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a b s t r a c t

An exponential inequality is established for a random variable with the finite Laplace
transform. Using this inequality, we obtain an exponential inequality for identically
distributed acceptable randomvariables (a class of randomvariables introduced inGiuliano
Antonini, Kozachenko, and Volodin (2008) which includes negatively dependent random
variables). Our result improves the corresponding ones in Kim and Kim (2007), Nooghabi
and Azarnoosh (2009), Sung (2009), Xing (2009), Xing and Yang (2010) and Xing, Yang, Liu,
and Wang (2009). Our method is much simpler than those in the literature.

© 2010 Published by Elsevier B.V. on behalf of The Korean Statistical Society.

1. Introduction1

Let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed probability space (Ω, F , P). The exponential2

inequality for the partial sum
∑n

i=1(Xi − EXi) is very useful in many probabilistic derivations. In particular, it provides a3

measure of the convergence rate for the strong law of large numbers. There exist several versions available in the literature4

for independent random variables with assumptions of uniform boundedness or some, quite relaxed, control on their5

moments. If the independent case is classical in the literature, the treatment of dependent variables is more recent.6

One of the dependence structure that has attracted the interest of probabilists and statisticians is negative association.7

The concept of negatively associated random variables was introduced by Alam and Saxena (1981) and carefully studied by8

Joag-Dev and Proschan (1983).9

A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be negatively associated if for every pair of disjoint subsets10

A and B of {1, 2, . . . , n},11

Cov(f1(Xi, i ∈ A), f2(Xj, j ∈ B)) ≤ 012

whenever f1 and f2 are coordinatewise increasing (or coordinatewise decreasing) and the covariance exists. An infinite family13

of random variables is negatively associated if every finite subfamily is negatively associated.14
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Aspointed out andprovedby Joag-Dev andProschan (1983), a number ofwell knownmultivariate distributions
∧
possesses 1

the negative association property, such as multinomial, convolution of unlike multinomial, multivariate hypergeometric, 2

Dirichlet, permutation distribution, negatively correlated normal distribution, random sampling without replacement, and 3

joint distribution of ranks. 4

The counterpart of the negative association is positive association. The concept of positively associated random variables 5

was introduced by Esary, Proschan, and Walkup (1967). The exponential inequalities for positively associated random 6

variables were obtained by Devroye (1991), Ioannides and Roussas (1999), Oliveira (2005), Sung (2007), Xing and Yang 7

(2008); Xing, Yang, and Liu (2008). On the other hand, Kim and Kim (2007), Nooghabi and Azarnoosh (2009), Roussas (1996), 8

Sung (2009), Xing (2009), Xing and Yang (2010), and Xing et al. (2009) obtained exponential inequalities for negatively 9

associated random variables. 10

The next dependence notion important for this paper is the notion of negatively dependent random variables. 11

Joag-Dev and Proschan (1983) pointed out that negative association property implies negative dependence, but negative 12

dependence does not imply negative association. They gave an example of a collection of random variables that are 13

negatively dependent, but not negatively associated. Negative association is much more restrictive and a stronger property 14

than negative dependence. 15

The concept of negatively dependent random variables was introduced by Lehmann (1966) as follows. 16

A finite family of random variables {X1, . . . , Xn} is said to be negatively dependent if the following two inequalities hold: 17

P(X1 ≤ x1, . . . , Xn ≤ xn) ≤

n∏
i=1

P(Xi ≤ xi) 18

and 19

P(X1 > x1, . . . , Xn > xn) ≤

n∏
i=1

P(Xi > xi) 20

for all real numbers x1, . . . , xn. An infinite family of random variables is negatively dependent if every finite subfamily is 21

negatively dependent. 22

Finally, the following notion is slightly weaker than which was introduced in Giuliano Antonini et al. (2008). 23

We say that a finite family of random variables {X1, . . . , Xn} is acceptable if there exists δ > 0 such that for any real λ 24

such that |λ| ≤ δ, 25

E exp


λ

n−
i=1

Xi


≤

n∏
i=1

E exp(λXi). 26

Note that in this definition we implicitly assume that the expectations are finite (otherwise the definition has no sense). 27

Hence we assume that the random variables have the finite Laplace transform (or moment generating function) near zero. 28

A sequence of random variables {Xn, n ≥ 1} is acceptable if every finite subfamily is acceptable. 29

We say that this definition of acceptability is weaker than which was introduced in Giuliano Antonini et al. (2008), 30

because in Giuliano Antonini et al. (2008) it is required that the inequality holds for all λ, while here we require only for 31

|λ| ≤ δ. 32

As
∧
is mentioned in Giuliano Antonini et al. (2008), a sequence of negatively dependent random variables with a finite 33

Laplace transform or finite moment generating function near zero (and hence a sequence of negatively associated random 34

variables with finite Laplace transform, too) provides us an example of acceptable random variables. For example, Xing et al. 35

(2009) consider a strictly stationary negatively associated sequence of random variables. According to the sentence above, 36

a sequence of strictly stationary and negatively associated random variables is acceptable. Another interesting example of a 37

sequence {Zn, n ≥ 1} of acceptable random variables can be constructed in the followingway. Feller (1971, Problem III.1) (cf. 38

also Romano and Siegel (1986), Section 4.30) provides an example of two random variables X and Y such that the density 39

of their sum is the convolution of their densities, yet they are not independent. It is simple to see that X and Y are not 40

negatively dependent either. Since they are bounded, their Laplace transforms E exp (λX) and E exp (λY ) are finite for any 41

λ. Next, since the density of their sum is the convolution of their densities, we have 42

E exp (λ(X + Y )) = E exp (λX) E exp (λY ) . 43

The announced sequence of acceptable random variables {Zn, n ≥ 1} can be now constructed in the following way. Let
∧
(Xk, 44

Yk) be independent copies of the random vector (X, Y ), k ≥ 1. For any n ≥ 1 set Zn = Xk if n = 2k+1 and Zn = Yk if n = 2k. 45

Hence, the model of acceptable random variables that we consider in this paper is more general than models considered in 46

the previous papers (such as a sequence of negatively associated random variables considered in Xing et al. (2009)). 47

In this paper, we establish an exponential inequality for a random variable with the finite Laplace transform. Using this 48

inequality, we obtain an exponential inequality for identically distributed acceptable randomvariableswhich have the finite 49

Laplace transforms. For the special case of negatively associated random variables, our result improves the corresponding
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ones in Kim and Kim (2007), Nooghabi and Azarnoosh (2009), Sung (2009), Xing (2009), Xing and Yang (2010), and Xing1

et al. (2009). The technique used in the literature mentioned above is based on so-called monotone truncation method. Our2

technique does not use the truncation method and so that our results are much more general and simpler, and their proofs3

are much simpler.4

In Giuliano Antonini et al. (2008) a notion ofm-acceptable random variables is introduced.Wewould like tomention that5

the results of this paper can be generalized to the case of m-acceptable random variables, too. We decided not to provide6

these generalizations since they make formulations of the statements very cumbersome.7

2. Main results8

The following lemma is an exponential inequality for a random variables which is not necessarily bounded. It plays an9

essential role in our main results.10

Lemma 2.1. Let X be a random variable with Eeδ|X | < ∞ for some δ > 0. Then for any 0 < λ ≤ δ/2,11

Eeλ(X−EX)
≤ exp(Kλ2),12

where K is defined as K = 2(E|X |
4)1/2Eeδ|X |.13

Proof. From the inequality ex ≤ 1 + x +
x2
2 e|x| for all x ∈ R, we have by the Hölder inequality, the cr -inequality, and the14

Jensen inequality that for any 0 < λ ≤ δ/2,15

Eeλ(X−EX)
≤ 1 + λE(X − EX) +

λ2

2
E

(X − EX)2eλ|X−EX |


16

= 1 +
λ2

2
E

(X − EX)2eλ|X−EX |


17

≤ 1 +
λ2

2


E(X − EX)4

1/2 
Ee2λ|X−EX |

1/2
(by the Hölder inequality)18

≤ 1 +
λ2

2


23(E|X |

4
+ |EX |

4)
1/2 

Ee2λ|X |e2λ|EX |
1/2

(by the cr -inequality)19

≤ 1 + 2λ2 E|X |
41/2 Ee2λ|X |Ee2λ|X |

1/2
(by the Jensen inequality)20

= 1 + 2λ2 E|X |
41/2 Ee2λ|X |

21

≤ 1 + 2λ2 E|X |
41/2 Eeδ|X |

22

= 1 + λ2K23

≤ exp(Kλ2),24

since 1 + x ≤ ex for all x ∈ R. Here K = 2(E|X |
4)1/2Eeδ|X |. Hence the result is proved. �25

Remark 2.1. There exist several exponential inequalities for a bounded random variable. Hoeffding (1963) proved that if26

a ≤ X ≤ b, then for any λ > 0,27

Eeλ(X−EX)
≤ exp(λ2(b − a)2/8).28

Chow (1966) obtained that if EX = 0 and |X | ≤ 1, then for any real number λ29

EeλX
≤ exp(λ2).30

Our exponential inequality holds for not only a bounded random variable but also an unbounded random variable with the31

finite Laplace transform.32

Now we state and prove one of our main results.33

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of identically distributed acceptable random variables with Eeδ|X1| < ∞ for some34

δ > 0. Then for any 0 < ϵ ≤ Kδ,35

P

 n−
i=1

(Xi − EXi)

 > nϵ


≤ 2 exp


−

nϵ2

4K


,36

where K = 2(E|X1|
4)1/2Eeδ|X1|.37
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Proof. Let 0 < ϵ ≤ Kδ. Then we have byMarkov’s inequality, the definition of acceptable random variables and Lemma 2.1 1

that for any 0 < λ ≤ δ/2, 2

P


n−

i=1

(Xi − EXi) > nϵ


= P


exp


λ

n−
i=1

(Xi − EXi)


> exp(λnϵ)


3

≤ exp(−λnϵ)E exp


λ

n−
i=1

(Xi − EXi)


4

≤ exp(−λnϵ)
n∏

i=1

E exp(λ(Xi − EXi)) 5

≤ exp(−λnϵ)
n∏

i=1

exp(Kλ2) 6

= exp(−λnϵ + Kλ2n). 7

Optimizing the exponent in the term of this upper bound, we find λ = ϵ/(2K). Note that ϵ/(2K) ≤ δ/2, since 0 < ϵ ≤ Kδ. 8

Putting λ = ϵ/(2K), we get 9

P


n−

i=1

(Xi − EXi) > nϵ


≤ exp


−

nϵ2

4K


. (2.1) 10

Since {−Xn, n ≥ 1} are also acceptable random variables, we can replace Xi by −Xi in the above statement. That is, 11

P


−

n−
i=1

(Xi − EXi) > nϵ


≤ exp


−

nϵ2

4K


. (2.2) 12

Observing that 13

P

 n−
i=1

(Xi − EXi)

 > nϵ


= P


n−

i=1

(Xi − EXi) > nϵ


+ P


−

n−
i=1

(Xi − EXi) > nϵ


, 14

the result follows by (2.1) and (2.2). � 15

Example 2.1. Consider a stationary sequence {Xn, n ≥ 1} of Gaussian random variables such that their autocovariance 16

function is negative. Then it is a negative associated sequence according to Joag-Dev and Proschan (1983, p. 293) and hence 17

an acceptable sequence because the Laplace transform for a Gaussian random variable is finite. Therefore all assumptions 18

of Theorem 2.1 are satisfied and hence the conclusion of the theorem is true. 19

Remark 2.2. For the special case of negatively associated random variables, when ϵ =

2δeE|X1|

2cn/n
1/2 and 0 < cn ≤ 20

eE|X1|
2n/(8δ)

1/3, Sung (2009) obtained the upper bound 21

2

1 +

Eeδ|X1|

δ3eE|X1|
2cn


exp(−δcn). (2.3) 22

To compare our upper bound, we choose ϵ =

2δeE|X1|

2cn/n
1/2 and 0 < cn ≤ K 2δn/(2eE|X1|

2). Noting that ϵ/(Kδ) ≤ 1, 23

we have, by Theorem 2.1, the following upper bound 24

2 exp


−
δeE|X1|

2cn
2K


. (2.4) 25

The convergence rates of (2.3) and (2.4) are the same. However, the restriction on cn in Sung (2009) is stronger than 26

0 < cn ≤ K 2δn/(2eE|X1|
2). Hence our result generalizes the result of Sung (2009). 27

By choosing ϵ = 2(Kα log n/n)1/2 in Theorem 2.1, we have the following result. 28

Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of identically distributed acceptable random variables with Eeδ|X1| < ∞ for some 29

δ > 0. Set ϵn = 2(Kα log n/n)1/2, where α > 0 and K = 2(E|X1|
4)1/2Eeδ|X1|. Then for all large n, 30

P

 n−
i=1

(Xi − EXi)

 > nϵn


≤ 2 exp (−α log n) . 31
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Proof. Let ϵn = 2(Kα log n/n)1/2, where α > 0 and K = 2(E|X1|
4)1/2Eeδ|X1|. Then ϵn/(Kδ) ≤ 1 for all large n. Hence the1

result follows directly from Theorem 2.1. �2

Remark 2.3. For the special case of negatively associated random variables, let us compare our result with the results of3

Kim and Kim (2007), Nooghabi and Azarnoosh (2009), Xing (2009), Xing et al. (2009), and Xing and Yang (2010).4

(1) When ϵn = O(1)(pn log3 n/n)1/2 and 1 ≤ pn < n/2, Kim and Kim (2007) obtained the upper bound5 
4 +

Eeδ|X1|n2

9α3pn log3 n


exp(−α log n),6

where 0 < α < δ.7

(2) When ϵn = O(1)(pn log3 n/n)1/2 and 1 ≤ pn < n/2, Nooghabi and Azarnoosh (2009) obtained the upper bound8 
2

1 +

αC0

4


+

2Eeδ|X1|n2

9α2pn log3 n


exp(−α log n)9

under the additional assumption on the covariance structure10

log n
pn log2 n

exp


αn log n

2pn

1/2


∞−
j=pn+2

|Cov(X1, Xj)| ≤ C0 < ∞,11

where 0 < α < δ.12

(3) When ϵn = O(1)(pn log3 n/n)1/2 and n/(α log n) ≥ pn → ∞, Xing (2009) obtained the upper bound13 
C1 +

9C2Eeδ|X1|

25α3pn log3 n


exp(−α log n)14

under the additional assumption on the covariance structure15

1
n2α/3pn log n

exp


αn log n

pn

1/2


∞−
j=pn+1

|Cov(X1, Xj)| < ∞,16

where C1 > 0 and C2 > 0 are positive constants and 0 < α ≤ δ.17

(4) When ϵn = O(1)(log3 n/n)1/2 and 1 ≤ pn ≤ O(1)(n/ log n)1/2, Xing et al. (2009) obtained the upper bound18 
4 +

CEeδ|X1|

4α3 log3 n


exp(−α log n),19

where C > 0 is a positive constant and 0 < α ≤ δ.20

(5) When ϵn = O(1)(log n/n)1/2 and 1 ≤ pn ≤ O(1)(n/ log n)1/2, Xing and Yang (2010) obtained the upper bound21 
4 +

C1Eeδ|X1|

4C2δ3 log n


exp(−δ log n),22

where C1 > 0 and C2 > 0 are positive constants.23

From (1)–(5), we see that our upper bound is less than those of Kim and Kim (2007), Nooghabi and Azarnoosh (2009),24

Xing (2009), Xing et al. (2009), and Xing and Yang (2010).25
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