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Confidence intervals for the ratio of medians of two
independent log-normal distributions

Lapasrada Singhasomboona, Wararit Panichkitkosolkula, and Andrei Volodinb

aDepartment of Mathematics and Statistics, Thammasat University, Phathum Thani, Thailand; bDepartment of
Mathematics and Statistics, University of Regina, Saskatchewan, Canada

ABSTRACT
We focus on the construction of confidence intervals for the ratios of
medians of two independent, log-normal distributions based on the nor-
mal approximation (NA) approach, the method of variance estimate recov-
ery (MOVER), and the generalized confidence interval (GCI) approach. We
also compare the performance of the three confidence intervals in terms
of the coverage probabilities, and average lengths, using Monte Carlo sim-
ulations. The results show that the GCI confidence interval is generally pre-
ferred in terms of coverage probabilities; however, the average length for
the GCI is always wider than for other approaches. The NA and MOVER
approaches could be recommended on the basis of the specific values of
li,r

2
i and/or sample sizes. The confidence intervals are illustrated using

real data examples.
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1. Introduction

In many applications, such as medicine, biology, exposure, pollution, economics, finance, reliabil-
ity, survival and meteorology data analysis, measurements are often right-skewed. In these data,
analyses are usually assumed by log-normal models. The log-normal distribution is common in
many application areas. Estimating the parameters of the log-normal distribution is an interesting
problem. There are many studies about approaches for constructing confidence intervals for log-
normal distributions; for example, the interval for a single log-normal mean has been addressed
multiple times in the literature (e.g., see Land 1972; Angus 1988, 1994; Zhou and Gao 1997, etc.)
The interval for the ratio, or difference of two log-normal means is addressed in Zhou and Tu
(2000); Wu et al. (2002); Krishnamoorthy and Mathew (2003), etc. The interval estimation for
the mean of several log-normal distributions is discussed in Baklizi and Ebrahem (2005);
Behboodian and Jafari (2006); Tian and Wu (2007); Lin and Wang (2013); Malekzadeh and
Kharrati-Kopaei (2018). However, log-normal distributions that follow right-skewed data typically
have extremely low measurements, which affect the median less than the mean. Thus, in this situ-
ation, the median is a more meaningful central tendency measure than the mean.

Some authors have considered the median of the log-normal distribution. Zellner (1971) pro-
posed a Bayesian and non-Bayesian estimator for the parameters of the mean and median of the
log-normal distribution. Rao and D’Cunha (2016) proposed the Bayes credible interval for the
median of the log-normal distribution, and compared the interval based on the MLE. The conclu-
sion was that the Bayes credible interval has a shorter average length compared to the one inter-
val. To our knowledge, there is no research paper on the confidence interval for medians of two
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log-normal distributions. In this article, we take this new challenge by investigating the new
aspect of confidence intervals construction. We propose the Normal Approximation (NA), the
method of variance estimates recovery (MOVER) and the generalized confidence interval (GCI)
approaches to construct confidence intervals for the ratio of medians for two independent, log-
normal distributions. We assess these three confidence intervals using the coverage probabilities
and their expected lengths. Typically, we prefer a confidence interval with a coverage probability
of at least the nominal level (1� a); its expected length is short.

The description of notation and the log-normal model, followed by three confidence interval
approaches for constructing confidence intervals for the ratio medians of two independent, log-
normal distributions are discussed in Sec. 2. A simulation study comparing the proposed interval
is presented in Sec. 3, with Sec. 3.1 containing the discussion and the results. In Sec. 4, the pro-
posed CI construction approaches are illustrated with PM2.5 datasets. Finally, the concluding
remarks are given in Sec. 5.

2. Methods

LetXij; i ¼ 1, 2, j ¼ 1, :::, ni: be random variables from two independent, log-normal distributions
with the following parameters: the meansli and variancesr2i , respectively, are denoted
as Xij � LNðli, r2i Þ:

The probability density function is

f ðXÞ ¼ 1

xij
ffiffiffiffiffiffiffiffiffiffiffi
2pri2

p e
�1

2

ln xij�li
ri

� �2

where xij > 0, �1 < li < 1,ri2 > 0 and i ¼ 1, 2, j ¼ 1, :::, ni:
We know that the logarithm of Xij: i.e., Yij ¼ ln ðXijÞ � Nðli, r2i Þ is normally distributed.

Therefore, the unbiased estimators (and MLE) for li, r
2
i , i ¼ 1, 2 are

�Y i ¼ 1
ni

Xni
j¼1

Yij

S2i ¼
1

ni � 1

Xni
j¼1

Yij � �Yi
� �2, i ¼ 1, 2

It is well-known that the medians of two independent, log-normal distribution can be calculated
as follows:

m1 ¼ el1

and

m2 ¼ el2

which may be applied to obtain the ratio medians of two independent log-normalðwÞ Inferences
are made on

w ¼ m1

m2
¼ e l1�l2ð Þ (1)

By using the plug-in estimator, the unbiased (and MLE) point estimator of w is

ŵ ¼ e �y1��y2ð Þ (2)

where �Y i ¼ 1
ni

Pni
j¼1 Yij, i ¼ 1, 2:

In the rest of this section, we address constructing the confidence interval for w by the
Normal approximation, Generalized Confidence Interval and MOVER approaches.
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2.1. The normal approximation confidence interval approach

Consider the following point estimator of w as in Eq. (2):

ŵ ¼ e �y1��y2ð Þ:

In the Normal Approximation approach, the main statistical tool we use to obtain an asymptotic-
ally normal and limiting distribution of an estimator ŵ is the famous Delta method. It can be
explained briefly in the following way.

Let gðv1, v2Þ be a differentiable scalar function of two variables. Consider an estimator T ¼
gðV1,V2Þ, which is a function of two other basic statistics V1 and V2: Usually, statistics V1 and
V2 have a simple form, and it is known that they are jointly asymptotically normal. The asymp-
totic distribution of an estimator, T, can be found by the Delta method, which is a procedure of
stochastic representation of T:

Now, we apply the Delta method to prove its asymptotically normality as ni ! 1 and to find
the asymptotic mean and variance for the estimator w:

In the Delta method, function g is used to expand into the Taylor series at the point l1 ¼
EðV1Þ and l2 ¼ EðV2Þ :

g V1,V2ð Þ ¼ g l1, l2ð Þ þ
@g l1,l2ð Þ

@v1
V1 � l1ð Þ þ @g l1, l2ð Þ

@v2
V2 � l2ð Þ þ Remainder:

Note that it is possible to prove that
ffiffiffi
n

p
Remainder ! 0 in probability as the sample

size n1, n2 ! 1:
For our case, gðv1, v2Þ ¼ ev1�v2 and V1 ¼ �Y 1,V2 ¼ �Y 2: The statistic V1 ¼ �Y 1 is normally dis-

tributed as N �Y 1, S
2
1
�
n1

� �
and the statistic V2 ¼ �Y 2 is normally distributed as N �Y 2, S

2
2
�
n2

� �
:

To calculate partical derivatives,

@g v1, v2ð Þ
@v1

¼ ev1�v2 and
@g v1, v2ð Þ

@v2
¼ �ev1�v2 :

Hence,

@g l1, l2ð Þ
@v1

¼ el1�l2 and
@g l1,l2ð Þ

@v2
¼ �el1�l2 :

By the Taylor series,

g V1,V2ð Þ � el1�l2 þ el1�l2 l̂1 � l1ð Þ � el1�l2 l̂2 � l2ð Þ
� el1�l2 l̂1 � l̂2 � l1 þ l2 þ 1ð Þ :

From this, we take the expectation and variance on the both sides, we obtained the asymptotic
mean and variance for the estimator wNA are given by

lŵNA
¼ el1�l2 and r2

ŵNA
¼ e2 l1�l2ð Þ r21

n1
þ r22

n2

� 	
,

respectively.
To sum up, as sample sizes n1, n2 ! 1, we have the ŵNA is approximately normal with a

mean lŵNA
and variance of the form r2

ŵNA
: Obviously, values l1,l2,r

2
1 and r22 are unknown when

we estimate the parameter function wNA having only samples in our hands. In this case, we use
the plug-in estimators of l̂ŵNA

and r̂2
ŵNA

as follows:

l̂ŵNA
¼ e�y1��y2 and r̂2

ŵNA
¼ e2 �y1��y2ð Þ s21

n1
þ s22
n2

� 	

where �yi and s2i are the observed values of �Yi and S2i , respectively.
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Therefore, the ð1� aÞ100% two-sided approximate confidence interval for the w based on NA
appraoch is given by

CINA ¼ ŵNA � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 �y1��y2ð Þ s21

n1
þ s22
n2

� 	s
, ŵNA þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 �y1��y2ð Þ s21

n1
þ s22
n2

� 	s0
@

1
A (3)

where za=2 is the
a 2= Þð -th quantile value from the standard normal distribution.

2.2. The confidence interval based on the MOVER approach

Zou (2008) and Zou and Donner (2008) introduced the method of variance estimates recovery
(MOVER) for constructing a confidence interval for a linear combination of the parameters esti-
mated by confidence limits for each component of the parameters.

Recall in Eq. (1) that the ratio median of two independent log-normal is

w ¼ m1

m2
¼ e l1�l2ð Þ:

The logarithm of the ratio, which we will denote as h, is

h ¼ ln ðwÞ ¼ l1 � l2: (4)

We start by constructing the confidence interval for h ¼ ln ðwÞ ¼ l1 � l2: Then, we take the
exponent to obtain a confidence interval for the ratio of medians: w ¼ eðl1�l2Þ:

Let li, i ¼ 1, 2 as each component parameters of the h, and let Li and Ui be the lower and
upper limits of the interval for li, i ¼ 1, 2, respectively.

Then, we have

Li ¼ �yi � za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var �yið Þ

p
,Ui ¼ �yi þ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var �yið Þ

p
(5)

where �Y i � N �Yi, S
2
i
�
ni

� �
and za=2 is the a=2ð Þ-th quantile value from the standard normal

distribution.
Following Zou (2008) and Zou and Donner (2008), the ð1� aÞ100% two-sided confidence

interval for the parameters h, based on the MOVER approach, is given by

CI ¼ �y1 � �y2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�y1 � L1ð Þ2 þ U2 � �y2ð Þ2

q
,�y1 � �y2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1 � �y1ð Þ2 þ �y2 � L2ð Þ2

q
 �
(6)

Therefore, we will take the exponent in Eq. (6) to obtain a confidence interval for the w as
follows:

CIMOVER ¼ exp �y1 � �y2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�y1 � L1ð Þ2 þ U2 � �y2ð Þ2

q
,�y1 � �y2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1 � �y1ð Þ2 þ �y2 � L2ð Þ2

q
 �
(7)

where Li,Ui are defined by Eq. (5).

2.3. The generalized confidence interval approach

Weerahandi (1993) introduced the generalized inference approach for testing a confidence inter-
val in the situation where the parameter of interest consists of several component parameters,
such as nuisance parameter(s). The basic concept of the GCI is as follows. Let X ¼ ðX1,X2, :::,XnÞ
be a random sample from the probability density function f ðx; h, kÞ, where h is the parameter of
interest and k is a nuisance parameter(s). Let x ¼ ðx1, x2, :::, xnÞ denote the observed value of X ¼
ðX1,X2, :::,XnÞ: To obtain the confidence limits for the parameter of interest, h, we first need to
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construct a generalized pivotal quantity RðX; x, h, kÞ, which is a function of the random sample X:
The observed data, x, and the unknown parameters, h, k, must satisfy the following conditions:

(i) The distribution of RðX; x, h, kÞ is free of unknown parameters;
(ii) The observed value of RðX; x, h, kÞ is equal to the parameter of interestðhÞ

Similar to the MOVER approach, we start by constructing the confidence interval
forh ¼ ln ðwÞ ¼ l1 � l2: Finally, we take the exponent to obtain a confidence interval for the
ratio of mediansðwÞ:

The generalized pivotal quantity of h ¼ l1 � l2 is defined as follows:

Rh ¼ Rl1 � Rl2 , (8)

where Rli according to Krishnamoorthy and Mathew (2003), is given by:

Rli ¼ �yi �
�Y i � li
Si=

ffiffiffiffi
ni

p siffiffiffiffi
ni

p

¼ �yi �
Ziffiffiffiffi
ni

p si
ffiffiffiffiffiffiffiffiffiffiffiffi
ni � 1

p
Ui

i ¼ 1, 2

where �yi and s2i are the observed values of �Yi and S2i , respectively. Zi and Ui are independent,

where Zi ¼ ð�Y i�liÞ
ri=

ffiffiffi
ni

p � Nð0, 1Þ and U2
i ¼ ðni�1ÞS2i

r2i
� v2ni�1, i ¼ 1, 2:

It is easy to verify that Rh satisfies the above two conditions. The last expression suggests that
the distribution of Rh is free of unknown parameters. In the first expression, substituting �yi and
s2i for �Yi and S2i is equal to h: So, the ð1� aÞ100% two-sided generalized confidence interval for
h is simply the Rhða=2Þ,Rhð1� a=2Þ of percentile of Rh: Next, we will take the exponent to obtain
a generalized confidence interval for the w:

Therefore, the ð1� aÞ100% two-sided generalized confidence interval for w, based on the GCI
approach, is given by

CIGCI ¼ exp Rh a=2ð Þ,Rh 1� a=2ð Þ½ �: (9)

Constructing the GCI for the w can be summarized by the following algorithm:

Algorithm:
for a given �y1,�y2, s

2
1, s

2
2

for i¼ 1 to m:
Generate the value for Z1,Z2,U2

1 ,U
2
2 from the standard normal distribution and the chi-

squared distribution with n-1 degree of freedom, respectively.
Calculate Rh as Rl1 � Rl2
End loop for i
The ð1� aÞ100% two-sided generalized confidence interval for w is then obtained by taking

the exponent of the 100ða=2Þ percentile of Rh defined by Rhða=2Þ and 100ð1� a=2Þ percentile of
Rh defined by Rhð1� a=2Þ .

3. Simulation study

In the simulation studies, we evaluate the performance of the proposed CI construction
approaches. We estimated the coverage probabilities and average length through Monte Carlo
simulation with the R statistical software. For the parameter configurations, we have generated
10,000 random samples from two independent, log-normal populations, with the parameters li
and r2i , i ¼ 1, 2: Numerical results on the coverage probabilities and average length of the 95%
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two-sided confidence interval for w of two independent log-normal distributions when equal
ðr21, r22Þ ¼ ð0:20, 0:20Þ, ðr21,r22Þ ¼ ð0:30, 0:30Þ and unequal ðr21, r22Þ ¼ ð0:20, 0:30Þ are reported in
Tables 1, 2, and 3, respectively, for various values li ¼ 1, 3; i ¼ 1, 2, and sample sizes ðn1, n2Þ
varying from small to large under equal and unequal sample sizes. In practical applications, the
values of ðn1, n2Þ are usually unequal, so we consider unequal sample sizes in our simulation
studies and also include the PM2.5 datasets, which can be seen in Sec. 4.

3.1. Discussion

Based on Table 1, we can conclude that:

(i) The coverage probability of the GCI approach is always greater than the nominal level,
regardless of ni,li, r

2
i values. However, the average length of this approach is wider than

other approaches.
(ii) For r21 ¼ r22, and for small sample sizes, the GCI approach is recommended. For moderate

sample sizes, the average length of all proposed NA, MOVER, GCI approaches perform
well, except ðl1 ¼ 1,l2 ¼ 1,r21 ¼ 0:20, r22 ¼ 0:20Þ; the NA performs better than the GCI
and MOVER approaches. For large sample sizes, the NA approach is recommended.

(iii) For r21 6¼ r22, for moderate to large sample sizes, the NA approach is quite satisfactory.
However, the GCI approach is recommended for all sample sizes.

Table 1. Coverage probabilities and Average length of 95% CIs for w when ðr21,r22Þ ¼ ð0:20, 0:20Þ:

Parameters (n1,n2)

Coverage probabilities Average length

NA MOVER GCI NA MOVER GCI

ðl1 ¼ 1,l2 ¼ 1Þ (25) 0.9439 0.9433 0.9552 0.4308 0.4342 0.4551
(25,40) 0.9435 0.9447 0.9532 0.3866 0.3890 0.4048
(25,50) 0.9457 0.9477 0.956 0.3729 0.3751 0.3899
(25,100) 0.9411 0.9449 0.9538 0.3373 0.3389 0.3530
(25,40) 0.9442 0.9472 0.9552 0.3861 0.3885 0.4043
(40) 0.9468 0.9487 0.9539 0.3391 0.3408 0.3504
(40, 50) 0.9483 0.944 0.9495 0.3231 0.3246 0.3326
(40,100) 0.9468 0.9479 0.9538 0.2836 0.2846 0.2911
(25, 50) 0.9429 0.9442 0.9516 0.3727 0.3749 0.3897
(40, 50) 0.9465 0.9441 0.9505 0.3229 0.3243 0.3326
(50) 0.9452 0.9475 0.9524 0.3038 0.3050 0.3116
(50,100) 0.9437 0.9453 0.9484 0.2627 0.2634 0.2681
(100,25) 0.9465 0.9467 0.9544 0.3382 0.3399 0.3539
(100,40) 0.9454 0.947 0.953 0.2830 0.2840 0.2905
(100,50) 0.9475 0.9466 0.9507 0.2628 0.2636 0.2683
(100,100) 0.948 0.9498 0.9509 0.2148 0.2152 0.2173

ðl1 ¼ 3,l2 ¼ 3Þ (25) 0.9414 0.9433 0.9532 0.4294 0.4328 0.4537
(25,40) 0.9429 0.9433 0.9506 0.3879 0.3904 0.4062
(25,50) 0.9433 0.9446 0.9519 0.3717 0.3739 0.3888
(25,100) 0.9428 0.9414 0.9511 0.3396 0.3412 0.3554
(25,40) 0.9452 0.9451 0.9549 0.3869 0.3893 0.4050
(40) 0.944 0.9456 0.9513 0.3405 0.3422 0.3517
(40,50) 0.9453 0.9461 0.9525 0.3223 0.3237 0.3318
(40,100) 0.9484 0.95 0.9546 0.2838 0.2847 0.2914
(25,50) 0.9419 0.9436 0.9529 0.3721 0.3742 0.3891
(40,50) 0.9455 0.947 0.9528 0.3215 0.3229 0.3310
(50) 0.9479 0.9488 0.9526 0.3038 0.3050 0.3115
(50,100) 0.9456 0.9468 0.9499 0.2632 0.2640 0.2687
(100,25) 0.9391 0.9415 0.9501 0.3379 0.3395 0.3535
(100,40) 0.9474 0.9479 0.9513 0.2835 0.2845 0.2910
(100,50) 0.9487 0.9494 0.9517 0.2632 0.2639 0.2686
(100,100) 0.9473 0.9473 0.9488 0.2149 0.2154 0.2174
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4. An applications to real data

Air pollution, especially particulate matter (PM) from vehicles, has a major impact on the health
of people who live in urban centers and near traffic. The World Bank studies the health effects of
particulate matter air pollution in Bangkok. In one of their studies, they found that there were
4,000–5,500 premature deaths each year in urban centers, with hospital admissions for respiratory
diseases related to the levels of particulate matter (Pollution Control Department, Ministry of
Science Technology and Environment, Bangkok, Thailand 1999). The top causes of air pollution
in Thailand are (1) vehicular emissions in cities, (2) biomass burning and transboundary haze in
rural and border areas, and (3) industrial discharges in concentrated industrialized zones.
Therefore, in this example, we study the PM2.5 mass concentrations in Bangkapi and Dindaeng
areas, which are located in urban centers with busy roads representing a high traffic site. We
compare the ratio of medians of the measurements in both areas with our proposed CI. The
PM2.5 mass concentration measurements (ug/m3) were recorded simultaneously in the areas by
the Pollution Control Department (PCD) every fourth day at 9:00 AM local time from March
2019 to February 2020. The data can be found in http://aqmthai.com/aqi.php.

The data sets from this study are as follows
The PM2.5 mass concentration (ug/m3) in Bangkapi: 25,22,16,32,31,20,28,17,18,14,13,19,20,16,

10,17,34,23,24,21,18,7,11,19,9,6,5,14,7,18,14,12,9,8,16,14,11,7,9,7,11,12,11,8,8,15,15,7,18,15,36,48,47,
27,14,23,18,24,24,21,13,36,39,24,30,29,17,21,32,38,32,28,25,31,18,34,49,24,32,56,16,16,41,21,39,12,20,
50,56, 31

Table 2. Coverage probabilities and Average length of 95% CIs for w when ðr21,r22Þ ¼ ð0:30, 0:30Þ:

Parameters (n1,n2)

Coverage probabilities Average length

NA MOVER GCI NA MOVER GCI

ðl1 ¼ 1,l2 ¼ 1Þ (25) 0.9373 0.9433 0.9532 0.6104 0.6200 0.6505
(25,40) 0.9415 0.9433 0.9506 0.5514 0.5585 0.5814
(25,50) 0.9415 0.9446 0.9519 0.5280 0.5342 0.5558
(25,100) 0.942 0.9415 0.9511 0.4825 0.4872 0.5077
(25,40) 0.945 0.9451 0.9549 0.5497 0.5567 0.5795
(40) 0.9435 0.9457 0.9513 0.4838 0.4885 0.5022
(40,50) 0.9444 0.9461 0.9525 0.4572 0.4613 0.4729
(40,100) 0.9478 0.95 0.9546 0.4024 0.4051 0.4146
(25,50) 0.941 0.9436 0.9529 0.5285 0.5348 0.5562
(40,50) 0.9452 0.947 0.9528 0.4559 0.4599 0.4716
(50) 0.9466 0.9489 0.9526 0.4309 0.4343 0.4436
(50,100) 0.944 0.9469 0.9499 0.3731 0.3753 0.3820
(100,25) 0.938 0.9416 0.9501 0.4793 0.4841 0.5042
(100,40) 0.948 0.9479 0.9513 0.4019 0.4047 0.4139
(100,50) 0.9469 0.9494 0.9517 0.3731 0.3752 0.3819
(100,100) 0.9465 0.9473 0.9488 0.3045 0.3057 0.3086

ðl1 ¼ 3,l2 ¼ 3Þ (25) 0.9381 0.9422 0.9512 0.6111 0.6208 0.6510
(25,40) 0.9386 0.9422 0.9505 0.5493 0.5563 0.5790
(25,50) 0.9445 0.9462 0.954 0.5287 0.5350 0.5566
(25,100) 0.9424 0.9433 0.9504 0.4813 0.4861 0.5064
(25,40) 0.945 0.9488 0.9575 0.5491 0.5561 0.5788
(40) 0.9393 0.9435 0.9516 0.4821 0.4868 0.5006
(40,50) 0.9438 0.9441 0.9499 0.4577 0.4617 0.4734
(40,100) 0.949 0.9494 0.9541 0.4028 0.4056 0.4153
(25,50) 0.9448 0.946 0.9539 0.5277 0.5339 0.5555
(40,50) 0.9449 0.9477 0.9543 0.4571 0.4611 0.4725
(50) 0.9457 0.9485 0.9534 0.4312 0.4345 0.4440
(50,100) 0.9465 0.9507 0.9538 0.3725 0.3746 0.3813
(100,25) 0.9413 0.9436 0.952 0.4812 0.4860 0.5064
(100,40) 0.9471 0.948 0.9526 0.4027 0.4055 0.4149
(100,50) 0.9464 0.9472 0.9523 0.3733 0.3755 0.3822
(100,100) 0.9516 0.9515 0.9514 0.3042 0.3054 0.3082
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The PM2.5 mass concentration (ug/m3) in Dindaeng: 33,24,18,38,32,24,28,20,21,21,14,16,20,
20,21,32,23,23,19,19,9,10,20,11,10,9,15,10,17,13,15,14,12,17,15,14,11,11,10,15,14,11,10,14,15,14,11,
18,19,35,48,54,29,17,25,19,23,24,20,14,37,38,24,30,27,22,23,27,39,54,44,35,26,41,27,39,51,31,40,60,24,
23,53,26,44,15,20,50,53,29

Figure 1 shows the QQ-plots for the original data and log-transformed data. These plots show
that the distribution of PM2.5 concentrations are positively skewed, and the logarithmically trans-
formed data are approximately symmetric. The Shapiro-Wilk tests for the normality on the log-
transformed data give a p-value of 0.3718 for the Bangkapi area and 0.0610 for the Dindaeng
area, while the same tests on the original data give a p-value of 4.55e-05 for the Bangkapi area
and 4.118e-06 for the Dindaeng area. So, the log- transformation normalizes the data, and the
summary statistics of the log-transformed of the PM2.5 concentration data are given in Table 4.

Table 5 gives the 95% two-sided confidence intervals for the w based on the proposed CI con-
struction approaches. This result shows that the NA confidence interval has a shorter length size
than the MOVER and GCI, respectively. The results are consistent with the results of our simula-
tion study (see Table 3). As previously mentioned, the NA approach is consistent for this
example; we obtain a 95% CI for the ratio of medians that is equal to (0.7267, 0.9915). The
results can be interpreted as the median (average) of the PM2.5 mass concentration in the
Bangkapi area is less than the Dindaeng area for the period from March 2019 to February 2020.
It also means that the chances of death of people living in the Bangkapi area affected by PM2.5
might be less than in the Dindaeng area.

Table 3. Coverage probabilities and Average length of 95% CIs for w when ðr21,r22Þ ¼ ð0:30, 0:20Þ:

Parameters (n1,n2)

Coverage probabilities Average length

NA MOVER GCI NA MOVER GCI

ðl1 ¼ 1,l2 ¼ 1Þ (25) 0.9408 0.9451 0.9544 0.5278 0.5340 0.5602
(25,40) 0.9418 0.9437 0.9537 0.4928 0.4979 0.5201
(25,50) 0.9379 0.9386 0.9486 0.4798 0.4845 0.5060
(25,100) 0.9357 0.9384 0.9478 0.4553 0.4594 0.4805
(25,40) 0.9433 0.9443 0.9529 0.4572 0.4612 0.4784
(40) 0.9472 0.9473 0.9527 0.4165 0.4195 0.4314
(40,50) 0.9487 0.9485 0.9546 0.4026 0.4054 0.4162
(40,100) 0.9386 0.943 0.9479 0.3717 0.3739 0.3837
(25,50) 0.9422 0.9445 0.9515 0.4300 0.4333 0.4485
(40,50) 0.9479 0.9475 0.9534 0.3889 0.3913 0.4009
(50) 0.9446 0.9462 0.9495 0.3721 0.3743 0.3825
(50,100) 0.9421 0.9443 0.9482 0.3389 0.3406 0.3474
(100,25) 0.9452 0.9462 0.9547 0.3716 0.3738 0.3870
(100,40) 0.9517 0.9511 0.9549 0.3221 0.3235 0.3300
(100,50) 0.944 0.9438 0.9477 0.3048 0.3060 0.3108
(100,100) 0.9475 0.9461 0.9492 0.2633 0.2640 0.2666

ðl1 ¼ 3,l2 ¼ 3Þ (25) 0.9418 0.9454 0.9548 0.5279 0.5341 0.5602
(25,40) 0.9417 0.9411 0.9495 0.4932 0.4983 0.5205
(25,50) 0.9419 0.9433 0.9517 0.4809 0.4857 0.5073
(25,100) 0.9373 0.938 0.9492 0.4545 0.4586 0.4798
(25,40) 0.9476 0.9474 0.9546 0.4571 0.4611 0.4781
(40) 0.9458 0.9457 0.9515 0.4171 0.4201 0.4321
(40,50) 0.9455 0.9456 0.951 0.4020 0.4047 0.4156
(40,100) 0.9443 0.9453 0.9507 0.3721 0.3743 0.3841
(25,50) 0.9392 0.942 0.95 0.4303 0.4337 0.4487
(40,50) 0.9496 0.9505 0.9548 0.3887 0.3912 0.4008
(50) 0.9471 0.9463 0.9506 0.3726 0.3748 0.3829
(50,100) 0.9456 0.9455 0.9505 0.3406 0.3423 0.3491
(100,25) 0.9419 0.9413 0.9495 0.3715 0.3736 0.3870
(100,40) 0.9456 0.9453 0.9483 0.3225 0.3239 0.3302
(100,50) 0.9463 0.9462 0.9503 0.3039 0.3051 0.3099
(100,100) 0.9495 0.952 0.9534 0.2633 0.2641 0.2666
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5. Concluding remarks

In this paper, we focus on the construction of confidence intervals for the ratio of medians of
two independent, log-normal distributions based on the NA, MOVER and GCI approaches. The
performances of the proposed CIs are compared in terms of the coverage probabilities (CP) and
average length (AL) in our simulation study sections. The results show that the GCI confidence
interval can be preferred generally in terms of CP; however, the AL is widest for all situations.
The NA approach is recommended for moderate to large sample sizes when li and r2i are small
values. In addition, the MOVER approach may not be reliable when r2i has unequal values for all
sample sizes.
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Figure 1. Quantile plots of PM2.5 mass concentration data and log of PM2.5 mass concentration data of both areas.

Table 4. The summary statistics of the log-transformed of the PM2.5 mass concentration data of
both areas.

Areas ni li r2i
Bangkapi 90 2.9286 0.3145
Dindaeng 90 3.0805 0.2417

Table 5. The 95% confidence intervals for the w based on the proposed CI construc-
tion approaches.

Methods Confidence interval Length

NA (0.7267, 0.9915) 0.2647
MOVER (0.7364, 1.0022) 0.2658
GCI (0.7355, 1.0034) 0.2679
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