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1. Introduction

Let Xn, n ∈ N = {1, 2, . . . , }, be a sequence of independent identically

distributed Bernoulli random variables with mean 0 < p < 1. For the partial

sums Sn = X1 + · · · + Xn, n ∈ N, Kolmogorov [5] in 1963, [6] proved the

maximal inequalities

P

{
sup
k≥n

(
Sk

k
− p

)
≥ ε

}
≤ e−2nε

2(1−ε),P

{
sup
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(
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2

)
≥ ε

}
≤ e−2nε

2

for any 0 ≤ ε ≤ 1. The second inequality corresponds to the parameter

p = 1/2. Later the second inequality was reproved by Young et al. [13].

In fact the second Kolmogorov inequality can be easily deduced from the

Okamoto [12] result. One can easily deduce two-sided inequalities

P
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∣∣∣∣Sk

k
− p

∣∣∣∣ ≥ ε
}
≤ 2e−2nε

2(1−ε), P

{
sup
k≥n

∣∣∣∣Sk

k
− 1

2

∣∣∣∣ ≥ ε
}
≤ 2e−2nε

2

.

Kolmogorov inequalities were improved by Banjević [3], Young et al. [14],

[15], Kruglov [8], Antonov and Kruglov [1]. Now we recall some of the

sharpest inequalities. Young et al. [15] proved that for any 0 ≤ ε <

min{p, q = 1− p} and 0 < p < 1, n ∈ N, the following inequality holds

(1) P

{
sup
k≥n

∣∣∣∣Sk

k
− p

∣∣∣∣ ≥ ε
}
≤ 2e−2nε

2−(4/9)nε4 .

The same authors, Young et al. [15], strengthened the one-sided inequality

as follows

(2) P

{
sup
k≥n

(
Sk

k
− p

)
≥ ε

}
≤ (1 + 2ε)n(1/2+ε)(1− 2ε)n(1/2−ε),

if p ≥ 1
2 or p + ε < 1

2 . Also, Young et al. [14] proved rather sharp the

one-sided inequality of the form

(3) P

{
sup
k≥n

(
Sk

k
− p

)
≥ ε

}
≤ e−2nε

2−(4/3)nε4 ,

for 0 ≤ ε < 1
4 , 0 < p ≤ 1

4 or 1
2 ≤ p ≤ 3

4 .

Proofs of all the mentioned inequalities are based on previous studies of

the function

L(p, ε) = (p + ε) ln

(
1 +

ε

p

)
+ (q − ε) ln

(
1− ε

q

)
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where 0 < p < 1, q = 1 − p and 0 ≤ ε < q. Progress in the lower bound

estimation of this function leads to further progress in the upper bound

estimation of the inequalities (1)–(3). For example, inequalities (1) and (2)

are based on the following inequalities due to Kraft [7]

L(p, ε) ≥ 2ε2 +
4

9
ε4,(4)

L(p, ε) ≥ ln((1 + 2ε)1/2+ε(1− 2ε)1/2−ε), if p ≥ 1

2
or p + ε <

1

2
.(5)

Inequality (3) is a consequence of the bound

(6) L(p, ε) ≥ 2ε2 +
4

3
ε4 for 0 ≤ ε ≤ 1

4
, 0 < p ≤ 1

4
or

1

2
≤ p ≤ 3

4

which was proved by Young et al. [14].

One can easily verify that inequalities (4) and (6) hold for ε = q. It

follows that

(7) − ln(1− ε) ≥
{

2ε2 + 4
9ε

4 for 0 < ε < 1,

2ε2 + 4
3ε

4 for 0 < ε ≤ 1
4 .

An important feature of inequalities (4)–(6) is that the right part of each

inequality is the function of the only argument ε and not of p. It is possible

to prove analogues of the mentioned inequalities with right sides depending

of both arguments p and ε. Massart [11] proved the following inequality

(8) L(p, ε) ≥ ε2

2(p + ε/3)(q − ε/3)
, 0 ≤ ε ≤ q = 1− p.

Inequality (8) is an essential tool in the investigations of Kolmogorov and

Smirnov statistics. Let ξn, n ∈ N, be independent random variables with

the same continuous distribution function F. Let Fn stands for the em-

pirical distribution function constructed with the help of random variables

ξ1, . . . , ξn. With the help of (8) Massart [11] proved the following inequality

for the Smirnov statistic

(9) P{
√
n sup
−∞<x<∞

(Fn(x)− F (x)) > λ} ≤ 2e−2λ
2

, λ ≥ 0.

Massart [11] explained the importance of this inequality for some problems

from mathematical statistics. As an application of the theory of large

deviations Bahadur [2] (see Section 3) showed that the right part of (9)

can be replaced by 2 exp{−2λ2 + O(λ3)}.
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Recall that the sequence of random variables ηn, n ∈ N, satisfies the

large deviation principle with rate function J(x), x ∈ R, if

lim sup
n→∞

1

n
lnP{ηn ∈ F} ≤ − inf

x∈F
J(x) for each closed set F ⊆ R,

lim inf
n→∞

1

n
lnP{ηn ∈ F} ≥ − inf

x∈G
J(x) for each open set G ⊆ R.

By the well known Cramér theorem the sequence Sn/n, n ∈ N, satisfies the

large deviation principle with rate function J(x) =∞ for x < 0 and x > 1

and

J(x) = x ln

(
x

p

)
+ (1− x) ln

(
1− x

q

)
, 0 ≤ x ≤ 1, q = 1− p.

Inequalities (1)–(8) and our refined inequalities add new information about

the rate function J(x). Our refined inequalities also contain all one needs

to generalize the Cramér theorem about large deviations for the sequence

supk≥n
(
Sk

k − p
)
, n ∈ N.

In this paper we refine all inequalities (1)–(8). All these refined inequal-

ities are strictly sharper than (1)–(8). With the help of inequalities (13)

and (14) instead of (8) and some new technique it is possible to replace the

right part in (9) with 2 exp{−2λ2−λ4/(36n)}. This new inequality is much

sharper than (9) especially for big λ.

From the foregoing remarks mentioned in the Introductions, it follows

that the problem of refinement of the maximal Kolmogorov inequality for

the binomial distribution has a long history. Based on the investigations of

A.N. Kolmogorov himself and his numerous follows, the required maximal

inequality can be written in the following form

P

{
sup
k≥n

(
Sk

k
− p

)
≥ ε

}
≤ exp {−nL(p, ε)} .

Function L(p, ε) can be expanded in a series with terms that are polynomials

of variables ε and p. It appears natural to estimate the function L(p, ε) with

the simplest polynomials; the inequalities presented in the manuscript are

obtained largely in this way.

Calculations and graphs show that the suggested approximation of

the function L(p, ε) has a high accuracy which implies high accuracy

of the inequalities proved in the manuscript. In particular, for ε → 0

all inequalities in Theorems 2.1–2.3 and Corollaries 2.4 and 2.6 turn to

equalities.
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An investigation of the optimality of the obtained inequalities has not

been carried out. Obviously, it is possible to prove more precise inequalities

by taking the more complex approximations of the function L(p, ε). At the

same time, these inequalities may be very complicated and, hence, have low

applicability.

Our approach to inequalities (4)–(7) is new. It relies upon applications

of the Budan-Fourier theorem and the Sturm theorem on the number of

real roots of any polynomial

(10) P (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0, an 6= 0, x ∈ R = (−∞,∞),

of degree n ∈ N with real coefficients. Let c1, . . . , cn be real numbers which

are not all zero. Let ck1 , . . . , ckm be the ones which are nonzero. Denote

W (c1, . . . , cn) the number of sign changes in the sequence ck1 , . . . , ckm , if

m > 1, and let W (c1, . . . , cn) = 0, if m = 1.

Budan-Fourier theorem. Let P and P (k), k = 1, . . . , n, be polynomial (10)

and its derivatives, respectively. Let W (x) be the number of sign changes in

the sequence P (x), P (1)(x), . . . , P (n)(x), x ∈ R. Then for any a, b ∈ R, a < b,

the number of roots of P in (a, b], counted with their orders of multiplicity, is

equal to W (a)−W (b)− 2m for some nonnegative integer m.

Proof. See, for example, Leung et al. [10]. �

Denote P0(λ) = P (λ) polynomial (10) and calculate its first derivative

P1(λ) = P ′(λ). Then we proceed as in the Euclidean algorithm to find

(11) Pk−1(x) = Pk(x)Qk(x)− Pk+1(x), k = 1, . . . , s− 1, s ≤ n,

where Ps(x) is a constant. The sequence of polynomials P0, P1, . . . , Ps is

called the Sturm sequence for the polynomial P.

Sturm’s theorem. Let P be polynomial (10) which may have only simple

roots in a segment [a, b]. Let W (x) be the number of sign changes in the

sequence P0(x), P1(x), . . . , Ps(x), x ∈ R. If P (a)P (b) 6= 0, then the number of

roots of P in (a, b) is equal to W (a)−W (b).

Proof. See, for example, Leung et al.[10]. �

2. Refined inequalities

This section contains the main results of the paper. The principle step in the

proofs of (1)–(3) is an application of the maximal inequality due to Banjević

[3]. Instead, we use a maximal inequality for a reversed martingale, as it was
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done for the first time by Kruglov [8]. Theorem 2.1 contains a substantial

improvement of inequalities (7). At the same time, it is a special stronger

case of Theorem 2.2 with ε = q = 1 − p. It also simplifies the proof of

Theorem 2.2, since now we may suppose that ε < q.

Theorem 2.1. The following inequalities hold

(12) − ln(1− ε) ≥


2ε2 + 5

8ε
4 for 0 ≤ ε < 1;

2ε2 + 3ε4 for 0 ≤ ε ≤ 0.5;

2ε2 + 6ε4 for 0 ≤ ε ≤ 0.4.

Theorem 2.2. Let 0 < p < 1, 0 ≤ ε ≤ q = 1−p. The following inequalities

hold

(13) L(p, ε) ≥


2ε2 + 4

9ε
4 + 1

30ε
6,

2ε2 + 25
18ε

4, if p ≥ 1
2 or p + ε ≤ 1

2 ,

−1
2 ln(1− 4ε2), if 0 ≤ ε < 1

2 , p + ε ≤ 1
2 .

Theorem 2.3. Let 0 < p < 1, 0 ≤ ε ≤ q = 1− p. The following inequality

holds

(14) L(p, ε) ≥ ε2

2(p + ε/3)(q − ε/3)
+

ε4

36(p + ε)3
.

Corollary 2.4. Let 0 < p < 1, 0 ≤ ε ≤ q = 1 − p. The following

inequalities hold

P

{
sup
k≥n

(
Sk

k
− p

)
≥ ε

}
≤


exp

{
−n
(
2ε2 + 4

9ε
4 + 1

30ε
6
)}

,

exp
{
−n
(
2ε2 + 25

18ε
4
)}

, if p ≥ 1
2 or p + ε ≤ 1

2 ,

(1− 4ε2)n/2 if 0 ≤ ε < 1
2 , p + ε ≤ 1

2 .

Corollary 2.5. Let 0 < p < 1, 0 ≤ ε ≤ min{p, q}, q = 1 − p. The

following inequality holds

P

{
sup
k≥n

∣∣∣∣Sk

k
− p

∣∣∣∣ ≥ ε
}
≤ 2 exp

{
−n
(

2ε2 +
4

9
ε4 +

1

30
ε6
)}

.

Corollary 2.6. Let 0 < p < 1, 0 ≤ ε ≤ q = 1 − p. The following

inequality holds

P

{
sup
k≥n

(
Sk

k
− p

)
≥ ε

}
≤ exp

{
−n
(

ε2

2(p + ε/3)(q − ε/3)
+

ε4

36(p + ε)3

)}
.
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3. Proofs

We postpone the proof of Theorems 2.1–2.3. At first we deduce Corollaries

2.4–2.6 from Theorems 2.1–2.3.

Proof. Let Fn be the σ-algebra generated by the random variables

Sk, k ∈ N, k ≥ n. Note that the sequence {Fn}n≥1 decreases, that is,

Fn+1 ⊆ Fn. On page 369 of the textbook Laha and Rohatgy [9] one can

find a proof of the equality

E
(

1

n
Sn|Fn+1

)
=

1

n + 1
Sn+1 a.s.

for the conditional mathematical expectations. For any real number λ by

the conditional Jensen inequality we get

exp

{
λ

n + 1
Sn+1

}
≤ E

(
exp

{
λ

n
Sn

}
|Fn+1

)
a.s.

The sequence {exp{λn−1Sn}}n≥1, according to the previous inequality, is a

reversed sub-martingale with respect to the decreasing sequence {Fn}n≥1
of σ-algebras. For any λ > 0 by the maximal inequality for sub-martingales

(see Laha and Rohatgy [9], p. 433) we get

P

{
sup
k≥n

(
Sk

k
− p

)
≥ ε

}
= P

{
sup
k≥n

eλSk/k ≥ eλ(p+ε)

}
≤ e−λ(p+ε)EeλSn/n.

For λ = n ln((p + ε)q/(q − ε)p) we get

P

{
sup
k≥n

(
Sk

k
− p

)
≥ ε

}
≤e−λ(p+ε)EeλSn/n

=e−λ(p+ε)
(
q + peλ/n

)n
≤ e−nL(p,ε).

(15)

Corollaries 2.4 and 2.6 follow from inequality (15) and Theorems 2.2 and

2.3.

Recall that Xn, n ∈ N, are independent identically distributed Bernoulli

random variables with mean 0 < p < 1. It follows that Yn = 1−Xn, n ∈ N,
are independent identically distributed Bernoulli random variables with

mean q = 1− p. Inequality (15) may be applied to random variables S′n =

Y1 + · · ·+Yn, n ∈ N, with p replaced by q = 1−p. Since Sk/k−p = q−S′k/k,

then {∣∣∣∣Sk

k
− p

∣∣∣∣ ≥ ε} =

{
Sk

k
− p ≥ ε

}
∪
{
S′k
k
− q ≥ ε

}
.
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It follows that

P

{
sup
k≥n

∣∣∣∣Sk

k
− p

∣∣∣∣ ≥ ε
}
≤ P

{
sup
k≥n

(
Sk

k
− p

)
≥ ε

}
+ P

{
sup
k≥n

(
S′k
k
− q

)
≥ ε

}
.

Now we may apply inequality (15) to Sk and S′k, k ∈ N, and Theorem 2.2.

Corollaries 2.4–2.6 are proved. �

No we start the proof of Theorem 2.1.

Proof. The first inequality in (12) means that the function Q(ε) =

ln(1 − ε) + 2ε2 + (5/8)ε4 of argument ε ∈ [0, 1) takes only negative (non-

positive) values. We need the following derivatives

Q(1)(ε) =
P (ε)

1− ε
, P (ε) = −5

2
ε4 +

5

2
ε3 − 4ε2 + 4ε− 1;

P (1)(ε) = −10ε3 +
15

2
ε2 − 8ε+ 4;

P (2)(ε) = −30ε2 + 15ε− 8.

The polynomial P (2)(ε) of second order is negative, since P (2)(0) = −8 < 0

and its discriminant is negative. This means that the function P (ε) is

concave on [0, 1]. Since P (0) = P (1) = −1 and P (1/2) = 5/32 > 0,

there are ε1 and ε2 such that 0 < ε1 < ε2 < 1 and P (ε1) = P (ε2) = 0.

Direct calculation shows that P (15/20) = 7/512 > 0 and P (16/20) =

−13/125 < 0, and hence 15/20 < ε2 < 16/20. Since P (ε) ≤ 0 for

ε ∈ [0, ε1] ∪ [ε2, 1] and P (ε) ≥ 0 for ε ∈ [ε1, ε2], then Q(ε2) is the maximal

value of Q(ε) on (0, 1). Recall that the first derivative P (1)(ε) decreases.

Since P (1)(15/20) = −2 < 0, then P (1)(ε) ≤ 0 for all ε ∈ [15/20, 16/20], and

hence P (ε) decreases on the segment [15/20, 16/20]. By the Taylor formula

there is a number ε′ ∈ [15/20, ε2] such that

Q(ε2) = Q

(
15

20

)
+ Q′(ε′)

(
ε2 −

15

20

)
= Q

(
15

20

)
+

P (ε′)

1− ε′

(
ε2 −

15

20

)
≤ Q

(
15

20

)
+

P (15/20)

1− 16/20

1

20
= Q

(
15

20

)
+

P (15/20)

4

= − ln 4 +
356671

268288
< −0.05686 < 0.

The first inequality in (12) is proved.
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The second inequality in (12) means that the function Q(ε) = ln(1 −
ε) + 2ε2 + 3ε4 of argument ε ∈ [0, 1/2] takes only negative (non-positive)

values. Again we need the following derivatives

Q(1)(ε) =
P (ε)

1− ε
, P (ε) = −12ε4 + 12ε3 − 4ε2 + 4ε− 1;

P (1)(ε) = −48ε3 + 36ε2 − 8ε+ 4;

P (2)(ε) = −144ε2 + 72ε− 8;

P (3)(ε) = −288ε+ 72.

Note that we use the same symbols for the polynomial and derivatives as

above. This can not lead to misunderstanding since they used only for local

proofs.

We intend to apply the Budan-Fourier theorem and the Sturm theorem

to the polynomial P (1)(ε) to prove the inequality P (1)(ε) ≥ 0 for all

ε ∈ [0, 1/2]. Direct calculation shows that

P (1)(0) = 4 > 0; P (1)(1/2) = 3 > 0;

P (2)(0) = −8 < 0; P (2)(1/2) = −8 < 0;

P (3)(0) = 72 > 0; P (3)(1/2) = −72 < 0;

P (4)(0) = −288 < 0; P (4)(1/2) = −288 < 0.

The number of sign changes of the sequence P (1)(ε), . . . , P (4)(ε) at points

ε = 0 and ε = 0.4 are not equal: W (0) = 3 and W (0.4) = 1. By the Budan-

Fourier theorem, the polynomial P (1)(ε) may have two roots or it has no

roots in the segment [0, 1/2]. Suppose that it has two roots, say, ε1 and ε2.

If ε1 = ε2, then P (1)(ε) = (ε − ε1)2Z(ε) where the polynomial Z(ε) has

no roots in [0, 1/2]. Since P (1)(0) = 4 > 0, then the polynomial P (1)(ε) is

positive for all ε ∈ [0, 1/2]. If ε1 6= ε2, then both roots are simple. In this

case we may apply the Sturm theorem to the polynomial P0(ε) = P (1)(ε).

Let us calculate the Sturm sequence (11) for P0(ε)

P0(ε) = −48ε3 + 36ε2 − 8ε+ 4;

P1(ε) = −144ε2 + 72ε− 8;

P2(ε) = −2

3
ε− 10

3
;

P3(ε) = 3968.
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Direct calculation shows that

P0(0) = 4 > 0; P0(1/2) = 3 > 0;

P1(0) = −8 < 0; P1(1/2) = −8 < 0;

P2(0) = −10/3 < 0; P2(1/2) = −11/3 < 0;

P3(p) = 3968 > 0; P3(1/2) = 3968 > 0.

The numbers of sign changes W (0) = 2 and W (1/2) = 2 of the sequence

P0(ε), . . . , P3(ε) at points ε = 0 and ε = 1/2 are equal, and hence the

polynomial P0(ε) = P (1)(ε) has no roots in the segment [0, 1/2]. Since

P (1)(0) = 4 > 0, the first derivative P (1)(ε) is positive for all ε ∈ [0, 1/2].

This means that the function P (ε) increases on the segment [0, 1/2]. It has

the only root ε0 ∈ (0, 1/2) since P (0) = −1 and P (1/2) = 3/4. It follows

that the function Q(ε) decreases on [0, ε0] and increases on [ε0, 1/2]. Since

Q(0) = 0 and Q(1/2) < −0.00564 < 0, then Q(ε) ≤ 0 for ε ∈ [0, 1/2].

The third inequality in (12) means that the function Q(ε) = ln(1− ε) +

2ε2 + 6ε4 takes only negative (non-positive) values for all ε ∈ [0, 0.4]. Again

we need the following derivatives

Q(1)(ε) =
P (ε)

1− ε
, P (ε) = −24ε4 + 24ε3 − 4ε2 + 4ε− 1;

P (1)(ε) = −96ε3 + 72ε2 − 8ε+ 4;

P (2)(ε) = −288ε2 + 144ε− 8;

P (3)(ε) = −576ε+ 144

Prove that the polynomial P (1)(ε) is positive for all ε ∈ [0, 0.4]. Direct

calculation shows that

P (1)(0) = 4 > 0; P (1)(0.4) = 772/125 > 0;

P (2)(0) = −8 < 0; P (2)(0.4) = 88/25 > 0;

P (3)(0) = 144; P (3)(0.4) = −432/5 < 0;

P (4)(0) = −576 < 0; P (4)(0.4) = −576 < 0.

By the Budan-Fourier theorem the polynomial P (1)(ε) may have two roots

or it has no roots in the segment [0, 0.4]. Suppose that it has two roots, say,

ε1 and ε2. If ε1 = ε2 then one can prove as above that the polynomial P (1)(ε)

is positive for all ε ∈ [0, 1/2]. If ε1 6= ε2 then both roots are simple. In this

case we may apply the Sturm’s theorem to the polynomial P0(ε) = P (1)(ε).
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Let us calculate the Sturm’s sequence (11) for P0(ε) = P (1)(ε)

P0(ε) = −96ε3 + 72ε2 − 8ε+ 4;

P1(ε) = −288ε2 + 144ε− 8;

P2(ε) = −20

3
ε− 10

3
;

P3(ε) = 152.

Direct calculation shows that

P0(0) = 4 > 0; P0(0.4) = 772/125 > 0;

P1(0) = −8 < 0; P1(0.4) = 88/25 > 0;

P2(0) = −10/3; P2(0.4) = −6 < 0;

P3(0) = 152 > 0; P3(0.4) = 152 > 0.

The number of sign changes of the sequence P0(ε), . . . , P3(ε) at points

ε = 0 and ε = 0.4 are equal: W (0) = 2 and W (0.4) = 2. Hence

the polynomial P0(ε) = P (1)(ε) has no roots in the segment [0, 0.4].

Since P0(0) = P (1)(0) = 4 > 0 the first derivative P (1)(ε) is positive

for all ε ∈ [0, 0.4]. This means that the function P (ε) increases on the

segment [0, 0.4]. It has the only root ε′ ∈ (0, 0.4), since P (0) = −1 and

P (0.4) = 551/625. It follows that the function Q(ε) decreases on [0, ε′] and

increases on [ε′, 0.4]. Since Q(0) = 0 and Q(0.4) = −0.0372256 < 0, all

values of the function Q(ε) are negative. The theorem is proved. �

Now we proceed with the proof of Theorem 2.2

Proof. All inequalities (13) hold for ε = 0. They hold for ε = q by

Theorem 2.1. From now and on we suppose that 0 < ε < q.

Prove the second inequality in (13) for p ≥ 1/2. Let us rewrite it

(16) L(p, ε) ≥ 2ε2 +
25

18
ε4.

If inequality (16) holds for all 1/2 < p < 1, it holds for p = 1/2 by letting

p ↓ 1/2. So we need to prove inequality (16) for 1/2 < p < 1. It is enough

to prove that the function

φ(x) = x ln(
x

p
) + (1− x) ln(

1− x

q
)− 2(x− p)2 − 25

18
(x− p)4, p ≤ x ≤ 1,
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takes only positive (non-negative) values. The first two derivatives of the

function φ are

φ(1)(x) = ln

(
x

p

)
− ln

(
1− x

q

)
− 4(x− p)− 50

9
(x− p)3;

φ(2)(x) =
Q(x)

3x(1− x)
,

where

Q(x) = 50x4 − (100p + 50)x3 + (50p2 + 100p + 12)x2 − (50p2 + 12)x + 3.

If Q(x) ≥ 0 for all p ≤ x ≤ 1, then the first derivative φ(1)(x) increases. Since

φ(1)(p) = 0, the function φ(1)(x) is positive. This means that the function

φ(x) increases, and hence 0 = φ(0) ≤ φ(x) for all p ≤ x ≤ 1. Prove that

Q(x) is positive for all p ≤ x ≤ 1. At first we prove that Q(x) ≥ 0 for all

p ≤ x ≤ 1, if 3/5 ≤ p < 1. We intent to apply the Budan-Fourier theorem

to the polynomial Q. The first three derivatives of it are

Q(1)(x) = 200x3 − (300p + 150)x2 + (100p2 + 200p + 24)x− (50p2 + 12);

Q(2)(x) = 600x2 − (600p + 300)x + (100p2 + 200p + 24);

Q(3)(x) = 1200x− (600p + 300).
(17)

Direct calculation shows that

Q(p) = 3(2p− 1)2 > 0; Q(1) = 3 > 0;

Q(1)(p) = 12(2p− 1) > 0; Q(1)(1) = 50p2 − 100p + 62 > 0;

Q(2)(p) = 100
(
p− 2

5

) (
p− 3

5

)
≥ 0; Q(2)(1) = 100p2 − 400p + 324 > 0;

Q(3)(p) = 300(2p− 1) > 0; Q(3)(1) = −600p + 900 > 0;

Q(4)(p) = 1200 > 0; Q(4)(1) = 1200 > 0.

Most of these expressions are obviously positive (nonnegative), we need

only to prove that Q(1)(1) > 0 and Q(2)(1) > 0. The polynomial Q(1)(1) =

50p2 − 100p + 62 of second order is positive because its discriminant is

negative. The polynomial of second order Q(2)(1) = 100p2 − 400p + 324 =

100(p−(10−
√

19)/5)(p−(10+
√

19)/5) is positive for all 0 < p < 1 because

its both roots are bigger than 1. The numbers of sign changes W (p) = 0

and W (1) = 0 of the sequence Q(x), Q(1)(x), . . . , Q(4)(x) at points x = p

and x = 1 are equal. By the Budan-Fourier theorem the polynomial Q(x)

has no roots in [p, 1]. Since Q(p) > 0 the desired inequality Q(x) > 0 holds

for all p ≤ x ≤ 1.
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Now we prove that Q(x) ≥ 0 for all p ≤ x ≤ 1, if 1/2 < p < 3/5.

Since Q(p) = 3(2p − 1)2 > 0, it suffices to prove that the first derivative

Q(1)(x) is positive for all x ∈ [p, 1]. To this goal we intend to apply the

Budan-Fourier theorem. Note that Q(2)(p) = 100(p − 2/5)(p − 3/5) < 0.

The numbers of sign changes W (p) = 2 and W (1) = 0 of the sequence

Q(x), Q(1)(x), . . . , Q(4)(x) at points x = p and x = 1 are not equal. By the

Budan-Fourier theorem the polynomial Q(1)(x) may have two roots or it

has no roots in the segment [p, 1]. Suppose that there are two roots x1 and

x2. If x1 = x2, then Q(1)(x) = (x − x1)2Z(x) where the polynomial Z(x)

has no roots in the segment [p, 1]. Since Q(1)(p) = 12(2p − 1) > 0, the

polynomial Q(1)(x) is positive for all x ∈ [p, 1]. If x1 6= x2, then both roots

are simple, and we may apply the Sturm theorem. Let us construct the

Sturm sequence (11) for P0(x) = Q(1)(x)

P0(x) = 200x3 − (300p + 150)x2 + (100p2 + 200p + 24)x− (50p2 + 12);

P1(x) = 600x2 − (600p + 300)x + (100p2 + 200p + 24);

P2(x) =

(
100

3
p2 − 100

3
p + 9

)
x−

(
50

3
p3 − 25

3
p2 +

62

3
p− 10

)
;

P3(x) =
8R(x)

(100p2 − 100p + 27)2
,

(18)

where

R(x) = 62500p6−187500p5+238125p4−163750p3−340875p2+391500p−100062.

Prove that

P0(p) = 12(2p− 1) > 0; P0(1) = 50p2 − 100p + 62 > 0;

P1(p) = 100
(
p− 2

5

) (
p− 3

5

)
< 0; P1(1) = 100p2 − 400p + 324 > 0;

P2(p) = 50
3 p

3 − 25p2 − 35
3 p + 10 < 0; P2(1) = −50

3 p
3 + 125

3 p2 − 54p + 19;

P3(p) = 8R(p)
(100p2−100p+27)2 ; P3(1) = 8R(p)

(100p2−100p+27)2 .

We need only to verify the signs of the polynomials. The sign of P2(1) does

not matter. The polynomial P2(p) can be written as follows

P2(p) =
50

3

(
p− 1

2

)(
p− 5−

√
145

10

)(
p− 5 +

√
145

10

)
.

Since (5−
√

145)/10) < 0 and (5 +
√

145)/10 > 3/5, then P2(p) < 0 for all

1/2 < p < 3/5.
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Prove that R(p) < 0 for all 0 < p ≤ 3/5. Indeed,

R(p) = (62500p6 − 187500p5)− 125p(1310p2 + 2727p− 3132)

+ (238125p4 − 100062)

< p5(62500 · 3

5
− 187550)− 125p(1310p2 + 2727p− 3132)

+ (238125 · 34

54
− 100062)

= −150050p5 − 125p(1310p2 + 2727p− 3132)− 69201 < 0

since the polynomial 1310p2 + 2727p− 3132 of second order is positive. To

see this we note that its discriminant (2727)2− 4 · 1310 · 3132 = −11452151

is negative.

It was established above that the polynomial P0(1) = 50p2 − 100p + 62

is negative. The polynomial P1(1) = 100p2 − 400p + 234 = 100(p −
(10 −

√
19)/5)(p − (10 +

√
19)/5) of the second order is positive for all

1/2 < p < 3/5 since both its roots are greater than 3/5. We see that

the numbers of sign changes W (p) = 1 and W (1) = 1 of the sequence

P0(x), . . . , P3(x) at points x = p and x = 1 are equal. By the Sturm theorem

the polynomial P0(x) = Q(1)(x) has no roots in the segment [p, 1]. Since

P0(p) = Q(1)(p) = 12(p− 1/2) > 0, the first derivative Q(1)(x) is positive.

Prove the second inequality in (13) for p+ε ≤ 1/2. The inequality is rewritten

in (16). At first we suppose that 2/5 ≤ p. Recall that 0 < ε < q, and

hence 2/5 ≤ p < 1/2. Prove that the first derivative Q(1)(x) is negative

for all x ∈ [p, 1/2]. We intent to apply the Budan-Fourier theorem to the

polynomial Q(1)(x). Let us consider the derivatives (17). Direct calculation

shows that

Q(1)(p) = 12(2p− 1) < 0; Q(1)
(
1
2

)
= 25

(
p− 1

2

)
< 0;

Q(2)(p) = 100
(
p− 2

5

) (
p− 3

5

)
≤ 0; Q(2)

(
1
2

)
= 100

(
p− 2

5

) (
p− 3

5

)
≤ 0;

Q(3)(p) = 300(2p− 1) < 0; Q(3)
(
1
2

)
= 300(1− 2p) > 0;

Q(4)(p) = 1200 > 0; Q(4)(1/2) = 1200 > 0.

The polynomial Q(2)(p) = 100(p − 2/5)(p − 3/5) has the root p = 2/5.

Nevertheless Q(2)(2/5) = 0, the numbers of sign changes W (p) = 1 and

W (1/2) = 1 of the sequence Q(1)(x), . . . , Q(4)(x) at points x = p and x = 1/2

are equal for all p ∈ [2/5, 1/2). This means that the polynomial Q(1)(x) has

no roots in [p, 1/2). Since Q(1)(p) = 12(2p−1) < 0, the polynomial Q(1)(x) is

negative (non-positive) for all x ∈ [p, 1/2]. This means that the polynomial
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Q(x) decreases on the segment [p, 1/2]. Since Q(p) = 12(p− 1/2)2 > 0 and

Q(1/2) = −(25/2)(p − 1/2)2 < 0, then Q(x0) = 0 for some p < x0 < 1/2.

It follows that the function φ(1)(x) increases on the segment [p, x0] and

decreases on the segment [x0, 1/2]. Let us prove that φ(1)(1/2) > 0. Denote

Z(p) = φ(1)(1/2). We may consider the function

Z(p) = φ(1)(1/2) = ln(1− p)− ln p− 4

(
1

2
− p

)
− 50

9

(
1

2
− p

)3

on the segment [2/5, 1/2]. Note that the first derivative Z(1), 2/5 ≤ p ≤ 1/2,

Z(1)(p) = − 1

p(1− p)
+ 4 +

50

3

(
1

2
− p

)2

increases and Z(1)(1/2) = 0. It follows that Z(1)(p) ≤ 0 for all 2/5 ≤ p ≤
1/2. This means that the function Z(p) = φ(1)(1/2) attains its minimal

value at point p = 1/2. Since Z(1/2) = 0 and φ(1)(p) = 0, the function

φ(1)(x) is positive (non-negative) for all x ∈ [p, 1/2], and hence the function

φ(x) increases on segment [p, 1/2]. Since φ(p) = 0, the function φ(x) is

positive for all x ∈ [p, 12]. This proves the inequality (16) if p ≥ 2/5 and

p + ε ≤ 1/2.

Prove inequality (16) for 0 < p < 2/5 and p + ε ≤ 1/2. Again

it is sufficient to prove that the first derivative Q(1)(x) is negative for

all x ∈ [p, 1/2]. We may apply the Sturm theorem to the polynomial

P0(x) = Q(1)(x). Consider the Sturm sequence (18) and prove that

P0(p) = 12(2p− 1) < 0; P0

(
1
2

)
= 25

(
p− 1

2

)
< 0;

P1(p) = 100
(
p− 2

5

) (
p− 3

5

)
> 0; P1

(
1
2

)
= 100

(
p− 2

5

) (
p− 3

5

)
> 0;

P2(p) = 50
3 p

3 − 25p2 − 35
3 p + 10 > 0; P2

(
1
2

)
= −50

3 p
3 + 25p2 − 112

3 p + 29
2 > 0;

P3(p) = 8R(p)
(100p2−100p+27)2 < 0; P3(p) = 8R(p)

(100p2−100p+27)2 < 0.

We need only to verify the signs of the polynomials. Prove that P2(1/2) > 0.

We have

P2(1/2) = −50

3
p3 + 25p2 − 112

3
p +

29

2
,
d

dp
P2(1/2) = −50p2 + 50p− 112

3
.

The polynomial −50p2 + 50p− 112/3 of second order is negative, since its

discriminant 2500 − 200 · 112/3 < 0 is negative. The function P2(1/2) is

positive for all p ∈ (0, 2/5], since its minimal value 5/2 at point p = 2/5 is

positive. This completes the proof of the second inequality in (13).
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Prove the first inequality in (13) for any 0 ≤ ε ≤ q = 1− p < 1. Rewrite the

inequality

(19) L(p, ε) ≥ 2ε2 +
4

9
ε4 +

1

30
ε6.

By the second inequality in (13) we have that

L(p, ε) ≥ 2ε2 +
4

9
ε4 +

17

18
ε4 ≥ 2ε2 +

4

9
ε4 +

1

30
ε6

if p ≥ 1/2 or p + ε ≤ 1/2. We need to prove inequality (19) only for

0 < p < 1/2, p + ε > 1/2, 0 < ε ≤ q. Let x = 1 − 2p and y = 1 − 2(p + ε).

Note that 0 ≤ x < 2ε and y = x − 2ε. Kampo and Kotz [4] proved the

equality

(20) L(p, ε) =
∞∑
r=1

1

2r(2r − 1)

(
y2r − 2ryx2r−1 + (2r − 1)x2r

)
and that all terms in the last series are not negative. The first term of this

series is equal to 2ε2. Kraft [7] proved that the minimal value of the second

term is equal to 4ε2/9. To prove (19) it suffices to show that the third term

of the series is not less then ε6/30. Rewrite the third term of the above

series as follows

1

30

(
y6 − 6yx5 + 5x6

)
=

2ε2

15

(
15x4 − 40εx3 + 60ε2x2 − 48ε3x + 16ε4

)
.

To prove inequality (19) it suffices to prove that the polynomial

(21) P (x) = 15x4 − 40εx3 + 60ε2x2 − 48ε3x +
63

4
ε4

takes only positive (non-negative) values for all 0 ≤ x ≤ 2ε. The first two

derivatives of P (x) are

P (1)(x) = 60x3 − 120εx2 + 120ε2x− 48ε3;

P (2)(x) = 180x2 − 240εx + 120ε2.

The polynomial P (2)(x) of second order is positive because P (2)(0) =

120ε2 > 0 and its discriminant (240ε)2 − 4 · 180 · 120ε2 = −28800ε2 is

negative. This means that the function P (x) is convex. Since P (1)(0) =

−48ε < 0 and P (1)(2ε) = 192ε3 > 0, the polynomial P (1)(ε) has the only

root ε0 ∈ [0, 2ε]. It follows that the polynomial P (ε) may have only simple
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roots in [0, 2ε]. We may apply the Sturm theorem to this polynomial. Let

us calculate the Sturm sequence (11) for the polynomial (21)

P0(x) = 15x4 − 40εx3 + 60ε2x2 − 48ε3x +
63

4
ε4;

P1(x) = 60x3 − 120εx2 + 120ε2x− 48ε3;

P2(x) = −10ε2x2 + 16ε3x− 31

4
ε4;

P3(x) = −351

10
ε2x +

147

5
ε3;

P4(x) =
74695

54756
ε4.

Direct calculation shows that

P0(0) = 63
4 ε

4 > 0; P0(2ε) = 316ε4 > 0;

P1(0) = −48ε3 < 0; P1(2ε) = 192ε3 > 0;

P2(0) = −31
4 ε

4 < 0; P2(2ε) = −63
4 ε

4 < 0;

P3(0) = 147
5 ε

3 > 0; P3(2ε) = −204
5 ε

3 < 0;

P4(0) = 74695
54756ε

4 > 0; P4(2ε) = 74695
54756ε

4 > 0.

The numbers of sign changes W (0) = 2 and W (2ε) = 2 of the sequence

P0(x), . . . , P4(x) at points x = 0 and x = 2ε are equal, and hence the

polynomial P (x) has no roots in segment [0, 2ε]. Since P (0) = 63ε4/4 > 0,

the polynomial P (x) is positive for all x ∈ [0, 2ε]. Inequality (19) is proved.

Prove the last inequality in (13), if 0 ≤ ε < 1/2 and p + ε ≤ 1/2. Rewrite it

as follows

(22) L(p, ε) ≥ −1

2
ln(1− 4ε2) = 2ε2 +

∞∑
r=2

(2ε)2r

2r
.

Let us compare two series (20) and (22). It suffices to prove that

1

2r(2r − 1)

(
y2r − 2ryx2r−1 + (2r − 1)x2r

)
≥ (2ε)2r

2r
, r ∈ N, r ≥ 2.

Recall that x = 1− 2p, y = 1− 2(p + ε), y = x− 2ε. This inequality means

that the function

Q(ε) = (x− 2ε)2r + 2r(2ε)x2r−1 − x2r − (2r − 1)22rε2r

takes only positive (non-negative) values for all admissible x and ε. Inequal-

ity (21) holds for ε = 0. It follows from 0 < ε < 1/2 and p + ε ≤ 1/2 that
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0 < 2ε ≤ x = 1−2p < 1. Fix x and calculate the first three derivatives with

respect to ε

Q(1)(ε) = −2(2r)(x− 2ε)2r−1 + 2(2r)x2r−1 − (2r)(2r − 1)22rε2r−1;

Q(2)(ε) = 4(2r)(2r − 1)(x− 2ε)2r−2 − (2r)(2r − 1)222rε2r−2;

Q(3)(ε) = −8(2r)(2r − 1)(2r − 2)(x− 2ε)2r−3

− (2r)(2r − 1)2(2r − 2)22rε2r−3.

Note that the third derivative is negative, and hence the function Q(2)(ε)

decreases. Since Q(2)(0) = 4(2r)(2r − 1)x2r−2 > 0 and Q(2)(x/2) =

−(8r)(2r − 1)222rx2r−2 < 0, the equality Q(2)(ε1) = 0 holds for some

0 < ε1 < x/2. It follows that the first derivative Q(1)(ε) increases on [0, ε1]

and decreases on [ε1, x/2]. Since Q(1)(0) = 0, the first derivative Q(1)(ε) is

positive on the segment [0, ε1]. It follows that Q(ε) ≥ 0 for 0 ≤ ε ≤ ε1 since

Q(0) = 0.

It is possible that Q(1)(x/2) is positive (non-negative) or negative. If the

value Q(1)(x/2) is positive, then Q(1)(ε) ≥ 0 and the function Q(ε) increases

on [ε1, x/2]. Since Q(ε1) ≥ 0, the function Q(ε) is positive (non-negative)

for all ε ∈ [ε1, x/2].

Suppose now that Q(1)(x/2) < 0. Since Q(1)(ε1) ≥ 0, there exist

ε2 ∈ [ε1, x/2] such that Q(1)(ε2) = 0. It follows that the function Q(ε)

increases on [ε1, ε2] and decreases on [ε1, x/2]. Since Q(x/2) = 0, the

function Q(ε, is positive (non-negative) for all ε2 ≤ ε ≤ x/2. Thus it is

proved that Q(ε) ≥ 0 for all 0 ≤ ε ≤ x/2. This completes the proof of

Theorem 2.2. �

Finally we present the proof of Theorem 2.3

Proof. Inequality (14) holds for ε = 0. If inequality (14) holds for all

0 < ε < q, it holds for ε = q by letting ε ↑ q. The following function will

help to prove the inequality

φ(x) = x− x2

2(1 + 2x/3)
− ln(1 + x), x ≥ 0.

Note that 0 = φ(0) ≤ φ(x) and

φ′(x) =
x3

9(1 + 2x/3)2(1 + x)
> 0 for x > 0.



Refined Kolmogorov inequalities for the binomial distribution 19

Denote y = p + ε and t = q/(q − ε). Now let us study the function

h(p, ε) = L(p, ε)− ε2

2(p + ε/3)(q − ε/3)
− ε4

36(p + ε)3
− εφ(t)

t
=

= y ln y − y ln(y − ε)− ε4

36y3
− ε2

2(y − 2ε/3)
− ε.

Let us fix 0 < y < 1 and consider the function h(p, ε) of argument 0 ≤ ε < q.

One can estimate the first derivative of this function as follows

h′(p, ε) =
ε3

9(y − ε)(y − 2ε/3)2
− ε3

9y3
>
ε3

9y3
− 1

9y3
ε3 = 0.

It follows that the function h(p, ε), 0 ≤ ε < q, increases, and hence

h(p, ε) ≥ h(p, 0) = 0 and

L(p, ε) ≥ ε2

2(p + ε/3)(q − ε/3)
+

ε4

36(p + ε)3
+
εφ(t)

t
.

Since φ(t) ≥ 0, the theorem is proved. �
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