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Exponential convergence rates for the kernel bivariate
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application to hydrology data
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ABSTRACT
In this paper, we study the asymptotic behavior of the kernel bivari-
ate distribution function estimator for negatively superadditive
dependent. The exponential convergence rates for the kernel estima-
tor are investigated. Under certain regularity conditions, the optimal
bandwidth rate is determined with respect to mean squared error
criteria. A simulation study is used to justify the behavior of the ker-
nel and histogram estimators. As an application, a real data set in
hydrology is considered and the kernel bivariate distribution function
estimator of the data is investigated.
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1. Introduction

The estimation of bivariate distribution functions has been a subject of interest in a
large volume of statistical literature. There has been extensive work on the statistical
estimation of the bivariate distribution function using the kernel method. Several prop-
erties of the kernel type estimator have been investigated. For example, Donsker (1951)
examined the case of independent random variables, whereas, Azevedo and Oliveira
(2000), Henriques and Oliveira (2003, 2008), and Jabbari (2009) examined dependent
random variables.
One of the most applicable dependence concepts is that of negative superadditive

dependence (NSD), which was introduced by Hu (2000). The definition of NSD random
variables is expressed on the basis of the superadditive functions. A function / : Rn !
R is called superadditive if

/ðx� yÞ þ /ðx� yÞ � /ðxÞ þ /ðyÞ
for all x, y 2 Rn, where � and � stand for componentwise maximum and minimum,
respectively. Consequently, the NSD concept is expressed as follows. A random vector
ðX1, :::,XnÞ is said to be NSD if
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E/ðX1, :::,XnÞ � E/ðX�
1 , :::,X

�
nÞ, (1.1)

where X�
1 , :::,X

�
n are independent such that X�

i and Xi have the same distribution for
each i, and /ð�Þ is a superadditive function such that the expectations above exist. If
/ð�Þ has continuous second partial derivatives, then the superadditivity of /ð�Þ is
equivalent to @2/=@xi@xj � 0, 1 � i 6¼ j � n: Also, a sequence fXn, n � 1g of random
variables is NSD if every finite subfamily is NSD.
In this paper, we consider some samples that satisfy the notion of NSD. Christofides

and Vaggelatou (2004) showed that the family of NSD sequences contains negatively
associated (NA) random variables as a special case. Therefore, the probability inequal-
ities obtained based on the NSD assumption is more general. Numerous limit theorems
for NSD random variables have been studied; some recent works are Chen et al. (2020),
Cong, Tran, and Le (2020), and Kheyri et al. (2019a, 2019b).
The most common estimator of Fkðx, yÞ ¼ PðX1 � x,Xkþ1 � yÞ with k fixed, con-

structed on the basis of the first n random variables from the sequence, is the histogram
estimator, ~Fkðx, yÞ that is defined by

~Fkðx, yÞ ¼ 1
n� k

Xn�k

i¼1

IðXi � xÞIðXkþi � yÞ: (1.2)

The asymptotic behavior of this estimator was studied for associated random variables
by Henriques and Oliveira (2003, 2008), and Jabbari and Azarnoosh (2006). Here, we
consider the kernel estimator that was used by Azevedo and Oliveira (2000) and Jabbari
(2009), in the following

F̂kðx, yÞ ¼ 1
n� k

Xn�k

i¼1

U
x � Xi

hn
,
y � Xkþi

hn

� �
, (1.3)

where Uð�, �Þ is a given bivariate distribution function and fhn, n � 0g is a sequence of
positive numbers converging to zero. They studied the uniform convergence of the ker-
nel estimator for associated random variables and found the corresponding optimal
bandwidth convergence rate. Here, we extend and improve their results to NSD ran-
dom variables.
The remaining sections of the paper are organized as follows. The exponential

inequality and uniform convergence rate of the kernel estimator under NSD are intro-
duced in the next section, followed by the convergence rate of the kernel estimator.
Some asymptotic properties and convergence rates of the mean square error (MSE) are
studied in Section 3. Moreover, we illustrate the behavior of the kernel and histogram
estimators with respect to their empirical mean square distances (MSDs) in Section 4.
In Section 5, an application to rainfall depth data is considered: data that were discussed
later by Kheyri et al. (2019a).

2. An exponential convergence rate

In this section, we prove an exponential convergence rate for the kernel estimator of
Fkðx, yÞ with k fixed. All results are derived under the basic assumption of NSD. The
remaining assumptions that need to prove the main results are listed below.
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A1(i) The sequence fXn, n � 1g is an identically distributed sequence of NSD ran-
dom variables with the bounded density function f ð�Þ:

A1(ii) The bivariate distribution function Fkð�, �Þ has bounded and continuous partial
derivatives of first and second orders.

A1(iii) The distribution function of ðX1,Xkþ1,Xj,XkþjÞ, denoted by Fkjð�, � , � , �Þ, has
bounded and continuous partial derivatives of first and second orders.

A2 The sequence of bandwidth fhn; n > 1g is such that, as n ! 1 :

(i) 0 < hn ! 0 (ii) nh2n ! 0

A3 The bivariate function Uð�, �Þ is a bivariate distribution function with density
function uð�, �Þ: Uð�, �Þ is twice differentiable andð

R2
xuðx, yÞdxdy ¼

ð
R2
yuðx, yÞdxdy ¼ 0,ð

R2
x2uðx, yÞdxdy < 1,

ð
R2
y2uðx, yÞdxdy < 1:

A4 The sequence fXn, n � 1g is an identically distributed sequence of NSD random
variables and there is a constant C for which

U
x� Xi

hn
,
y� Xiþk

hn

� �
� E U

x� Xi

hn
,
y� Xiþk

hn

� �� �����
���� � Ch2n a:s: (2.1)

Remark 1. Assumptions A1 and A2 are often applied to the asymptotic theory of kernel
estimators in the literature. A3 satisfies some common bivariate kernel functions, for
example, the bivariate normal distribution or bivariate Farlie–Gumbel–Morgenstern dis-
tribution when the marginal density functions have zero mean and finite variance. Also,
A4 is reasonable because of the following statement:

U
x � Xi

hn
,
y � Xiþk

hn

� �
� E U

x� Xi

hn
,
y� Xiþk

hn

� �� �
¼
ðx�Xi

hn

�1

ðy�Xiþk
hn

�1
uðr, sÞdrds

�
ð1
�1

ð1
�1

U
x� w
hn

,
y� v
hn

� �
dFkðw, vÞ: a:s:

By letting r ¼ x þ hnr�, s ¼ yþ hns� and w ¼ x � hnw�, v ¼ y � hnv� and doing some
calculations, we have

U
x� Xi

hn
,
y� Xiþk

hn

� �
� E U

x� Xi

hn
,
y� Xiþk

hn

� �� �����
���� � h2n

ð1
�1

ð1
�1

uðxþ hnr
�, yþ hns

�Þdr�ds�

þ h2n

ð1
�1

ð1
�1

Uðw�, v�Þdw�dv� ¼ Oðh2nÞ: a:s:

Lemma 2.1. (Hoeffding, 1963). Let X be a random variable with EðXÞ ¼ l: If there exist
a, b 2 R such that Pða � X � bÞ ¼ 1, then for every k > 0,

EðekXÞ � ekl exp
k2ðb� aÞ2

8

� �
:
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Proposition 2.1. If A1(i), A2(i), A3 and A4 hold, then for every e > 0,

P sup
x, y2R

F̂kðx, yÞ � E F̂kðx, yÞ
� ��� �� > e

� �
� 2 exp ð� ðn� kÞe2

2C2h4n
Þ: (2.2)

Proof. For k fixed and i ¼ 1, :::, n, let

Ti, k, nðx, yÞ ¼ U
x � Xi

hn
,
y� Xiþk

hn

� �
� E U

x� Xi

hn
,
y� Xiþk

hn

� �� �
,

then for every e > 0,

Pð sup
x, y2R

F̂kðx, yÞ � E F̂kðx, yÞ
� ��� �� > eÞ ¼ P sup

x, y2R

Xn�k

i¼1

Ti, k, nðx, yÞ
�����

����� > ðn� kÞe
0
@

1
A

¼ P sup
x, y2R

�Xn�k

i¼1

Ti, k, nðx, yÞ
�þ

þ
�Xn�k

i¼1

Ti, k, nðx, yÞ
��" #

> ðn� kÞe
 !

� P sup
x, y2R

�Xn�k

i¼1

Ti, k, nðx, yÞ
�þ

>
ðn� kÞe

2

 !
þ P sup

x, y2R

�Xn�k

i¼1

Ti, k, nðx, y
�
Þ� >

ðn� kÞe
2

 !

� P sup
x, y2R

Xn�k

i¼1

Tþ
i, k, nðx, yÞ >

ðn� kÞe
2

 !
þ P sup

x, y2R

Xn�k

i¼1

T�
i, k, nðx, yÞ >

ðn� kÞe
2

 !
,

(2.3)

where Tþ
i, k, nðx, yÞ ¼ maxðTi, k, nðx, yÞ, 0Þ and T�

i, k, nðx, yÞ ¼ maxð�Ti, k, nðx, yÞ, 0Þ: So for all
t> 0; using Markov’s inequality, we can write

P sup
x, y2R

Xn�k

i¼1

Tþ
i, k, nðx, yÞ >

ðn� kÞe
2

 !
� P

Xn�k

i¼1

sup
x, y2R

Tþ
i, k, nðx, yÞ >

ðn� kÞe
2

 !

� e�
ðn�kÞet

2 E exp

�
t
Xn�k

i¼1

sup
x, y2R

Tþ
i, k, nðx, yÞ

� !
:

(2.4)

If /ðx1, :::, xnÞ ¼ exp ðtPn�k
z¼1 gðxz, xzþkÞÞ, where gðxz, xzþkÞ ¼ supx, y2R T

þ
z, k, nðx, yÞ for

any i 6¼ j, @2/ðx1, :::, xnÞ=@xi@xj will be in one of the following forms:

1Þ t2
@gðxi, xiþkÞ

@xi

@gðxj, xjþkÞ
@xj

exp

�
t
Xn�k

i¼1

sup
x, y2R

Tþ
i, k, nðx, yÞ

�
,

2Þ t2
@gðxi, xiþkÞ

@xi

@gðxj�k, xjÞ
@xj

exp

�
t
Xn�k

i¼1

sup
x, y2R

Tþ
i, k, nðx, yÞ

�
,

3Þ t2
@gðxi�k, xiÞ

@xi

@gðxj�k, xjÞ
@xj

exp ðt
Xn�k

i¼1

sup
x, y2R

Tþ
i, k, nðx, yÞÞ,

4Þ t2
@gðxi, xiþkÞ

@xi

@gðxj�k, xjÞ
@xj

þ @gðxj, xjþkÞ
@xj

 !
exp

�
t
Xn�k

i¼1

sup
x, y2R

Tþ
i, k, nðx, yÞ

�
,

5Þ t2
@gðxj�k, xjÞ

@xj

@gðxi�k, xiÞ
@xi

þ @gðxi, xiþkÞ
@xi

� �
exp

�
t
Xn�k

i¼1

sup
x, y2R

Tþ
i, k, nðx, yÞ

�
,
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6Þ t
@2gðxi, xiþkÞ
@xi@xiþk

þ t2
@gðxi, xiþkÞ

@xi

@gðxi, xiþkÞ
@xiþk

þ @gðxiþk, xiþ2kÞ
@xiþk

� �" #
exp

�
t
Xn�k

i¼1

sup
x, y2R

Tþ
i, k, nðx, yÞ

�
,

7Þ t @
2gðxi, xiþkÞ
@xi@xiþk

þ t2
@gðxi, xiþkÞ

@xi

@gðxi�k, xiÞ
@xi

þ @gðxi, xiþkÞ
@xi

� �" #
exp

�
t
Xn�k

i¼1

sup
x, y2R

Tþ
i, k, nðx, yÞ

�
,

8Þ t2 @gðxi�k, xiÞ
@xi

þ @gðxi, xiþkÞ
@xi

� �
@gðxj�k, xjÞ

@xj
þ @gðxj, xjþkÞ

@xj

 !
exp

�
t
Xn�k

i¼1

sup
x, y2R

Tþ
i, k, nðx, yÞ

�
:

It can be shown that the sign of each of the above statements is non negative.
Therefore, /ðx1, :::, xnÞ is a superadditive function; so

E exp

�
t
Xn�k

i¼1

sup
x, y2R

Tþ
i, k, nðx, yÞ

� !
�
Yn�k

i¼1

E exp

�
t sup
x, y2R

Tþ
i, k, nðx, yÞ

� !
: (2.5)

Consequently by A4, (2.4), (2.5) and using Lemma 2.1, we have

P sup
x, y2R

Xn�k

i¼1

Tþ
i, k, nðx, yÞ >

ðn� kÞe
2

 !
� exp

��ðn� kÞet
2

�Yn�k

i¼1

E exp ðt sup
x, y2R

Tþ
i, k, nðx, yÞÞ

� �

� exp �tEð sup
x, y2R

Tþ
i, k, nðx, yÞÞ þ

ðn� kÞt2C2h4n
8

 !
:

Since 0 < Eðsupx, y2R Tþ
i, k, nðx, yÞÞ < 1, therefore

P sup
x, y2R

Xn�k

i¼1

Tþ
i, k, nðx, yÞ >

ðn� kÞe
2

 !
� exp

�ðn� kÞet
2

þ ðn� kÞt2C2h4n
8

� �
: (2.6)

Now by minimizing the right-hand side of (2.6) with respect to t and substituting the
optimal bound, we obtain that

P sup
x, y2R

Xn�k

i¼1

Tþ
i, k, nðx, yÞ >

ðn� kÞe
2

 !
� exp �ðn� kÞe2

2C2h4n

 !
: (2.7)

Similarly, an optimal bound for the last term in (2.3) is achieved, and the proof is com-
plete. w

In fact, we derived sufficient conditions to prove an exponential rate for the kernel-
type estimator of the distribution function. To prove the convergence rate, we choose e
depending on n as

e2n ¼
ah4n log ðn� kÞ

n� k
,

in order to obtain a convergence series in the right-hand side of (2.2), where a > 0
must be conveniently chosen (it depends on constants appearing in the inequality). So,
the convergence rate of the kernel-type estimator is of the

order Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h4n log ðn� kÞ=ðn� kÞp Þ:

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 5



3. The mean square error

Here, we study the asymptotic properties and convergence rate of the MSE of the esti-

mator. From this, we derive the optimal bandwidth rate of the order n�1=3:

Lemma 3.1. Let A1(i)(ii), A2(i) and A3 be satisfied. Then,

F̂kðx, yÞ ¼ Fkðx, yÞ þ Oðh2nÞ, (3.1)

Var U
x� X1

hn
,
y� Xkþ1

hn

� �� �
¼ Fkðx, yÞ � F2kðx, yÞ þ OðhnÞ, (3.2)

and if A1(iii) also is hold, then we have for j 6¼ 1

Cov U
x � X1

hn
,
y� Xkþ1

hn

� �
,U

x � Xj

hn
,
y� Xkþj

hn

� � !
¼ Fkjðx, y, x, yÞ � F2kðx, yÞ þ Oðh2nÞ:

(3.3)

Proof. Using integration by parts and the Taylor expansion, the expectation of the ker-
nel estimator can be derived as

EðF̂kðx, yÞÞ ¼
ð
R2
U

x� r
hn

,
y � s
hn

� �
dFkðr, sÞ

¼
ð
R2
U

x� r
hn

,
y � s
hn

� �
@2Fkðr, sÞ
@r@s

drds

¼ �
ð
R2

@U x�r
hn

, y�s
hn


 �
@r

@Fkðr, sÞ
@s

dsdr

¼
ð
R2

@2U x�r
hn

, y�s
hn


 �
@r@s

Fkðr, sÞdsdr

¼
ð
R2
uðr, sÞFkðx� hnr, y� hnsÞdsdr

¼ Fkðx, yÞ þ h2n
2
Fkð11Þðx, yÞ

ð
R2
r2uðr, sÞdsdr

þ h2n
2
Fkð22Þðx, yÞ

ð
R2
s2uðr, sÞdsdr þ oðh2nÞ

¼ Fkðx, yÞ þ Oðh2nÞ,

where Fkð11Þðx, yÞ and Fkð22Þðx, yÞ are the second order partial derivatives with respect to
the first and second components respectively at point (x, y).
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Similarly, the variance of the kernel estimator can be written as

Var U
x� X1

hn
,
y � Xkþ1

hn

� �� �
¼ E Uðx�X1

hn
,
y�Xkþ1

hn
Þ


 �2 � E2ðF̂kðx, yÞÞ

¼
ð
R2
U2 x� r

hn
,
y� s
hn

� �
dFkðr, sÞ � E2ðF̂kðx, yÞÞ

¼
ð
R2
U2 x� r

hn
,
y� s
hn

� �
@2Fkðr, sÞ
@r@s

drds� E2ðF̂kðx, yÞÞ

¼ �
ð
R2

@U2 x � r
hn

,
y� s
hn

� �
@r

@Fkðr, sÞ
@s

drds� E2ðF̂kðx, yÞÞ

¼
ð
R2

@2U2 x� r
hn

,
y� s
hn

� �
@r@s

Fkðr, sÞdsdr � E2ðF̂kðx, yÞÞ

¼ ÐR2
@2U2ðr, sÞ

@r@s
Fkðx � hnr, y� hnsÞdsdr � E2ðF̂kðx, yÞÞ

¼ Fkðx, yÞ � hnFkð1Þðx, yÞ
ð
R2
r
@2U2ðr, sÞ

@r@s
dsdr

�hnFkð2Þðx, yÞ
ð
R2
s
@2U2ðr, sÞ

@r@s
dsdr þ oðhnÞ � E2ðF̂kðx, yÞÞ

¼ Fkðx, yÞ � F2ðx, yÞ þ OðhnÞ,

(3.4)

where Fkð1Þðx, yÞ and Fkð2Þðx, yÞ are the first-order partial derivatives with respect to the
first and second components, respectively, at point (x, y).
Also, we have for j 6¼ 1

Cov U
x� X1

hn
,
y� Xkþ1

hn

� �
,U

x� Xj

hn
,
y� Xkþj

hn

� � !

¼ E U
x� X1

hn
,
y� Xkþ1

hn

� �
U

x� Xj

hn
,
y� Xkþj

hn

� � !
� E2ðF̂kðx, yÞÞ

¼
ð
R4
U

x � r
hn

,
y� s
hn

� �
U

x � w
hn

,
y� v
hn

� �
dFkjðr, s,w, vÞ � E2ðF̂kðx, yÞÞ

¼
ð
R4

@2U
x � r
hn

,
y� s
hn

� �
@r@s

@2U
x� w
hn

,
y� v
hn

� �
@w@v

Fkjðr, s,w, vÞdsdrdvdw� E2ðF̂kðx, yÞÞ
(3.5)

¼
ð
R4
u

x � r
hn

,
y� s
hn

� �
u

x � w
hn

,
y� v
hn

� �
Fkjðr, s,w, vÞdsdrdvdw� E2ðF̂kðx, yÞÞ

¼ Fkjðx, y, x, yÞ � F2ðx, yÞ þ Oðh2nÞ:
(3.6)

So the proof is complete. w
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Proposition 3.1. Let A1, A2 and A3 be satisfied. Then,

ðn� kÞMSEðF̂kðx, yÞÞ ¼ Fkðx, yÞ � F2kðx, yÞ þ 2
X1
j¼2

ðFkjðx, y, x, yÞ � F2kðx, yÞÞ

þ Oðnh4n þ hnÞ þ an,

where an is independent of hn and tends to 0, as n ! 1. Therefore, an optimal conver-
gence rate of the MSE is achieved by choosing hn ¼ Oðn�1=3Þ:

Proof. For every x, y 2 R,

MSEðF̂kðx, yÞÞ ¼ EðF̂kðx, yÞ � Fkðx, yÞÞ2 ¼ Bias2 F̂kðx, yÞ
� 

þ Var F̂kðx, yÞ
� 

: (3.7)

We can write the last term in (3.7) as

Var F̂kðx, yÞ
� 

¼ 1
n� k

Var U
x� X1

hn
,
y� Xkþ1

hn

� �� �

þ 1

ðn� kÞ2
X
j 6¼1

Cov U
x� X1

hn
,
y� Xkþ1

hn

� �
,U

x� Xj

hn
,
y� Xkþj

hn

� � !
:

Using Lemma 3.1, we have

ðn� kÞMSEðF̂kðx, yÞÞ ¼ Fkðx, yÞ � F2
kðx, yÞ þ 2

X1
j¼2

ðFkjðx, y, x, yÞ � F2
kðx, yÞÞ

þOðnh4n þ hnÞ þ an,

(3.8)

where

an ¼ 2
n� k

Xn�k

j¼2

ðj� 1ÞðFkjðx, y, x, yÞ � F2kðx, yÞÞ þ 2
X1

j¼n�kþ1

ðFkjðx, y, x, yÞ � F2kðx, yÞÞ:

The expression an is independent of hn and tends to 0.
Finally, by optimizing the right-hand side of (3.8) with respect to hn, the optimal

bandwidth rate is of order n�1=3, so the proof is complete. w

4. Simulation study

Now, we compare the performance of the kernel and histogram estimators via a simula-
tion study for multivariate normal sequences using R software. The sequence fXn, n �
1g is called a normal sequence if for n � 2, the random vector ðX1, :::,XnÞ has the
multivariate normal distribution. A multivariate normal distribution is NSD if the off-
diagonal elements of its covariance matrix are non positive (Hu, 2000). Thus, for gener-
ating the NSD data, we suppose that X1, :::,Xn have multivariate normal distribution
with a zero mean vector and covariance matrix

8 A. KHEYRI ET AL.



R ¼ 1
1� q2

1 �q �q2 � � � �qn�1

�q 1 �q � � � �qn�2

..

. ..
. ..

. . .
. ..

.

�qn�1 �qn�2 �qn�3 � � � 1

2
6664

3
7775

where q > 0: For n¼ 20, 100, we generate one sample from the n-dimensional multi-
variate normal distribution with q ¼ 0:1, 0:3: Note that, if q > 0:33 for some n, R is
numerically not positive definite, so we choose q ¼ 0:3 as a strong dependence. Then,
for k¼ 1, 2, we compute the kernel and histogram estimators using hn ¼
n�1, n�1=3, n�1=5 and Uð�, �Þ as the bivariate normal distribution with a zero mean vector
and covariance matrix

1
1� q2

1 �q
�q 1

� �
:

Results for k¼ 1, 2 and different values of n, q and hn are presented in Figures 1–4,
respectively. Also for simplicity of comparison, we compute the following mean square
distances (MSDs) between estimators and Fkðx, yÞ for all x, y:

MSD1 ¼ 1
N

X
x, y

ðF̂kðx, yÞ � Fkðx, yÞÞ2,

MSD2 ¼ 1
N

X
x, y

ð~Fkðx, yÞ � Fkðx, yÞÞ2,

where N is the product of all numbers r and s.
Figures 1 and 2 show that for F1ðx, yÞ :

� When n is small (n¼ 20), we don’t have a good fit but the mean square distance
of the kernel estimator is better than the histogram estimator for all hn and q.

Figure 1. Contour plots of the bivariate normal distribution function (black), histogram estimator
(green) and kernel estimator (red) of F1ðx, yÞ for sample size n¼ 20.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 9



� The mean square distance of the kernel estimator is less than for the histogram
estimator for all cases.

� When n¼ 100, the mean square distance of both estimators is decreased and the
histogram estimator is closed to that of kernel estimator for two depend-
ence cases.

� For all n and q, the best choice for the bandwidth rate is hn ¼ n�1=3:

� For all n and hn if q is increased, the mean square distance of both estimators is
decreased but the kernel estimator is significantly better than the histo-
gram estimator.

Figure 2. Contour plots of the bivariate normal distribution function (black), histogram estimator
(green) and kernel estimator (red) of F1ðx, yÞ for sample size n¼ 100.

Figure 3. Contour plots of the bivariate normal distribution function (black), histogram estimator
(green) and kernel estimator (red) of F2ðx, yÞ for sample size n¼ 20.
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Figures 3 and 4 show that for F2ðx, yÞ :

� When n is small, we don’t have a good fit but the mean square distance of the
kernel estimator is better than the histogram estimator for all cases.

� For all cases, the mean square distance of the kernel estimator is less than the
histogram estimator.

� When n is large, the difference between estimators is very small.
� For all n and q, the best choice for bandwidth rate is hn ¼ n�1=3:

Figure 4. Contour plots of the bivariate normal distribution function (black), histogram estimator
(green) and kernel estimator (red) of F2ðx, yÞ for sample size n¼ 100.

Figure 5. Contour plots of the bivariate normal distribution function (black), histogram estimator
(green) and kernel estimator (red) of Fkðx, yÞ for the differences of annual total rainfall depth series.
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5 Application on hydrology data

As a real world example, we consider the annual total rainfall depth in the Paraopeba
River catchment (Brazil) for years 1950–51 to 1998–99. This historical time series has
been considered in Kheyri et al. (2019a) as an applied example for estimation of the dis-
tribution function under NSD dependence. They showed that the difference of real data
has NSD property.
Here, we use this example and for bandwidth rates hn ¼ n�1, n�1=3, n�1=5, for k¼ 1,

2, compute the kernel estimator F̂k using Uð�, �Þ as the bivariate normal distribution.
We summarize the results in Figure 5. In addition, for simplicity of comparison, we
quantify the mean square distances between the estimators and true distribution func-

tion of the bivariate normal. In Figure 5, we see that the bandwidth rate hn ¼ n�1=3 is

considerably better than hn ¼ n�1 and the results for bandwidth rates hn ¼ n�1=3 and

hn ¼ n�1=5 are almost similar. So, for all desired values of hn, the kernel estimator
behaves better than the histogram estimator.

6. Conclusion

In this paper, we have discussed the kernel estimation of the bivariate distribution func-
tion under negative superadditive dependence. We derived sufficient conditions in order
to prove the exponential inequalities for uniform convergence, which generalized and
improved the corresponding ones for NA random variables. We also proved the conver-
gence rate for the kernel estimator of the distribution function that is of the order

Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h4n log ðn� kÞ=ðn� kÞp Þ: Furthermore, we obtained the optimal bandwidth conver-

gence rate, which is of the order n�1=3: We compared the kernel and histogram estima-
tors in a simulation study, and applied the results to a real world example in hydrology.
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