕ(x) exp

(
− εqϕ(x)

g(ψ(x) + ln(2))

)
dx < +∞. (2)

Then limm∨j→∞ Y+
m,j = 0 a.s.

Remark 4 In the following, without loss of generality, we consider only non-degenerated
random variables with non-zero ϕ-subgaussian norms. Therefore, it holds g(·) > 0. For the
case of identically distributed Xk,n we assume that g(x) ≡ τϕ(Xk,n) ≡ C > 0.

Remark 5 If the function g(·) is bounded by a constant C from above then (1) is the same
as the corresponding assumption in Propositions 1 and 3.

Proof It follows from Lemma 2, Remark 3 and the Borel-Cantelli lemma that it is enough
to show that for any ε > 0

∞∑

m=1

∞∑

j=1

P
(
Z+

m,j ≥ ε
)

< ∞,

because then P
(
Z+

m,j ≥ ε i.o.
)

= 0.
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Note, that by Lemma 1 and assumption (1) for all m, j ∈ N, except a finite number, it
holds

P
(
Z+

m,j ≥ ε
)

= P
(
Zm,j ≥ ε

) = P
(
Xm,j ≥ g(ln(mj))ψ−1(ln(mj)) + ε

)

= P

(
Xm,j

g (ln(mj))
≥ ψ−1(ln(mj)) + ε

g(ln(mj))

)

≤ P

(
Xm,j

τϕ(Xm,j )
≥ ψ−1(ln(mj)) + ε

g(ln(mj))

)

≤ exp

(
−ψ

(
ψ−1(ln(mj)) + ε

g(ln(mj))

))

since ψ(·) is increasing.
Therefore, it is enough to prove that the double sum

S :=
∞∑

m=1

∞∑

j=1

exp

(
−ψ

(
ψ−1(ln(mj)) + ε

g(ln(mj))

))
(3)

converges.
Let us fix m ≥ 1 and investigate the behaviour of the inner sum

∞∑

j=1

exp

(
−ψ

(
ψ−1(ln(mj)) + ε

g(ln(mj))

))
.

Note that

∞∑

j=1

exp

(
−ψ

(
ψ−1(ln(mj)) + ε

g(ln(mj))

))

= exp

(
−ψ

(
ψ−1(ln(m)) + ε

g(ln(m))

))
+

∞∑

j=2

exp

(
−ψ

(
ψ−1(ln(mj)) + ε

g(ln(mj))

))
.

Now, for x ∈ [j − 1, j ] :
ln(mx) ≤ ln(mj) and ln(m(x + 1)) ≥ ln(mj).

Because ψ(·), ψ−1(·) and g(·) are increasing functions,

ψ−1(ln(mj)) + ε

g(ln(mj))
≥ ψ−1(ln(mx)) + ε

g(ln(m(x + 1)))
,

−ψ

(
ψ−1(ln(mj)) + ε

g(ln(mj))

)
≤ −ψ

(
ψ−1(ln(mx)) + ε

g(ln(m(x + 1)))

)
,

which results in

∞∑

j=2

exp

(
−ψ

(
ψ−1(ln(mj)) + ε

g(ln(mj))

))

≤
∫ ∞

1
exp

(
−ψ

(
ψ−1(ln(mx)) + ε

g(ln(m(x + 1)))

))
dx.
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Therefore, for fixed m ≥ 1,
∞∑

j=1

exp

(
−ψ

(
ψ−1(ln(mj)) + ε

g(ln(mj))

))

≤ exp

(
−ψ

(
ψ−1(ln(m)) + ε

g(ln(m))

))
+
∫ ∞

1
exp

(
−ψ

(
ψ−1(ln(mx)) + ε

g(ln(m(x + 1)))

))
dx

≤ exp

(
−ψ

(
ψ−1(ln(m)) + ε

g(ln(m))

))
+
∫ ∞

1
exp

(
−ψ

(
ψ−1(ln(mx)) + ε

g(ln(mx) + ln(2))

))
dx (4)

as ln(m(x + 1)) ≤ ln(mx) + ln(2) for m ≥ 1 and x ≥ 1.
To study the last integral in (4) we use the substitution t = ψ−1(ln(mx)). Then x =

exp(ψ(t))
m

and
∫ ∞

1
exp

(
−ψ

(
ψ−1(ln(mx)) + ε

g(ln(mx) + ln(2))

))
dx

≤ 1

m

∫ ∞

ψ−1(lnm)

ψ ′(t) exp
(

ψ(t) − ψ

(
t + ε

g(ψ(t) + ln(2))

))
dt .

By the mean value theorem and ψ ′(·) = qϕ(·) it follows that there exists such ξ ∈[
t, t + ε

g(ψ(t)+ln(2))

]
that it holds

ψ(t) − ψ

(
t + ε

g(ψ(t) + ln(2))

)
= − ε

g(ψ(t) + ln(2))
ψ ′(ξ)

= − ε

g(ψ(t) + ln(2))
qϕ(ξ) ≤ − εqϕ(t)

g(ψ(t) + ln(2))
,

as qϕ(t) is a non-decreasing function.
Thus, we obtain the next upper bound

∫ ∞

1
exp

(
−ψ

(
ψ−1(ln(mx)) + ε

g(ln(mx) + ln(2))

))
dx

≤ 1

m

∫ ∞

ψ−1(lnm)

qϕ(t) exp

(
− εqϕ(t)

g(ψ(t) + ln(2))

)
dt . (5)

Therefore, by (4), (5) the double sum in (3) can be estimated as

S ≤
∞∑

m=1

exp

(
−ψ

(
ψ−1 (ln(m)) + ε

g(ln(m))

))

+
∞∑

m=1

1

m

∫ ∞

ψ−1(lnm)

qϕ(t) exp

(
− εqϕ(t)

g(ψ(t) + ln(2))

)
dt . (6)

Similar to the above computations the first sum in (6) can be bounded as

∞∑

m=1

exp

(
−ψ

(
ψ−1 (ln(m)) + ε

g(ln(m))

))
≤ exp

(
−ψ

(
ψ−1(0) + ε

g(0)

))

+
∫ ∞

1
exp

(
−ψ

(
ψ−1(ln(x)) + ε

g(ln(x + 1))

))
dx

= exp

(
−ψ

(
ε

g(0)

))
+
∫ ∞

0
qϕ(t) exp

(
− εqϕ(t)

g(ψ(t) + ln(2))

)
dt . (7)
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As ψ−1(·) is an increasing function, for the second sum in (6) one gets

∞∑

m=1

1

m

∫ ∞

ψ−1(ln(m))

qϕ(t) exp

(
− εqϕ(t)

g(ψ(t) + ln(2))

)
dt

≤
∫ ∞

0
qϕ(t) exp

(
− εqϕ(t)

g(ψ(t) + ln(2))

)
dt

+
∫ ∞

0

1

u

∫ ∞

ψ−1(ln(u))

qϕ(t) exp

(
− εqϕ(t)

g(ψ(t) + ln(2))

)
dtdu. (8)

By substitution y = ln(u) and changing the order of integration
∫ ∞

0

1

u

∫ ∞

ψ−1(ln(u))

qϕ(t) exp

(
− εqϕ(t)

g(ψ(t) + ln(2))

)
dtdu

=
∫ +∞

0

∫ +∞

ψ−1(y)

qϕ(t) exp

(
− εqϕ(t)

g(ψ(t) + ln(2))

)
dtdy

=
∫ ∞

0
exp

(
− εqϕ(t)

g(ψ(t) + ln(2))

)∫ ψ(t)

0
dydt

=
∫ ∞

0
exp

(
− εqϕ(t)

g(ψ(t) + ln(2))

)
ψ(t)dt < +∞, (9)

where the finiteness of the last integral follows from limx→∞ ψ(x)
x

= +∞ and the
assumption (2).

Combining (9) with (6), (7) and (8) we obtain the convergence of S which completes
the proof.

For the case of double array of random variables with bounded ϕ-subgaussian norms the
function g(·) can be selected identically equal to a constant. Therefore, Theorem 1 can be
specified as follows.

Corollary 1 Let {Xk,n, k ≥ 1, n ≥ 1} be a double array of ϕ-subgaussian random vari-
ables with supk,n∈N τϕ(Xk,n) ≤ 1. Suppose, that there exist ε0 > 0 such that for every
ε ∈ (0, ε0] ∫ +∞

0
ψ(x)qϕ(x) exp

(−εqϕ(x)
)
dx < +∞.

Then,

lim
m∨j→+∞

(
max

1≤k≤m,1≤n≤j
Xk,n − ψ−1(ln (mj))

)+
= 0, a.s.

The asymptotic behaviour of the sequence {Y−
m,j , m, j ≥ 1} cannot be described in terms

of subgaussianity only. Roughly speaking, an opposite type of the inequality is required (see
Remark 2 in Giuliano et al. (2013)). Moreover, in addition to the conditions of Proposition
1, it is assumed that random variables in the double array are independent. The following
result is an extension of Proposition 2 to the case of double arrays.

Theorem 2 Let {Xk,n, k, n ≥ 1} be a double array of independent ϕ-subgaussian random
variables and the array {am,j , m, j ≥ 1} and function g(·) are defined in Theorem 1. Let
κ(x) be a positive increasing differentiable function with the derivative r(x) = κ ′(x) non-
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decreasing for x > 0. Assume that there exists C > 0 such that for every k, n ≥ 1 and all
x > 0

P

(
Xk,n

g(ln(kn))
< x

)
≤ exp

(
−Ce−κ(x)

)
,

and

ψ(x) − κ

(
xg(x)

g(0)

)
≥ C0(x) (10)

for some function C0(·). Suppose that there exists A, ε0 > 0 such that for every ε ∈ (0, ε0]
∫ +∞

A

exp

(
−Cy

2
exp

(
−κ

(
g(ln(y))

g(0)
ψ−1(ln(y)) − ε

g(ln(y))

)))
< +∞

and

∫ +∞

A

ψ(y)qϕ(y) exp

⎛

⎝ψ(y) − C

2
exp

⎛

⎝C0(y) +
r
(

yg(ψ(y))
g(0) − ε

g(ψ(y))

)

g(ψ(y))

⎞

⎠

⎞

⎠ dy < +∞.

Then limm∨j→∞ Y−
m,j = 0 a.s.

Proof Using the Borel-Cantelli lemma, we will prove that for every ε ∈ (0, ε0]
P
(
Y−

m,j > ε i. o.
)

= 0. By the independence of Xk,n one gets

P
(
Y−

m,j > ε
)

= P
(
Ym,j < −ε

) = P

(
max

1≤k≤m,1≤n≤j
Xk,n < g(ln (mj))ψ−1(ln (mj)) − ε

)

=
m∏

k=1

j∏

n=1

P
(
Xk,n < g(ln (mj))ψ−1(ln (mj)) − ε

)

=
m∏

k=1

j∏

n=1

P

(
Xk,n

g(ln(kn))
<

g(ln (mj))

g(ln(kn))
ψ−1(ln (mj)) − ε

g(ln(kn))

)

≤
m∏

k=1

j∏

n=1

P

(
Xk,n

g(ln(kn))
<

g(ln (mj))

g(0)
ψ−1(ln (mj)) − ε

g(ln (mj))

)

≤ exp

(
−Cmj exp

(
−κ

(
g(ln (mj))

g(0)
ψ−1(ln (mj)) − ε

g(ln (mj))

)))
,

where we used the monotonicity of the function g(·) and g(0) ≥ 1. Therefore,
∞∑

m=1

∞∑

j=1

P
(
Y−

m,j > ε
)

≤
∞∑

m=1

∞∑

j=1

exp

(
−Cmj × exp

(
−κ

(
g(ln (mj))

g(0)
ψ−1(ln (mj)) − ε

g(ln (mj))

)))
. (11)

As the functions g(·) and ψ−1(·) are non-decreasing, then for any fixed m ≥ 1 we can
majorize the second sum as

∞∑

j=1

exp

(
−Cmj exp

(
−κ

(
g(ln (mj))

g(0)
ψ−1(ln (mj)) − ε

g(ln (mj))

)))

≤ exp

(
−Cm exp

(
−κ

(
g(ln(m))

g(0)
ψ−1(ln(m)) − ε

g(ln(m))

)))

+
∫ ∞

2
exp

(
−Cm(x − 1) exp

(
−κ

(
g(ln(mx))

g(0)
ψ−1(ln(mx)) − ε

g(ln(mx))

)))
dx.
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As x/2 ≤ x − 1 for x ≥ 2, the above integral can be estimated by
∫ ∞

2
exp

(
−Cmx

2
exp

(
−κ

(
g(ln(mx))

g(0)
ψ−1(ln(mx)) − ε

g(ln(mx))

)))
dx.

By the change of variables y = ψ−1(ln(mx)), x = 1
m
exp(ψ(y)), this integral equals

1

m

∫ ∞

ψ−1(ln(2m))

exp

(
ψ(y) − C

2
exp

(
ψ(y) − κ

(
yg(ψ(y))

g(0)
− ε

g(ψ(y))

)))
qϕ(y)dy

= 1

m

∫ ∞

ψ−1(ln(2m))

exp

(
ψ(y) − C

2
exp

(
ψ(y) − κ

(
yg(ψ(y))

g(0)

)
+ κ

(
yg(ψ(y))

g(0)

)

−κ

(
yg(ψ(y))

g(0)
− ε

g(ψ(y))

)))
qϕ(y)dy. (12)

By the mean value theorem, as r(·) is non-decreasing, it holds

κ

(
yg(ψ(y))

g(0)

)
− κ

(
yg(ψ(y))

g(0)
− ε

g(ψ(y))

)
≥ ε

g(ψ(y))
r

(
yg(ψ(y))

g(0)
− ε

g(ψ(y))

)
.

Thus, applying the above inequality and assumption (10) one gets the following upper
bound for the integral in (12)

1

m

∫ +∞

ψ−1(ln(2m))

exp

⎛

⎝ψ(y) − C

2
exp

⎛

⎝C0(y) +
εr
(

yg(ψ(y))
g(0) − ε

g(ψ(y))

)

g(ψ(y))

⎞

⎠

⎞

⎠ qϕ(y)dy.

Hence, the right hand side of (11) can be estimated by
∞∑

m=1

exp

(
−Cm exp

(
−κ

(
g(ln(m))

g(0)
ψ−1(ln(m)) − ε

g(ln(m))

)))

+
∞∑

m=1

1

m

∫ +∞

ψ−1(ln(2m))

exp

⎛

⎝ψ(y) − C

2
exp

⎛

⎝C0(y) +
εr
(

yg(ψ(y))
g(0) − ε

g(ψ(y))

)

g(ψ(y))

⎞

⎠

⎞

⎠ qϕ(y)dy

≤ exp

(
−C exp

(
−κ

(
ψ−1(0) − ε

g(0)

)))
+
∫ ∞

2
exp

(
−Cu

2
exp

(
−κ

(
g(ln(u))

g(0)
ψ−1(ln(u))

− ε

g(ln(u))

)))
du +

∫ +∞

ψ−1(ln(2))
exp

⎛

⎝ψ(y) − C

2
exp

⎛

⎝C0(y) +
εr
(

yg(ψ(y))
g(0) − ε

g(ψ(y))

)

g(ψ(y))

⎞

⎠

⎞

⎠ qϕ(y)dy

+
+∞∫

1

1

u

+∞∫

ψ−1(ln(2u))

exp

⎛

⎝ψ(y) − C

2
exp

⎛

⎝C0(y) +
εr
(

yg(ψ(y))
g(0) − ε

g(ψ(y))

)

g(ψ(y))

⎞

⎠

⎞

⎠ qϕ(y)dydu. (13)

By the change of variables t = ln(2u) and the change of the order of integration we
obtain that the last integral equals

∫ +∞

ψ−1(ln(2))
(ψ(y) − ln(2))qϕ(y) exp

⎛

⎝ψ(y) − C

2
exp

⎛

⎝C0(y) +
εr
(

yg(ψ(y))
g(0) − ε

g(ψ(y))

)

g(ψ(y))

⎞

⎠

⎞

⎠ dy (14)

Then, the boundedness
∑∞

m=1
∑∞

j=1P
(
Y−

m,j > ε
)

< +∞ follows from (13), (14) and

the assumptions of the theorem.
For the case of double arrays of random variables with uniformly bounded ϕ-subgaussian

norms the next specification, holds true.
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Corollary 2 Let {Xk,n, k ≥ 1, n ≥ 1} be a double array of ϕ-subgaussian random vari-
ables with supk,n∈N τϕ(Xk,n) ≤ 1. Let κ(x) be a positive increasing differentiable function
with the derivative r(x) = κ ′(x) that is non-decreasing for x > 0 and ψ(x)−κ(x) ≥ C0(x)

for some function C0(·). Assume that there exists C > 0 such that for every k, n ≥ 1 and
x > 0

P(Xk,n < x) ≤ exp (−C exp(−κ(x))) .

Suppose that there exist constants A, ε0 > 0 such that for every ε ∈ (0, ε0]
∫ +∞

A

exp

(
−Cy

2
exp
(
−κ(ψ−1(ln(y)) − ε)

))
dy < +∞ (15)

and ∫ +∞

A

ψ(y)qϕ(y) exp

(
ψ(y) − C

2
exp (C0(y) + εr(y − ε))

)
dy < +∞. (16)

Then,

lim
m∨j→+∞

(
max

1≤k≤m,1≤n≤j
Xk,n − ψ−1(ln (mj))

)−
= 0 a.s.

Remark 6 Lemma 1 provides the upper bound on the tail probability of the ϕ-subgaussian
random variable Xk,n

P
(
Xk,n ≥ x

) ≤ exp (−ψ(Ax)) , x > 0.

The condition P
(
Xk,n < x

) ≤ exp (−C exp(−κ(x))) in some sence is opposite.
Namely, the lower bound on the tail probability

P
(
Xk,n ≥ x

) ≥ C exp (−κ(x))

implies
P
(
Xk,n < x

) ≤ exp
(−P(Xk,n ≥ x)

) ≤ exp (−C exp(−κ(x)))

as t ≤ exp(−(1 − t)).

Theorem 3 Assume that {Xk,n, k ≥ 1, n ≥ 1} is a double array of independent ϕ-
subgaussian random variables. If the assumptions of Theorems 1 and 2 are satisfied, then
limm∨j→∞ Ym,j = 0 a.s.

The proof of Theorem 3 follows from the proofs of Theorems 1 and 2.

4 On Convergence Rate of RunningMaxima of RandomDouble Arrays

This section investigates the series

+∞∑

m=1

+∞∑

j=1

(mj)−αP
(
Y+

m,j > ε
)

, ε > 0.

It proves that the series converges for a suitable constant α.
The following theorem and corollary are generalizations of Proposition 3 to the case of

ϕ-subgaussian arrays with not necessary uniformly bounded ϕ-subgaussian norms.
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Theorem 4 Let {Xk,n, k ≥ 1, n ≥ 1} be a double array of ϕ-subgaussian random variables
such that for all m, j ≥ 1, 1 ≤ k ≤ m, 1 ≤ n ≤ j, and some positive-valued function f (·)
it holds

g(ln (mj))

τϕ(Xk,n)
≥ f

(
mj

kn

)
≥ 1

and
∞∑

m=1

∞∑

j=1

m∑

k=1

j∑

n=1

(mj)
−α−f

(
mj
kn

)

< +∞.

Then ∞∑

m=1

∞∑

j=1

(mj)−α P
(
Y+

m,j > 0
)

< +∞. (17)

Proof By Lemma 1 it follows that

P
(
Y+

m,j > 0
)

= P

(
max

1≤k≤m,1≤n≤j
Xk,n > g(ln (mj))ψ−1 (ln (mj))

)

≤
m∑

k=1

j∑

n=1

P

(
Xk,n

τϕ(Xk,n)
>

g(ln (mj))ψ−1(ln (mj))

τϕ(Xk,n)

)

≤
m∑

k=1

j∑

n=1

exp

(
−ψ

(
f

(
mj

kn

)
ψ−1(ln (mj))

))

≤
m∑

k=1

j∑

n=1

exp

(
−f

(
mj

kn

)
ln (mj)

)
.

The last inequality follows from ψ(θx) ≥ θψ(x), θ ≥ 1, that is true for any Orlicz
N -function.

Hence,

+∞∑

m=1

+∞∑

j=1

(mj)−α P
(
Y+

m,j > 0
)

≤
+∞∑

m=1

+∞∑

j=1

m∑

k=1

j∑

n=1

(mj)
−α−f

(
mj
kn

)

< +∞,

by the assumption of the Theorem.

Corollary 3 Let the conditions of Theorem 4 be satisfied and f (x) ≥ c0 > 0 for x ≥ 1.
Then, (17) holds true for α > 2 − c0.

Proof It follows from the assumptions that

m∑

k=1

j∑

n=1

(mj)
−α−f

(
mj
kn

)

≤ (mj)1−α−c0 .

Hence,
∞∑

m=1

∞∑

j=1

(mj)−α P
(
Y+

m,j > 0
)

≤
( ∞∑

m=1

m1−α−c0

)2

< +∞

as the right hand side converges for α > 2 − c0, which completes the proof.
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Remark 7 If the conditions of Theorem 4 or Corollary 3 are satisfied, then for every ε > 0

+∞∑

m=1

+∞∑

j=1

(mj)−αP (Y+
m,j > ε) < ∞

as the inequality P
(
Y+

m,j > ε
)

≤ P
(
Y+

m,j > 0
)
holds true.

Now we proceed with extending Proposition 4, showing that the rate of convergence is
sharp.

Theorem 5 Let {Xk,n, k, n ≥ 1} be a double array of independent ϕ-subgaussian random
variables with τϕ(Xk,n) ≡ 1 satisfying the following assumptions:

(i) there exists a strictly increasing function κ : R+ → R
+ such that for every k, n ≥ 1

and some positive constant C it holds

P(Xk,n > x) ≥ C exp(−κ(x)), x > 0;
(ii) there exists x0 > 0 such that

exp(−κ(x)) ≥ C1 exp(−Bψ(x)),

for all x ≥ x0, where B,C1 > 0;
(iii) for some ε > 0

sup
x>x0

qϕ(x + ε)

ψ(x)
≤ C2 < +∞.

Then, for any α < 2 − B(1 + C2ε) it holds
∞∑

m=1

∞∑

j=1

(mj)−α P
(
Y+

m,j > ε
)

= +∞.

Proof By the theorem’s assumption one can take g(·) ≡ 1 and obtain

P
(
Y+

m,j > ε
)

= P

(
max

1≤k≤m,1≤n≤j
Xk,n > ψ−1 (ln (mj)) + ε

)

= 1 −
m∏

k=1

j∏

n=1

(
1 − P

(
Xk,n ≥ ψ−1(ln (mj)) + ε

))

≥ 1 −
(
1 − C exp

(
−κ
(
ψ−1(ln (mj)) + ε

)))mj

.

Using the inequality 1 − t ≤ e−t , t ≥ 0, one obtains

P
(
Y+

m.j ≥ ε
)

≥ 1 − exp
(
−Cmj exp

(
−κ
(
ψ−1 (ln (mj)) + ε

)))
.

Then, by the inequality 1 − exp(−t) ≥ t exp(−t), t ≥ 0, it follows that

P(Y+
m,n ≥ ε) ≥ Cmj exp

(
−κ
(
ψ−1 (ln (mj)) + ε

))
× exp

(
−Cmj exp

(
−κ
(
ψ−1 (ln (mj)) + ε

)))
.

By Lemma 1 and assumption (i)

C exp(−κ(x)) ≤ exp(−ψ(x)), x ≥ 0.
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Noting that κ(·) is an increasing function, one obtains

P
(
Y+

m,j > ε
)

≥ Cmj exp
(
−κ
(
ψ−1 (ln (mj)) + ε

))
× exp

(
−Cmj exp

(
−κ
(
ψ−1 (ln (mj))

)))

≥ Cmj exp
(
−κ
(
ψ−1 (ln (mj)) + ε

))
exp
(
−Cmj exp

(
−ψ

(
ψ−1 (ln (mj))

)))

≥ Cmj exp (−1) exp
(
−κ
(
ψ−1 (ln (mj) + ε)

))
.

Then, by assumption (ii)

P
(
Y+

m,j > ε
)

≥ CC1 exp(−1)mj exp
(
−Bψ

(
ψ−1(ln (mj))

)
+ ε
)
.

It follows from assumption (iii) that

ψ
(
ψ−1 (ln (mj)) + ε

)

ψ
(
ψ−1 (ln (mj))

) =
∫ ψ−1(ln(mj))

0 qϕ(x)dx + ∫ ψ−1(ln(mj))+ε

ψ−1(ln(mj))
qϕ(x)dx

∫ ψ−1(ln(mj))

0 qϕ(x)dx

≤ 1 + εqϕ(ψ−1(ln (mj)) + ε)

ψ(ψ−1 ln (mj))
≤ 1 + C2ε,

as qϕ(·) is an increasing function.
Hence, it holds

P
(
Y+

m,j > ε
)

≥ Cmj exp
(
−B(1 + C2ε)ψ(ψ−1(ln (mj)))

)
= C (mj)1−B(1+C2ε) .

Therefore,

∞∑

m=1

∞∑

j=1

(mj)−α P
(
Ym,j > ε

) ≥ C

( ∞∑

m=1

m1−α−B(1+C2ε)

)2

= +∞,

when 1 − α − B(1 + C2ε) > −1, which completes the proof.

5 Theoretical Examples

This section provides theoretical examples for important particular classes of ϕ-subgaussian
distributions. Specifications of functions κ(·) and ϕ(·), such that the obtained theoretical
results hold true, are given.

Example 3 Let {Xk,n, k, n ≥ 1} be a double array of standard Gaussian random variables.

It is well-known that EetXk,n = et2/2 which implies that {Xk,n, k, n ≥ 1} is the double
array of ϕ-subgaussian random variables with ϕ(x) = x2/2. The ϕ-subgaussian norm of a
Gaussian variable equals to its standard deviation that is 1 in this example, i.e. τϕ(Xk,n) ≡ 1.
The Young-Fenchel transform of ϕ(·) is ψ(x) = x2/2 with the density qϕ(x) = x.

One can easily see that the condition (15) of Corollary 1 is satisfied. Indeed, for any
positive ε the following integral is finite

∫ +∞

0
ψ(x)qϕ(x) exp

(−εqϕ(x)
)
dx =

∫ +∞

0

x3

2
exp (−εx) dx < +∞.

Let us show that the conditions of Corollary 2 are satisfied too.
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By Birnbaum (1942), for all x > 0 it holds

P(Xk,n ≥ x) ≥ 1

2
√
2π

(√
4 + x2 − x

)
e− x2

2

=
√

2

π

e− x2
2√

4 + x2 + x
=
√

2

π
e
− x2

2 −ln
(√

4+x2+x
)

.

By Remark 6 it means that κ(x) = x2

2 + ln
(√

4 + x2 + x
)
and C =

√
2
π
. The function

κ(x) is increasing, positive and κ(x) ≥ ln(2) for x > 0.
As

r(x) = κ ′(x) = x +
1 + x√

4+x2

x + √
4 + x2

= x + 1√
4 + x2

> 0, x > 0,

it is also positive.
It follows from

r ′(x) = 1 − x
(
4 + x2

)3/2 > 0, x > 0,

that r(x), x > 0, is non-decreasing.

Also, it easy to see that C0(x) = − ln
(
x + √

4 + x2
)

, x > 0.

Let us show that the assumption (15) is satisfied with these specifications of functions
κ(·) and ψ(·). Indeed, by the change of variables x = ψ−1(ln(y)) − ε one obtains y =
eψ(x+ε)and

∫ +∞

A

exp

(
−Cy

2
exp
(
−κ(ψ−1(ln(y)) − ε)

))
dy

=
∫ +∞

A′
qϕ(x + ε) exp

(
ψ(x + ε) − C

2
eψ(x+ε)−κ(x)

)
dx, (18)

where A′ = ψ−1(ln(A)) − ε.
By Bernoulli’s inequality

ψ(x + ε) − κ(x) = x2

2

((
1 + ε

x

)2 − 1

)
− ln

(√
4 + x2 + x

)
≥ εx − ln

(√
4 + x2 + x

)
.

As a polynomial growth is faster than the logarithmic one, the integral in (18) is bounded
from above by

C̃

∫ +∞

A′
(x + ε) exp

(
(x + ε)2

2
− ẽεx

)
dx

for some C̃, ε̃ > 0.
As exponentials grow faster than polynomials, for sufficiently large x

(x + ε)2

2
− exp (̃εx) ≤ −C′ exp (̃εx)

and

exp
(−C′ exp (̃εx)

) ≤ exp
(−C′′x

)
,

for some positive constants C′ and C′′.
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The assumption (16) is satisfied too. Indeed, the assumption (16) takes the form
∫ ∞

A

ψ(y)qϕ(y) exp

(
ψ(y) − C

2
exp (C0(y) + εr(y − ε))

)
dy

=
∫ +∞

A

y3

2
exp

(
y2

2
− C

2(y +√4 + y2)
exp

(

ε

(

y − ε + 1
√
4 + (y − ε)2

)))

.

The last integral is finite because

y2

2
− C

2
(
y +√4 + y2

) exp

(

ε

(

y − ε + 1
√
4 + (y − ε)2

))

< − exp
(εy

2

)

for sufficiently large y.
By Theorem 3 one gets that limm∨j→∞ Ym,n = 0 a.s.

Example 4 Let {Xk,n, k, n ≥ 1} be a double array of independent identically distributed
reflected Weibull random variables with the probability density

p(x) = θ

2b

( |x|
b

)θ−1

e−(|x|/b)θ , θ > 0, b > 0.

Consider reflected Weibull random variables with θ > 1 and b > 0. They belong to the
ϕ-subgaussian class. Indeed, tails of reflected Weibull random variables equal

P(|Xk,n| > x) = e−( x
b )

θ

, x ≥ 0.

Hence, by (Buldygin and Kozachenko 2000, Corollary 4.1, p. 68) {Xk,n, k, n ≥ 1} is the
double-array of ϕ-subgaussian random variables, where

ψ(x) =
(x

b

)θ

, ϕ(x) = θ − 1

θ

(
θ

bθ

)1/(θ−1)

xθ/(θ−1), x ≥ 0,

see (Buldygin and Kozachenko 2000, Example 2.5, p. 46), and τϕ(Xk,n) ≡ c < +∞. The
density of ψ(x) is qϕ(x) = θxθ−1/bθ , x ≥ 0.

Let us chose a such value of the parameter b that {Xk,n, k, n ≥ 1} is the double-array
of ϕ-subgaussian random variables with ϕ-subgaussian norms τϕ(Xk,n) ≡ c ≤ 1, see
Section 6. We will show that in this case the conditions of Corollaries 1 and 2 are satisfied.

The conditions of Corollary 1 are satisfied because τϕ(Xk,n) ≡ c and the following
integral is finite for all positive ε

∫ +∞

0
ψ(x)qϕ(x) exp

(−εqϕ(x)
)
dx = θ

b2θ

∫ +∞

0
x2θ−1 exp

(
−εθ

bθ
xθ−1

)
dx < +∞.

Let us show that the conditions of Corollary 2 are satisfied too. By Remark 6 and the

equality P(Xk,n > x) = 1
2e

−( x
b )

θ

, x ≥ 0, it follows that κ(x) = ψ(x) = ( x
b

)θ
, C = 1/2,

and r(x) = qϕ(x). Hence,

ψ(x) − κ(cx) = (1 − cθ
) (x

b

)θ ≥ C0(x) = 0

because g(·) ≡ c ≤ 1.
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The assumption (15) can be rewritten as
∫ +∞

A

exp
(
−y

4
exp
(
−κ
(
ψ−1(ln(y)) − ε

)))
dy

=
∫ +∞

A

exp
(
−y

4
exp
(
−ψ

(
ψ−1(ln(y)) − ε

)))
dy.

Let use the change of variables x = ψ−1(ln(y)) − ε. Then, y = eψ(x+ε) and the above
integral equals to

∫ +∞

A′
qϕ(x + ε) exp

(

ψ(x + ε) − eψ(x+ε)−ψ(x)

4

)

dx

= θ

bθ

∫ +∞

A′
(x + ε)θ−1 exp

(
(x + ε)θ

bθ
− 1

4
exp

(
(x + ε)θ − xθ

bθ

))
dx, (19)

where A′ = ψ−1(ln(A)) − ε.
By Bernoulli’s inequality

(x + ε)θ − xθ = xθ

((
1 + ε

x

)θ − 1

)
≥ εθxθ−1

and the integral in (19) is bounded by

θ

bθ

∫ +∞

A′
(x + ε)θ−1 exp

(
(x + ε)θ

bθ
− 1

4
exp

(
εθ

bθ
xθ−1

))
dx.

As exponentials grow faster than polynomials we obtain that for sufficiently large x

(x + ε)θ

bθ
− 1

4
exp

(
εθ

bθ
xθ−1

)
≤ −C exp

(
εθ

bθ
xθ−1

)

and

exp

(
−C exp

(
εθ

bθ
xθ−1

))
≤ exp

(
−C̃xθ−1

)

for some positive constants C and C̃.
Finally, as for θ > 1

θ

bθ

∫ ∞

A′
(x + ε)θ−1 exp

(
−C̃xθ−1

)
dx < +∞

we obtain (15).
Now, let us check the assumption (16). In our case, it takes the form

∫ +∞

A

ψ(y)qϕ(y) exp

(

ψ(y) − exp
(
εqϕ(y − ε)

)

4

)

dy

= θ

bθ

∫ +∞

A

y2θ−1 exp

⎛

⎝
(y

b

)θ −
exp
(

εθ
bθ (y − ε)θ−1

)

4

⎞

⎠ dy.

Again, as θ > 1 then
( y

b

)θ − exp
(

εθ
bθ (y − ε)θ−1

)
< −y for sufficiently large y, which

means that the integral is finite. Thus, Corollaries 1 and 2 hold true. Moreover, by Theorem
3 one gets that limm∨j→∞ Ym,n = 0 a.s.
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6 Numerical Examples

This section provides numerical examples that confirm the obtained theoretical results.
By simulating double arrays of random variables satisfying Theorem 3, we show that the
running maxima functionals of these double arrays converge to 0, as the size of observa-
tion windows tends to infinity. As the rate of convergence is very slow to better illustrate
asymptotic behaviour we selected arrays with constant ϕ-subgaussian norms close to one.

Consider a double array {Xk,n, k, n ≥ 1} that consists of independent reflected Weibull
random variables (see Example 4) with the parameters θ = 9 and b = 1.25. These values of
θ and b were selected to get τϕ(Xk,n) ≤ 1 as in Example 4. The probability density function
of the underlying random variables Xk,n, k, n ≥ 1, and a realization of the double array
{Xk,n, k, n ≥ 1} in a square window are shown in Fig. 1.

The underlying random variables Xk,n, k, n ≥ 1, are ϕ-subgaussian random variables
with

ψ(x) =
( x

1.25

)9
, ϕ(x) = 8

9

(
9

1.259

)1/8
x9/8, x ≥ 0.

A calculation of the ϕ-subgaussian norm by using Definition 4 is not trivial in a general
case and may require different approaches. The following method was used to estimate the
ϕ-subgaussian norm of Xk,n, k, n ≥ 1. By (Buldygin and Kozachenko 2000, Lemma 4.2,
p. 65) the ϕ-subgaussian norm allows the representation

τϕ(Xk,n) = sup
λ �=0

ϕ(−1)
(
ln
(
E exp(λXk,n)

))

|λ| .

For the reflected Weibull random variables the above expectation can be calculated as

E exp(λXk,n) =
∫

R

eλxp(x)dx =
∫ +∞

0
eλxp(x)dx +

∫ +∞

0
e−λxp(x)dx

= 1

2
(MGF(λ) + (MGF(−λ)),

Fig. 1 Double array of Weibull random variables. a Probability density function. b Realization of the double
array
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where MGF(·) denotes the moment generating function of the corresponding Weibull
distribution and is given by

MGF(λ) =
+∞∑

n=0

λnbn

n! Γ
(
1 + n

θ

)
.

By using this representation one gets

E exp(λXk,n) = 1

2

(+∞∑

n=0

λnbn

n! Γ
(
1 + n

θ

)
+

+∞∑

n=0

(−λ)nbn

n! Γ
(
1 + n

θ

))

=
+∞∑

n=0

λ2nb2n

(2n)! Γ

(
1 + 2n

θ

)
.

Thus, for sufficiently large M the ϕ-subgaussian norm of the reflected Weibull random
variables can be approximated by

τϕ(Xk,n) ≈ sup
λ �=0

ϕ(−1)
(
ln
(∑M

n=0
λ2nb2n

(2n)! Γ
(
1 + 2n

θ

)))

|λ|

= sup
λ �=0

⎛

⎜
⎝
9

8

(
1.259

9

)1/8
(
ln
(∑M

n=0
λ2nb2n

(2n)! Γ
(
1 + 2n

θ

)))8/9

|λ|

⎞

⎟
⎠ .

As (2n)! increases very quickly even small values of M provide a very accurate
approximation of the series and the norm.

Figure 2 shows the graph of the function under the supremum and the supremum value
for M = 50. As the function is symmetric only the range λ > 0 is plotted. For θ = 9

Fig. 2 Estimation of τϕ(Xk,n)
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Fig. 3 Observation windows. a The first set. b The second set

and b = 1.25 the supremum is attained at λ = 8.5801 and the estimated value of the
norm τϕ(Xk,n) is 0.997. Thus, the double array {Xk,n, k, n ≥ 1} satisfies the conditions of
Theorem 3, see Example 4.

Then, 1000 realizations of the double array {Xk,n, k, n ≥ 1} in the square region
�(1000) = {(m, j) : m, j ≤ 1000,m, j ∈ N} were generated. Using the obtained real-
izations of the double array, values of Ym,j were computed for two sets of observation
windows. The windows are shown in Fig. 3 by using logarithmic scales for x and y coordi-
nates. For the set of observation windows in Fig. 3a and a realization of the reflectedWeibull
random array, the corresponding running maximas are shown in Fig. 4a. For all rectangular

Fig. 4 Running maxima of a realization over a set of windows. a Running maxima Ym,j for the first set of
windows. b Locations of maximas for all rectangular subwindows in � (1000)
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Fig. 5 Box plots of running maximas for two sets of observation windows. (a) The first case. (b) The second
case

observation windows inside �(1000) locations of maximas are shown in Fig. 4b. The loca-
tions are very sparse and the majority of them is concentrated closely to the left and bottom
borders of �(1000).

For the simulated 1000 realizations and the corresponding sets of the observation win-
dows from Fig. 3 the box plots of running maxima functionals Ym,j are shown in Fig. 5. It
is clear that the distribution of the running maxima concentrates around zero when the size
of the observation window increases, but the rate of convergence seems to be rather slow.

Table 1 shows the corresponding Root Mean Square Error (RMSE) of the running max-
ima functionals Ym,j from Fig. 5, the table confirms the convergence of Ym,j to zero when
the observation window increases.

Finally, to demonstrate the lim(max) convergence 1000 simulated realizations of the
reflected Weibull double array were used. The running maxima functionals Ym,j were cal-
culated for all possible pairs (m, j), m, j = 1, 2, . . . , 1200. The boxplots of the obtained
values of Ym,j were computed for 6 groups depending on values of the parameter r =
m ∨ j in the corresponding observation subwindows. The lower bound for the parameter r

increases with the group number. Namely, in group i = 1, . . . , 6 the values r ≥ ri , where
ri = 10, 20, 100, 300, 600, 1000. The obtained boxplots in Fig. 6 confirm the lim(max)
convergence.

Table 1 RMSE of Ym,j

Observation window 1 2 3 4 5 6

The first case 0.026 0.022 0.021 0.019 0.017 0.016

The second case 0.038 0.032 0.024 0.024 0.018 0.017
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Fig. 6 Boxplots of running maximas Ym,j for 6 groups

7 Conclusions and the Future Studies

The asymptotic behaviour of running maxima of random double arrays was investigated.
The conditions of the obtained results allow to consider a wide class of ϕ-subgaussian ran-
dom fields and are weaker than even in the known results for the one-dimensional case.
The rate of convergence was also studied. The results were derived for a general class of
rectangular observation windows and lim(max) convergence.

In the future studies, it would be interesting to extend the obtained results to:

– the case of n-dimension arrays,
– other types of observation windows,
– continuous ϕ-subgaussian random fields,
– different types of dependencies.

Acknowledgements This research was supported by La Trobe University SEMS CaRE Grant “Asymptotic
analysis for point and interval estimation in some statistical models”.

This research includes computations using the Linux computational cluster Gadi of the National
Computational Infrastructure (NCI), which is supported by the Australian Government and La Trobe
University.

References

Birnbaum Z (1942) An inequality for Mill’s ratio. Ann Math Statist 2:245–246
Borovkov K, Mishura Y, Novikov A, Zhitlukhin M (2017) Bounds for expected maxima of Gaussian

processes and their discrete approximations. Stochastics 89:21–37
Buldygin V, Kozachenko IV (2000) Metric characterization of random variables and random processes.

American Mathematical Society, Providence, R.I



Methodology and Computing in Applied Probability
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Probabilités de Saint-Flour IV—1974, pp 1–94

Giuliano R (1995) Remarks on maxima of real random sequences. Note Mat 15:143–145
Giuliano R, Macci C (2014) Large deviation principles for sequences of maxima and minima. Comm Statist

Theory Methods 43:1077–1098
Giuliano R, Ngamkham T, Volodin A (2013) On the asymptotic behavior of the sequence and series of

running maxima from a real random sequence. Stat Probabil Lett 83:534–542
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