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COMPLETE CONVERGENCE FOR ARRAYS OF NEGATIVELY
DEPENDENT RANDOM VARIABLES

S. H. Sung!, K. Budsaba?, and A. Volodin?®

Abstract: A general result establishing complete convergence for the row sums of an array of rowwise negatively
dependent random variables is presented. From this result, a number of complete convergence results have been
obtained for weighted sums of negatively dependent random variables.

Keywords: complete convergence; negatively dependent; weighted sums; arrays

1 Introduction

The concept of complete convergence of a sequence of
random variables was introduced by Hsu and Robbins [ 1]
as follows. A sequence {U,,,n > 1} of random variables
converges completely to the constant 6 if

> P(U,—0]>¢c) <oo forall £>0.

n=1

In view of the Borel—Cantelli lemma, this implies
that U,, — 6 almost surely. The converse is true if
{Un,n > 1} are independent random variables. Hsu
and Robbins [1] and Katz [2] (p =1and 1 < p < 2, re-
spectively) proved that if { X,,, n > 1} isasequence of in-
dependent and identically distributed random variables
with mean zero and E|X;|?” < oo, then Y X;/n'/P

i=1

3

converges completely to zero.

The paper [1] initiated numerous explorations of the
complete convergence of sums of independent random
variables. The research was continued by Erdos [3, 4],
Spitzer [5], Baum and Katz [6], and Gut [7]. This
subject is actively discussed in scientific press during the
last few decades. For example, Hu ef al. [8] extend-
ed the result of Hsu—Robbins—Katz to the case where
{Xni,1 <i<mn,n>1}isanarray of rowwise indepen-
dent random variables which are stochastically domi-
nated by a random variable X satisfying E| X |?? < oo for
some 1 < p < 2.

The papers [9, 10] contain, up to the authors’ knowl-
edge, the most general theorems that provide sufficient
conditions for complete convergence for sums of arrays
of rowwise independent random variables.

In the following, let {k,,n > 1} be a sequence of
positive integers. In general, the case k,, = oo is not

precluded. When k,, = oo, it will be assumed that
>~ Xni converges almost surely. Recall that an array
1=1

{Xni,1 < ¢ < kp,n > 1} of random variables is said
to be stochastically dominated by a random variable X if
there exists a positive constant C' > 0 such that

P{|Xni| > 2} < CP{|X| > =z}
forallz >0,1<i<k,, andn>1.

Recently, some complete convergence theorems for
negatively dependent random variables have been ob-
tained by many authors (see, for example, [11, 12] and
references in these papers). Taylor e al. [11] extended
the result of Hu e al. [8] to the array of rowwise nega-
tively dependent random variables. Giuliano et al. [12]
considered so-called acceptable random variable, which
is more general notion than negative dependency.

The finite set of random variables X1, - - - , X, is said
to be negatively dependent if

P{Xl §x1,...,Xn§xn}
<P{X; <z} P{X, <2}
P{X1>z,....,.X, > a,}
< P{Xl > 1‘1}P{Xn > .I'n}
forallreal 21, ..., z,. Aninfinite sequence { X,,,n > 1}

is said to be negatively dependent if every finite subset of
the sequence { X3, ..., X,,} is negatively dependent.

In this paper, a general result establishing complete
convergence for the row sums of an array of rowwise
negatively dependent random variables is presented. It
also specifies the corresponding rate of convergence.
From this result, a number of complete convergence
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results for negatively dependent random variables have
been obtained. As a corollary, the result of Taylor ef
al. [11] is obtained.

Throughout this paper, C' denotes a positive con-
stant which may be different in various places, and it is
convenient to define log z = max{1,Inz}.

2 Preliminary Lemmas

To prove the main result, the following lemmas are nec-
essary. The first two lemmas are well known and can be
found, for example, in [11].

Lemma 1. Let { X,,,n > 1} be asequence of negatively de-
pendent random variables and { f,,,n > 1} be a sequence
of Borel functions all of which are monotone increasing
(or monotone decreasing), then {f,(X,),n > 1} is a
sequence of negatively dependent random variables.

The second lemma mainly states that negatively de-
pendent random variables are negatively correlated.

Lemma 2. Let Xy,...,X, be nonnegative negatively
dependent integrable random variables. Then

v < [ex.
=1 =1

The following lemma plays an essential role in the
main result. Of course, this lemma is of interest only
if positive constants d;, and, hence, second moments
EX?Z,1 < i < n,are close to zero (at least less than one).
Otherwise, there is an alternative so-called subgaussian
estimations (see, for example, [12]).

Lemma 3. Let X1, ..., X,, be negatively dependent mean
zero random variables such that

|XZ-|§dl-7 1<i<n,
for a sequence of positive constants dy, - - ,d,. Then,
forany ¢t > 0,
n 2
Eexp{t;Xl} < exp{ggetdiEXf} .

Proof. Fromtheinequality e® < 14z (x2/2)el®!,
which is true for all x, one has

t2
Ec'™ <1+ (EX, + S E (Xizet‘x”)
/2
=1+ 5 E (Xfe“xi') (since X; have mean zero)

t2 t2
<143 e"EX? < exp {5 etdiEXf} ,

since 1 + = < ¢* for all z. It follows from Lemmas 1
and 2 that

t td»; 2 _ t2 . td»; 2
5 € EXi}—exp{EZe EX;,.DO

3 Main Result

With the preliminary lemmas, the main result may now
be stated and proved.

Theorem. Let {X,;,1 < i < kp,n > 1} be an ar-
ray of rowwise negatively dependent random variables,
{an,n > 1} be a sequence of positive constants, and
{bn,n > 1} be a sequence of positive constants such that
lim b,, = co. Suppose that

n—oo

n=1 i

%) kn
(@) > an >, P{|Xni| > ¢} < oo forall e > 0;
-1

%) kn M

(i) Y an (Z P{IXni| > 1/bn}) < oo for some
n=1 i=1
Ny > 0;

kn
(ii7) bp > EX2,1{|Xni| < 1/by} — 0 as n — oc;
i=1
and

(iv) > anexp{—Na2b,} < oo forsome Ny > 0.

n=1
> E}

< 0

Then

i anP {
n=1

I 1
> Xi — EXpil {|Xm-| < b—}

=1

forall e > 0.

Proof. The set of all natural numbers is partitioned
into two subsets:

- 1
AIZ{TLZ P{|Xm|>b—}§1}§
i=1 n

k
- 1
" . .
A" = {n.}_lp{|Xm| > _bn} > 1} .

Applying (i7), one obtains

>5}

b 1
> anP{ > X — EXm'I{|Xni| < E}

neA’ i=1
k N
“ 1
<> an <y an (ZP{|XM-| > ED < 0.
neA” neA” i=1
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Hence, it is enough to show that

En
> anP {ZXM- - EXmI{|Xm| < bi} > g}
i=1 "

n>M,
En 1 neA’
> anPD> Xni - EXm-I{|Xm-| < —} >e ko
neA’ i=1 bn < > a P{ZY»—EY->E}
— n ‘ nt n 4
< ooforalle > 0. n>M, neA’ i=1
kn
e
For1 < i < k,, and n > 1, define + Z anP{ZUni>Z}
n>M, ne A’ i=1
Vi = Xl d Xl < =V Lrdx > L S €
ni — ni ni| = bn bn ni bn + Z Vnz > Z
1 1 n>M, nEA’ =1
——I{Xm'<——}; kn c
bn b + Dni > 1
Upi = bi (I{Xm- < —bi} -P {Xm- < —bi}) ; . ”GA' =
1 1 1 + Z {|Xm|>mforsomelgz'§kn}
Vni:__ I Xni>_ - P Xni> — 3 n>M,
bn bn bn ncA’
9 2211+12—|—13—|—I4—|—I5.
an anI an = Tt 11
{bn < Xl 4[N1+1]}

Now, let estimate each sum separately.

For I, note that |Y,,;| < 1/b, and

1<i<kp,n>1},and {Voi, 1 <i<ky,,n>1} o o 1 1\° 1
are the arrays of rowwise negatively dependent random Yoi = Xoal ¢ 1 Xl < b, T b Iy [ Xnil > by |
variables by Lemma 1.

Note that if one defines

k
1 & 1
) ) 1 _E P{|Xm-|>—}_o(1)forn€A’.
Wni:_(I{ani|>b_}_P{|Xni|>b_}) ; b 3 bn

bn

Moreover, one has that

By Lemma 3 with ¢t = 4(N; + 1)b,, /¢, one obtains that
then it cannot be stated that {W,,;, 1 < i < k,,n > 1}is forn € A',
an array of negatively dependent random variables. This k.
is.a sort of the main disadvantage then one is dealing P {Z (Vi — EVyi) > € }
with negatively dependent random variables. =
Since lim b, = oo, there exists a positive integer M ko

n—oo te
such that < exp {_Z} E exp {tZYm - EYm}

c 1 i=1

7>_
w7 <o { - fem{ G Yt e

foralln > M. Forn > M, one can write that

te Qt/b - te
) Sexp{—z}exp{ ZE } —exp{—z

1
2t b
i= n n EX Xni| < —
1 X exp { E {| <5 }

kn kn kn kn
Ky "
€ 2 8(Np+1)/e .—2
3 X { [ Xi] > b +8(N2+1)%e e 20(1)ba | (by (iid))
>t {1l g5
= =exp{—(Na+1-0(1))b,} < exp{—Nab,}
It follows that for all large n. Thus, I; < oo by (iv).
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For I, it can be observed that |U,;| < 1/b, and
EUZ, < P(|Xni| > 1/by)/b%. Hence,

kn
ZH@SQZ
i=1

"zl

1 1
Xl > — b= =001
{1l > -} = o)
forn e A’.

By Lemma 3 with ¢ = 4(Ns + 1)b,, /e, one obtains
that forn € A,

kn kn
€ te
P {;Um > Z} < exp{—z} Eexp{t; Um}
2 kn
<on(-5)om{ o3t
i=1

< exp {—(N2 +1)bn
+8(Ny + 1)264(N2+1)/55_20(1)bn} < exp{—Nab,}
for all large n. Thus, I < oo by (iv).

Similarly to I, one gets I3 < oco.
For 14, note that

k"l
P {ZZ,” > Z} < P{atleast [Ny + 1] of Z,,; # 0}
i=1

because

3

Zni <m0
4[Ny +1]

=P {at least [Ny + 1] of X,,; have the property

1 €
5o <Pl < 7 |

< Y P{Xw»l > i,...,Xn,j[NM > %}
J1<- <Ny 1)
(where the summation is taken for all [Ny + 1]
—tuple (j1,- -, Jini+1))
<Jini+yandj; =1,...,

1 1
< > P{Xw»l > b_}...p{Xn,j[NM > b—}

J1<-<J[Nq+1]

with j; < --- k,, for each 7)

[N1+1] 1
"]k E
N1+1

-2 e
X de{nag)

(by negative dependence)
J1< <y 1) k=1
J1y s J [Ny +1]

(where the summation is taken for all possible

[Nl + 1] - tuple (j17 ) aj[N1+1])
and j, = 1,...,k, foreach )

kn 1 [N1+1]
= P Xl > — .
(Sr{e- i)

Thus, I, < oo by (i7).
Obviously, Is < oo by (7).
Therefore, one has that

o 1
<Z (Xm —EX,,; 1 <|Xm-| < b—>) > 5)
i=1 "

< 0.

ZanP

n>M,
ncA’

Since {—X,,;} is also an array of rowwise negatively
dependent random variables, one can replace X,,; by
—X,; in the above statement. That is,

> anP <§: (Xm- - EXm-I<|Xm-| < %)) < —a)

n>M, =1
neA’

< oo.

Remark 1. In view of assumption (#i7), it is interesting to
consider sequences {b,,n > 1} that increase to infinity
as slow as possible for (iv) still be true. If the sequence
{an,n > 1} has a polynomial growth or a constant (that
is, a, = nt, t > 0), then the good choice is b,, = logn,
n > 1, which has been explored in [10] for the case of
rowwise independent arrays. But the present theorem
can be applied for sequences {a,,, n > 1} with a different
than polynomial behavior. The main idea is that it is
possible to link sequences {a,,n > 1} and {b,,n > 1}
according to assumption (iv).

4 Corollaries

The theorem presented and proved in the previous sec-
tion can be applied in different situations for various
choices of weights and moment conditions.

Corollary 1. Let {X,;,1 < i < n,n > 1} be an ar-
ray of rowwise negatively dependent mean zero random
variables which are stochastically dominated by a random
variable X with E|X|?P < oo for some p > 1. Let {ay;,
1 <i < n,n > 1} be an array of real numbers and {b,,,
n > 1} be a sequence of positive constants such that

(a) lim b, = oo;

(b) b, =O(n?) forsome 0 < g < 1/(2p);
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() > exp{—N2zb,} < oo for some Ny > 0;

n=1

(d) b, Zam— o(1) asn — oo; and

O(1/n'/P).

(e) max |an:| =

n
Then, > ani X, — 0 completely.

i=1
Proof. Without loss of generality, one may assume
that a,; > 0 for 1 < i < nand n > 1. Otherwise,
let prove the result separately for two arrays of con-
stants {a,, 1 <i <n,n>1}and {a,,, 1 <i<mn,
n > 1}, where the notations a™ = max{a,0} and
a” = max{—a,0} are used. Then, {a,; X,,;, 1 <i<mn,
n > 1} is an array of rowwise negatively dependent ran-
dom variables by Lemma 1. It can be also assumed that

max an; < 1/n1/p
1<i<n

Let apply the theorem with a,, = 1, n > 1, and X,,;
replaced by a,,; X, 1 <i<n,n>1.

In order to check condition () of the theorem, note
that by the stochastic domination hypothesis,

i ip{|anani| >e} < iip{p(?ﬂ > enl/P}

n=1i=1 n=1i=1
< CZnP{|X| > ent/P} .

n=1

The sum Z nP{|X|P > n} < oo if and only if

E| X |? < oo. Thus condition (7) of the theorem holds.

For condition (i7), taking Ny > 1/(1 —2pq), one has
by Markov’s inequality and the stochastic domination

hypothesis that
0o n Ny
> (P {lowul > -
— bn
< <b$f > laniPEIX,

n=1 i=1

—1 \i= .
»)
oo p2p N1
< Z CE| X |*P by assumption (e))
n=1 n
0 (by assumption (b) and the fact

1
1—2pq)

that Ny >

Thus, condition (i7) holds.

For condition (#i7),

" 1
anE(ame I <|am-Xm-| < b—>

<b, ZamEX2 < CEX®b, > a2, — 0 (by (d))
i=1
Thus, condltlon (#i7) holds.
Condition (iv) holds by the assumption (c).
By the theorem, one obtains that

[e’e] n 1
Z P{ ; (Xm —EX, ;I {|am'Xm'| < b_}>|
i—1 "

> E} < 0
for all € > 0. It remains to show that

= 1

i=1 n

Since EX,,; =0,

1

1

It follows that

- 1
i=1 n
1
<3 Jand E|Xm|f{|am Xl > }

i=1

1 < nt/r
W_Z;E|Xm|f{|Xm'| > T}

(by assumption (e))
nt/p
b

nl/p
bn

2p—1
> < Cn-V@)
/p -

< Cn'~ 1/pE|X|I{|X| >

< Cn'~ 1/pE|X|2p|X|12pI{|X| >

by,

< CE|X|?Ppl= /P < -

since b, < Cn'/(?P) for n large enough. Thus, the proof
is completed. O

Asaspecial case of Corollary 1, one gets the following
corollary which was proved by Taylor ez al. [11].

Corollary 2. Let {X,;,1 < i < n,n > 1} be an ar-
ray of rowwise negatively dependent mean zero random
variables which are stochastically dominated by a random
variable X with E|X|?? < oo for some 1 < p < 2. Then,

37 X /0P — 0 completely.
=1
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Proof. Let a,; = 1/n'/? for1 <i < nandn > 1.
Then, conditions of Corollary 1 are trivially satisfied with
b, =n?forsome0 < ¢ < min{1/(2p),2/p—1}. O

Corollary 3. Lett > —1,p > 0, and B € R. De-
note A = p(t + 8+ 1) and assume that A > 1. Let
{Xni,© > 1,n > 1} be an array of rowwise negatively de-
pendent mean zero random variables which are stochasti-
cally dominated by a random variable X with E| X |* < co.
Let{ay;,i > 1,n > 1} be a bounded array of real numbers
such that

(1) Y |ani|? = O(nP) for some g < A; and
i=1

(2) IfA > 2, then Y a2, = O(n?) for some y < 2/p.
i=1

Then,

’ § ’L 1 anz nl
n'P
Z 75

Proof. The same as in the proof of Corollary 1, with-
out loss of generality, one may assume that a,; > 0 for
i >1,n > 1. Then, {a,; X,i/n'/?,i >1,n > 1} isan
array of rowwise negatively dependent random variables
by Lemma 1. Let apply the theorem with a,, = n?,
n > 1, and X,,; replaced by a,,; X,,;/n*/P,i > 1,n > 1.

Consider the sequence b, = n“,n > 1, where
0 < a< (t+1)/A. For the case A > 2, let require
additionally that 0 < o < 2/p — 7.

The fact that

> 5)

Z nt Z P (‘amrf
< CE|X [P+ < oo

>¢ep <ooforalle >0.

1/ani

n=1 i=1

was established in many papers (see, for example, [13])
(beginning of the proof of Theorem 3.1), [14] (beginning
of the proof of Theorem 3.1), and [10] (beginning of
the proof of Theorem 2 and Lemma 3). Note also that
the proof presented in [13] is rather complicated once it
uses the Stieltjes integration technique, summation by
parts lemma, and so on. The proof presented in [14] is
much more elegant. Also, Hu ef al. [13] and Ahmed et
al. |14] are dealing with an array of constants {a,; X,
i > 1,n > 1} ratherthan the array {a,; X,; /n'/?,i > 1,
n > 1} which is considered in [10] and this paper.

According to the inequality presented above, condi-
tion (7) of the theorem holds.

For (i), taking Ny > (t+1)/(t+1—aA) > 0, one
has by Markov’s inequality, |a,,;| = O(1), and (1) that

o 0 N1
Znt <ZP {‘amnl/pXm-’ > i})

100

o N1
< Z < —(t+B8+1) Z |t E|Xm_|A>

= ~ .
<bAn—(t+B+1) Z |am-|q |am_|Aq>

<O
n=1 1=1
Z t+aAN;—(t+1)N; < 00
since t + «AN; — (t + 1) Ny < —1. Thus, condition (i7)

of the theorem holds.
For condition (i), let consider two cases. If
1 < A < 2,by(l), one obtains
1
< =
3

i 2
bn Z E (am-n*l/pXm-) I {
—A

—1
An4T /anz

i=1

71/ani

1
<
<r)

A
I{’anm_l/”Xm

o A
=b, Z E ‘am-nfl/pXm-

i=1

o

n_l/ani

‘am-n

71/ani

AN

Qnj

1
<
<)

< bﬁ—li E
i=1

> A
< bﬁil Z E ‘aninil/pxni

i=1

> A
< CREXAY ‘amn*/i"
i=1

< Onp®t ot o Op~® = 0asn — oo

by the choice of a.
If A > 2, then by (2)

—1
An4T /anz

by, i E (am-rfl/pXm-)2 I {

i=1

1
<
<3}

< CEX?potr—2/p

)
< Ch.EX2Y a;/;
—n

as n — oo by the choice of a. Thus, condition (ii7) of
the theorem holds.

Condition (iv) holds trivially.

Hence, one gets by the theorem that

i ntP { i anin /P (Xni
n=1 =1

nt/p

for all € > 0. It remains to show that
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>0 nt/r
E am-nfl/pEXm‘I |am-Xm| S b— — 0.
i=1 "

Since EX,,; = 0,

1/p
EX,.] <|ame| <z )

bn

nt/p
= —EanI{laanA > b .

It follows that

[e'e] 1/17
Zam-n_l/pEXm-I {|CLm'Xm'| < nb_}|

i=1

oo 1/p
< nA/pZ E|aniXni| I {|%an1‘| > nb }
i=1 !

A—1
< n-Up bn
- nl/p
nt/p

X ZE|aannz|AI{|aannz| > b—}
i=1 "

A—1 A
_ Clb)>ELX]

— nt-‘rl

S Cna(Afl)ftfl =0

by the choice of a.
Thus, the proof is completed. O

Remark 2. If ¢ < —1, then the conclusion of Corollary 3
holds trivially. When ¢t > —1, Sung [10] proved Corol-
lary 3 under the stronger condition that {X,,;, i > 1,
n > 1} is an array of rowwise independent random vari-
ables. However, the relatively important case t = —1
in Corollary 3 cannot be proved by using the theorem.
The present authors left as an open problem whether
Corollary 3 holds fort = —1.

As a special case of Corollary 3, let get the following
corollary.

Corollary 4. Lett > —1 and 1 < p < 2. Let {X,;,
1 <i<mn, n>1} be an array of rowwise nega-
tively dependent mean zero random variables which are

stochastically dominated by a random variable X with
E|X|P(+2) < co. Then,

n
i n'P 7’21':1 i > e
n=1

nt/p
Proof. Let a,; = 1for1 < i < n and a,; = 0 for

i > n. Then, for ¢ < p(t +2), > |an;|? = n. Thus,

< oo foralle > 0.

=1
assumption (1) of Corollary 3 holds for 5 = 1. Since
1 < p < 2, assumption (2) holds for v = 1. Thus, the
result follows from Corollary 3. O

Remark 3. When ¢t = 0, Corollary 4 is the same as
Corollary 2.
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Annoramus: [IpuBomuTcst pe3ynbraT O TONTHOM CXOAMMOCTH [UISI CYMM B CXeM€ Cepuil IS OTPUIIATENbHO
3aBUCUMBIX CITyYallHBIX BEIMYMH B BechbMma oOielr dopme. W3 aTOTO pesymbrata ciemayioT MHOTHE (aKThl O

MOJTHOM CXOAMMOCTH B3BEILIEHHBIX CYMM OTpULATE/IbHO 3aBUCUMbIX CJ'[y‘IaﬁHbIX BECJIMYUH.
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