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In this article, we study the complete convergence for weighted sums of extended
negatively dependent random variables and row sums of arrays of rowwise extended
negatively dependent random variables. We apply two methods to prove the results:
the first of is based on exponential bounds and second is based on the generalization
of the classical moment inequality for extended negatively dependent random
variables.
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1. Introduction

The concept of complete convergence was introduced by Hsu and Robbins (1947) as
follows. A sequence of random variables �Un� n ≥ 1� is said to converge completely
to a constant C if

∑�
n=1 P��Un − C� > �� < � for all � > 0. In view of the Borel-

Cantelli lemma, this implies that Un → C almost surely (a.s.). The converse is
true if the �Un� n ≥ 1� are independent. Hsu and Robbins (1947) proved that the
sequence of arithmetic means of independent and identically distributed (i.i.d.)
random variables converges completely to the expected value if the variance of the
summands is finite. Since then many authors studied the complete convergence for
partial sums and weighted sums of random variables. The main purpose of the
present investigation is to provide the complete convergence results for weighted
sums of END random variables and arrays of rowwise END random variables.
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2392 Wang et al.

Our main tools are exponential bounds of sub-Gaussian type and a generalization
of the classical moment inequality.

To prove the main results, we need to introduce some notions and present some
lemmas.

The following dependence structure was introduced in Liu (2009).

Definition 1.1. We say that random variables �Xn� n ≥ 1� are extended negatively
dependent (END) if there exists a constant M > 0 such that both inequalities

P�X1 > x1� X2 > x2� � � � � Xn > xn� ≤ M
n∏

i=1

P�Xi > xi� (1.1)

and

P�X1 ≤ x1� X2 ≤ x2� � � � � Xn ≤ xn� ≤ M
n∏

i=1

P�Xi ≤ xi�� (1.2)

hold for each n ≥ 1 and all real numbers x1� x2� � � � � xn.

In the case M = 1 the notion of END random variables reduces to the well-
known notion of so-called negatively dependent (ND) random variables which was
introduced by Lehmann (1966) (cf. also Joag-Dev and Proschan, 1983). Not looking
that the notion of END seems to be a straightforward generalization of the notion
of negative dependence, the extended negative dependence structure is substantially
more comprehensive. As is mentioned in Liu (2009), the END structure can reflect
not only a negative dependence structure but also a positive one (inequalities from
the definition of ND random variables hold both in reverse direction), to some
extend. We refer the interested reader to Example 4.1 in Liu (2009) where END
random variables can be taken as negatively or positively dependent. Also, Joag-Dev
and Proschan (1983) pointed out that negatively associated (NA) random variables
are ND and thus NA random variables are END.

Some interesting applications for END sequence have been found. For example,
for END random variables with heavy tails Liu (2009) obtained the precise large
deviations and Liu (2010) studied sufficient and necessary conditions for moderate
deviations. Since the assumption of END for a sequence of random variables is
much weaker than an independence, negative association, or negative dependence,
a study on a limiting behavior of END sequences is of interest.

2. Preliminaries

The following two lemmas provide us a few important properties of END random
variables. The statement of the first lemma we could found in Liu (2010).

Lemma 2.1. Let random variables X1� X2� � � � � Xn be END.

(i) If f1� f2� � � � � fn are all non decreasing (or non increasing) functions, then random
variables f1�X1�� f2�X2�� � � � � fn�Xn� are END.

(ii) For each n ≥ 1, there exists a constant M > 0 such that

E

(
n∏

j=1

X+
j

)
≤ M

n∏
j=1

EX+
j � (2.1)
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Complete Convergence for END Random Variables 2393

Remark 2.1. Note that (2.1) holds only for positive part of random variables. The
main idea of its proof is the application of the following well known formula for
positive random variables:

E�X1X2 � � � Xn� =
∫ �

0

∫ �

0
· · ·
∫ �

0
P�X1 > x1� X2 > x2� � � � � Xn > xn�dx1dx2 � � � dxn�

We would like to note that inequality (2.1) does not hold for arbitrary (taking
positive and negative values) END random variables for n > 2 even for the case
M = 1. But for n = 2 it holds, that is, if X1 and X2 are two END random variables,
then

E�X1 · X2� ≤ ME�X1� · E�X2��

This follows from so-called Hoeffding identity and we refer the interested reader to
Lehmann (1966).

The next lemma is a simple corollary of the previous one.

Lemma 2.2. Let �Xn� n ≥ 1� be a sequence of END random variables, then for each
n ≥ 1 and t ∈ �, there exists a constant M > 0 such that

E

(
n∏

i=1

etXi

)
≤ M

n∏
i=1

EetXi � (2.2)

As we already mentioned, in this article, we study limiting behavior for END
random variables through exponential inequalities of sub-Gaussian type.

Definition 2.2. Let � and 	 be two positive constants. A random variable X is said
to be �	� ��-sub-Gaussian, if E exp�tX� ≤ exp�	t2/2� for every t ∈ �−�� ��.

This is a slight modification of the well-known notion of sub-Gaussian random
variables, which are simply �	� ��-sub-Gaussian with � = �. For classical sub-
Gaussian random variables we refer for example to Hoffmann-Jørgensen (1994,
Sec. 4.29), where this notion is made explicit and where it is substantiated with
several important examples.

Next lemma is a simple statement that a mean zero bounded random variable is
subgaussian. The proof may be found in the above-mentioned Hoffmann-Jørgensen
(1994, Sec. 4.29), or in Serfling (1980, p. 200).

Lemma 2.3. Let X be a random variable with EX = 
. If P�l ≤ X ≤ u� = 1, then for
every real number t,

Eet�X−
� ≤ e
t2�u−l�2

8 and moreover Eet�X−
� ≤ 2e
t2�u−l�2

8 �

Hence, the random variable X − 
 is �	� ��-sub-Gaussian with 	 = �u− l�2/4 and
�=�.

We say that an array �Xni� 1 ≤ i ≤ n� n ≥ 1� of random variables is rowwise
END if for each fixed n ≥ 1 random variables are END and we assume that the
constant M from the definition of END is the same for each row.
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2394 Wang et al.

To prove the complete convergence for arrays of rowwise END random
variables, we need the following generalization of the classical moment inequality.

Lemma 2.4. Let �Xn� n ≥ 1� be a sequence of END random variables with EXi = 0
and EX2

i < � for each i ≥ 1. Then there exists a positive constant C such that

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
2

≤ C
n∑

i=1

EX2
i � (2.3)

Proof. Denote Sn =
∑n

i=1 Xi and M2�n =
∑n

i=1 EX
2
i for each n ≥ 1. Let Fi be the

distribution function of Xi, i ≥ 1. For any y > 0, denote Yi = min�Xi� y�, i =
1� 2� � � � � n and Tn =

∑n
i=1 Yi, n ≥ 1.

It is easy to check that for any x > 0,

�Sn ≥ x� ⊂ �Tn �= Sn� ∪ �Tn ≥ x��

which implies that for any positive number h,

P�Sn ≥ x� ≤ P�Tn �= Sn�+ P�Tn ≥ x� ≤
n∑

i=1

P�Xi ≥ y�+ e−hxEehTn � (2.4)

Lemma 2.1(i) implies that Y1� Y2� � � � � Yn are still END random variables. It follows
from (2.4) and Lemma 2.2 that

P�Sn ≥ x� ≤
n∑

i=1

P�Xi ≥ y�+Me−hx
n∏

i=1

EehYi � (2.5)

where M is a positive constant.
Now we estimate EehYi . It is easy to see that �ehu − 1− hu�/u2 is non decreasing

on the real line. Therefore,

EehYi =
∫ y

−�
ehudFi�u�+

∫ �

y
ehydFi�u�

≤ 1+ hEXi +
∫ y

−�

(
ehu − 1− hu

)
dFi�u�+

∫ �

y

(
ehy − 1− hy

)
dFi�u�

= 1+
∫ y

−�
ehu − 1− hu

u2
u2dFi�u�+

∫ �

y

(
ehy − 1− hy

)
dFi�u�

≤ 1+ ehy − 1− hy

y2

(∫ y

−�
u2dFi�u�+

∫ �

y
y2dFi�u�

)

≤ 1+ ehy − 1− hy

y2
EX2

i ≤ exp
{
ehy − 1− hy

y2
EX2

i

}
�

which implies that

P�Sn ≥ x� ≤
n∑

i=1

P�Xi ≥ y�+Me−hx
n∏

i=1

EehYi

≤
n∑

i=1

P�Xi ≥ y�+M exp
{
ehy − 1− hy

y2
M2�n − hx

}
�

D
ow

nl
oa

de
d 

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g]
 a

t 0
5:

36
 1

4 
M

ay
 2

01
3 



Complete Convergence for END Random Variables 2395

Replacing Xi by −Xi, we have

P�−Sn ≥ x� ≤
n∑

i=1

P�−Xi ≥ y�+M exp
{
ehy − 1− hy

y2
M2�n − hx

}
�

Therefore,

P��Sn� ≥ x� ≤
n∑

i=1

P��Xi� ≥ y�+ 2M exp
{
ehy − 1− hy

y2
M2�n − hx

}
� (2.6)

If we take h = 1
y
log

(
1+ xy

M2�n

)
, then

P��Sn� ≥ x� ≤
n∑

i=1

P��Xi� ≥ y�+ 2M exp
{
x

y
− x

y
log

(
1+ xy

M2�n

)}
� (2.7)

Taking y = x
r
in (2.7), where r > 1, we have

P ��Sn� ≥ x� ≤
n∑

i=1

P
(
�Xi� ≥

x

r

)
+ 2Mer

(
1+ x2

rM2�n

)−r

�

which implies that∫ �

0
2xP ��Sn� ≥ x� dx ≤ 2

n∑
i=1

∫ �

0
xP �r�Xi� ≥ x� dx

+ 4Mer
∫ �

0
x

(
1+ x2

rM2�n

)−r

dx�

That is to say (or see Lemma 2.4 of Petrov, 1995) for r > 1,

ES2
n ≤ r2

n∑
i=1

EX2
i + 4Mer

∫ �

0
x

(
1+ x2

rM2�n

)−r

dx

= r2
n∑

i=1

EX2
i +

2rMer

r − 1

n∑
i=1

EX2
i

=
(
r2 + 2rMer

r − 1

) n∑
i=1

EX2
i

�= C
n∑

i=1

EX2
i �

This completes the proof of the lemma.
In this article, we assume that �ani� 1 ≤ i ≤ n� n ≥ 1� is an array of positive

numbers and C and M denote positive constants which may be different from place
to place.

3. Complete Convergence for Normed Weighted Sums of a Sequence
of END Random Variables

With the preliminaries accounted for, we could now present our first result.

Theorem 3.1. Let �Xn� n ≥ 1� be a sequence of �	n� �n�-sub-Gaussian END random
variables and �bn� n ≥ 1� be a sequence of positive numbers. Denote Bn =

∑n
i=1 a

2
ni	i/2
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2396 Wang et al.

and �n = min1≤i≤n �i/ani� n ≥ 1. If for any � > 0,

�∑
n=1

exp
{
−b2n�

2

4Bn

}
< �� (3.1)

and

�∑
n=1

exp
{
−�nbn�

2

}
< �� (3.2)

then

1
bn

n∑
i=1

aniXi → 0 completely, as n → ��

Proof. For each n ≥ 1� 1 ≤ i ≤ n and �t� ≤ �n, we can write

EetaniXi ≤ et
2a2ni	i/2� (3.3)

By Lemma 2.1(i), we obtain that �aniXi� 1 ≤ i ≤ n� n ≥ 1� and �−aniXi� 1 ≤ i ≤
n� n ≥ 1� are sequences of END random variables. Therefore, by Markov’s
inequality, Lemma 2.2 and the inequality above, we can get that for any x ≥ 0 and
�t� ≤ �n, there exists a constant M > 0 such that

P

(∣∣∣∣∣
n∑

i=1

aniXi

∣∣∣∣∣ ≥ x

)
= P

(
n∑

i=1

aniXi ≥ x

)
+ P

(
n∑

i=1

�−aniXi� ≥ x

)

≤ e−�t�xE exp

{
�t�

n∑
i=1

aniXi

}
+ e−�t�xE exp

{
�t�

n∑
i=1

�−aniXi�

}

≤ e−txE exp

{
�t�

n∑
i=1

aniXi

}
+ e−txE exp

{
�t�

n∑
i=1

�−aniXi�

}

= e−txE exp

{
t

n∑
i=1

aniXi

}
+ e−txE exp

{
t

n∑
i=1

�−aniXi�

}

≤ e−txM

(
n∏

i=1

EetaniXi +
n∏

i=1

Ee−taniXi

)

≤ 2M exp
{−tx + t2Bn

}
�

Hence,

P

(∣∣∣∣∣
n∑

i=1

aniXi

∣∣∣∣∣ ≥ x

)
≤ 2M min

�t�≤�n

exp
{−tx + t2Bn

}
�

If 0 ≤ x ≤ 2Bn�n, then

min
�t�≤�n

exp
{−tx + t2Bn

} = exp
{
− x

2Bn

x + x2

4B2
n

Bn

}
= exp

{
− x2

4Bn

}
�
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Complete Convergence for END Random Variables 2397

If x ≥ 2Bn�n, then note that �2
nBn ≤ �nx/2 and

min
�t�≤�n

exp
{−tx + t2Bn

} = exp
{−�nx + �2

nBn

} ≤ exp
{
−�nx

2

}
�

That is, for any x ≥ 0,

P

(∣∣∣∣∣
n∑

i=1

aniXi

∣∣∣∣∣ ≥ x

)
≤ 2M

(
exp

{
− x2

4Bn

}
+ exp

{
−�nx

2

})
�

Taking x = �bn we obtain

�∑
n=1

P

(∣∣∣∣∣ 1bn
n∑

i=1

aniXi

∣∣∣∣∣ ≥ �

)

≤ 2M

( �∑
n=1

exp
{
−b2n�

2

4Bn

}
+

�∑
n=1

exp
{
−�nbn�

2

})
< ��

This completes the proof of the theorem.
Now we consider a few special cases that could help us to establish the

convergence of the series
∑�

n=1 exp
{
−�nbn�

2

}
mentioned in Theorem 3.1. First of all,

note that this series obviously convergence in the case of classically sub-Gaussian
random variables, that is, �n = � for all n ≥ 1. Thus, we can formulate the following
result.

Proposition 3.1. Let �Xn� n ≥ 1� be a sequence of �	n� �n�-sub-Gaussian END random
variables with �n = � and �bn� n ≥ 1� be a sequence of positive numbers. Denote Bn =∑n

i=1 a
2
ni	i/2. If for any � > 0,

�∑
n=1

exp
{
−b2n�

2

4Bn

}
< �� (3.4)

then

1
bn

n∑
i=1

aniXi → 0 completely, as n → ��

For the next case we consider the following assumption of Bernstein’s type
inequality. Let �Xi� i ≥ 1� be a sequence of random variables with EXi = 0 and
EX2

i

�= 2
i < � and suppose that there exists a positive number H such that for any

positive integer m ≥ 2,

�E�Xi�
m� ≤ m!

2
2
i H

m−2� (3.5)

Then the random variable Xi is �	i� �i�-sub-Gaussian with 	i = 22
i , �i = 1

2H .
Really, for any n ≥ 1 and 1 ≤ i ≤ n the Bernstein’s type inequality mentioned

above implies that

EetXi = 1+ t2

2
2
i +

t3

6
EX3

i + · · ·

≤ 1+ t2

2
2
i �1+H�t� +H2t2 + · · · ��

D
ow

nl
oa

de
d 

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g]
 a

t 0
5:

36
 1

4 
M

ay
 2

01
3 



2398 Wang et al.

When �t� ≤ 1
2H , it follows that

EetXi ≤ 1+ t22
i

2
· 1
1−H�t� ≤ 1+ t22

i ≤ et
22i

�= e	it
2/2� (3.6)

That is to say the random variable Xi is �	i� �i�-subgaussian with 	i = 22
i , �i = 1

2H .
Thus, we can state the following result.

Proposition 3.2. Let �Xn� n≥ 1� be a sequence of END random variables with EXi= 0
and EX2

i

�= 2
i < � and �bn� n ≥ 1� be a sequence of positive numbers. Denote Bn =∑n

i=1 a
2
ni

2
i and �n = min1≤i≤n 1/ani� n ≥ 1. Assume that there exists a positive number

H such that for any positive integer m ≥ 2,

�E�Xi�
m� ≤ m!

2
2
i H

m−2� (3.7)

If for any � > 0,
�∑
n=1

exp
{
−b2n�

2

4Bn

}
< �� (3.8)

and
�∑
n=1

exp �−�nbn�� < �� (3.9)

then

1
bn

n∑
i=1

aniXi → 0 completely, as n → ��

In the next proposition we consider the case of bounded random variables.

Proposition 3.3. Let �Xn� n ≥ 1� be a sequence of END bounded random variables
with EXi = 0 and �bn� n ≥ 1� be a sequence of positive numbers. Let �ln� n ≥ 1� and
�un� n ≥ 1� be sequences of real numbers such that P�ln ≤ Xn ≤ un� = 1� n ≥ 1. Denote
Bn =

∑n
i=1 a

2
ni�ui − li�

2/8. If for any � > 0,

�∑
n=1

exp
{
−b2n�

2

4Bn

}
< �� (3.10)

then

1
bn

n∑
i=1

aniXi → 0 completely, as n → ��

Proof. The statement follows immediately from Proposition 3.1 and Lemma 2.3.

4. Complete Convergence for Row Weighted Sums of an Array
of Rowwise END Random Variables

The main tool that we use in this section is the generalization of the classical
moment inequality presented in Lemma 2.4.
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Complete Convergence for END Random Variables 2399

Theorem 4.1. Let �Xni� 1 ≤ i ≤ n� n ≥ 1� be an array of rowwise END random
variables with EXni = 0 and EX2

ni

�= 2
ni < � for each 1 ≤ i ≤ n and n ≥ 1. Let

�bn� n ≥ 1� be a sequence of positive numbers. If

�∑
n=1

1
b2n

n∑
i=1

a2
ni

2
ni < �� (4.1)

then

1
bn

n∑
i=1

aniXni → 0 completely, as n → ��

Proof. Lemma 2.1(i) implies that �aniXni� 1 ≤ i ≤ n� are still END random
variables for fixed n ≥ 1. By Lemma 2.4 we can see that

E

(
n∑

i=1

aniXni

)2

≤ C
n∑

i=1

a2
niEX

2
ni = C

n∑
i=1

a2
ni

2
ni�

where C is a positive constant defined in Lemma 2.4. By the assumption, the
inequality above, and Markov’s inequality, we have that for any � > 0,

�∑
n=1

P

(∣∣∣∣∣ 1bn
n∑

i=1

aniXni

∣∣∣∣∣ > �

)
≤

�∑
n=1

1
b2n�

2
E

(
n∑

i=1

aniXni

)2

≤ C

�2

�∑
n=1

1
b2n

n∑
i=1

a2
ni

2
ni < ��

Hence, 1
bn

∑n
i=1 aniXni → 0 completely, as n → �.

Taking bn = n�, � > 0 and ani ≡ 1, 1 ≤ i ≤ n� n ≥ 1, we can get the following
corollary.

Corollary 4.1. Let �Xni� 1 ≤ i ≤ n� n ≥ 1� be an array of rowwise END random
variables with EXni = 0 and EX2

ni

�= 2
ni < � for each 1 ≤ i ≤ n and n ≥ 1. If for some

� > 0,

�∑
n=1

1
n2�

n∑
i=1

2
ni < ��

then

1
n�

n∑
i=1

Xni → 0 completely, as n → ��

Proposition 4.1. Let �Xni� 1 ≤ i ≤ n� n ≥ 1� be an array of rowwise END random
variables with EXni = 0 and EX2

ni

�= 2
ni < � for each 1 ≤ i ≤ n and n ≥ 1. Suppose

that there exists a positive constant C such that a2
ni

2
ni ≤ Ca2

ii
2
ii for each 1 ≤ i ≤ n and

n ≥ 1. If for some � > 1/2,

�∑
i=1

a2
ii

2
ii

i2�−1
< �� (4.2)
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2400 Wang et al.

then

1
n�

n∑
i=1

aniXni → 0 completely, as n → ��

Proof. Take bn = n�, then the assumption from Theorem 4.1 can be estimated as
follows:

�∑
n=1

1
b2n

n∑
i=1

a2
ni

2
ni ≤ C

�∑
n=1

1
n2�

n∑
i=1

a2
ii

2
ii

= C
�∑
i=1

a2
ii

2
ii

�∑
n=i

1
n2�

≤ C
�∑
i=1

a2
ii

2
ii

i2�−1
< ��

The conclusion follows from Theorem 4.1 immediately.
The last result of this article deals with arrays with uniformly bounded second

moments.

Proposition 4.2. Let �Xni� 1 ≤ i ≤ n� n ≥ 1� be an array of rowwise END random
variables satisfying

EXni = 0 and EX2
ni ≤ A (4.3)

for all 1 ≤ i ≤ n and n ≥ 1, where A is a positive constant. Suppose that
∑n

i=1 a
2
ni =

O�n�� for some � > 0. Then for all � > 1+�
2 ,

1
n�

n∑
i=1

aniXni → 0 completely, as n → ��

Proof. Take bn = n�, then the assumption from Theorem 4.1 can be estimated as
follows.

�∑
n=1

1
b2n

n∑
i=1

a2
ni

2
ni ≤ A

�∑
n=1

1
n2�

n� = A
�∑
n=1

1
n2�−�

< ��

Remark 4.1. Hanson and Wright (1971) and Wright (1973) obtained a bound on
tail probabilities for quadratic forms in independent random variables using the
following condition. There exist C > 0 and � > 0 such that for all 1 ≤ i ≤ n, n ≥ 1
and all x > 0, we have

P��Xni� ≥ x� ≤ C
∫ +�

x
e−�t2dt� (4.4)

Note that if (4.4) is true, then for all 1 ≤ i ≤ n and n ≥ 1,

EX2
ni =

∫
�
X2

nidP =
∫
�
�
∫ �Xni�

0
2xdx�dP

=
∫
�
�
∫ �

0
2I��Xni� ≥ x�xdx�dP =

∫ �

0
�2x

∫
�
I��Xni� ≥ x�dP�dx
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=
∫ +�

0
2xP��Xni� ≥ x�dx ≤

∫ +�

0
2x
(
C
∫ +�

x
e−�t2dt

)
dx

= C
∫ +�

0
e−�t2

(∫ t

0
2xdx

)
dt = C

∫ +�

0
t2e−�t2dt = C

√
�

4�3/2
�

Hence, Proposition 4.2 remains true under the condition (4.4) considered in Hanson
and Wright (1971) and Wright (1973). For more details about condition (4.4), one
can refer to Hanson (1967a,b).

Acknowledgments

The authors are exceptionally grateful to the referee for offering helpful
remarks and comments that improved presentation of the paper. The research
of Xuejun Wang was partially supported by the research of Xuejun Wang
was partially supported by the National Natural Science Foundation of China
(Grant Nos. 11201001, 11226207), the Natural Science Foundation of Anhui
Province (1208085QA03, 1308085QA03), Applied Teaching Model Curriculum of
Anhui Univeristy (XJYYXKC04), Doctoral Research Start-up Funds Projects of
Anhui University and the Students Science Research Training Program of Anhui
University (KYXL2012007). The research of Shuhe Hu was partially supported
by the National Natural Science Foundation of China (Grant No. 11171001). The
research of Tien-Chung Hu was partially supported by the National Science Council
of Taiwan R.O.C. The research of Andrei Volodin was partially supported by the
Natural Sciences and Engineering Research Council of Canada.

References

Hanson, D. L. (1967a). A relation between moment generating functions and convergence
rates in the law of large numbers. Bull. Amer. Math. Soc. 73(1):95–96.

Hanson, D. L. (1967b). Some results relating moment generating functions and convergence
rates in the law of large numbers. Ann. Math. Statist. 38(3):742–750.

Hanson, D. L., Wright, F. T. (1971). A bound on tail probabilities for quadratic forms in
independent random variables. Ann. Math. Statist. 42(3):1079–1083.

Hoffmann-Jørgensen, J. (1994). Probability with a View Toward Statistics. Vol. I. Chapman &
Hall Probability Series. New York: Chapman & Hall.

Hsu, P. L., Robbins, H. (1947). Complete convergence and the law of large numbers. Proc.
Nati. Acad. Sci. U.S.A. 33(2):25–31.

Joag-Dev, K., Proschan, F. (1983). Negative association of random variables with
applications. Ann. Statist. 11(1):286–295.

Lehmann, E. (1966). Some concepts of dependence. Ann. Math. Statist. 37(5):1137–1153.
Liu, L. (2009). Precise large deviations for dependent random variables with heavy tails.

Statist. Probab. Lett. 79(9):1290–1298.
Liu, L. (2010). Necessary and sufficient conditions for moderate deviations of dependent

random variables with heavy tails. Sci. China Math. 53(6):1421–1434.
Petrov, V. V. (1995). Limit Theorems of Probability Theory: Sequences of Independent Random

Variables. New York: Oxford University Press Inc.
Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. New York: John

Wiley & Sons.
Wright, F. T. (1973). A bound on tail probabilities for quadratic forms in independent

random variables whose distributions are not necessarily symmetric. Ann. Probab.
1(6):1068–1070.

D
ow

nl
oa

de
d 

by
 [

C
hi

ne
se

 U
ni

ve
rs

ity
 o

f 
H

on
g 

K
on

g]
 a

t 0
5:

36
 1

4 
M

ay
 2

01
3 




