On the Relationship

Between the Baum-Katz-Spitzer Complete Convergence Theorem and the Law of the Iterated Logarithm

De Li LI
Department of Mathematical Sciences, Lakehead University, Thunder Bay, ON, Canada P7B 5 E1
E-mail: dli@lakeheadu.ca
Andrew ROSALSKY
Department of Statistics, University of Florida, Gainesville, FL 32611, USA
E-mail: rosalsky@stat.ufl.edu
Andrei VOLODIN
Department of Mathematics and Statistics, University of Regina, Regina, SK, Canada S4S 0A2
E-mail: volodin@math.uregina.ca

Abstract

For a sequence of i.i.d. Banach space-valued random variables $\left\{X_{n} ; n \geq 1\right\}$ and a sequence of positive constants $\left\{a_{n} ; n \geq 1\right\}$, the relationship between the Baum-Katz-Spitzer complete convergence theorem and the law of the iterated logarithm is investigated. Sets of conditions are provided under which

(i) $\lim \sup _{n \rightarrow \infty} \frac{\left\|S_{n}\right\|}{a_{n}}<\infty \quad$ a.s. and

$$
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left\|S_{n}\right\|}{a_{n}} \geq \varepsilon\right)<\infty \text { for all } \varepsilon>\lambda \text { for some constant } \lambda \in[0, \infty)
$$

are equivalent;
(ii) For all constants $\lambda \in[0, \infty)$,

$$
\limsup _{n \rightarrow \infty} \frac{\left\|S_{n}\right\|}{a_{n}}=\lambda \text { a.s. }
$$

and

$$
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left\|S_{n}\right\|}{a_{n}} \geq \varepsilon\right) \begin{cases}<\infty, & \text { if } \varepsilon>\lambda \\ =\infty, & \text { if } \varepsilon<\lambda\end{cases}
$$

are equivalent. In general, no geometric conditions are imposed on the underlying Banach space. Corollaries are presented and new results are obtained even in the case of real-valued random variables.
Keywords partial sums of i.i.d. Banach space-valued random variables, Baum-Katz-Spitzer complete convergence theorem, law of the iterated logarithm, almost sure convergence
MR(2000) Subject Classification 60B12, 60F10, 60F15

[^0]
1 Introduction

Let $(\mathbf{B},\|\cdot\|)$ be a real separable Banach space with topological dual \mathbf{B}^{*} and let $\left\{X, X_{n} ; n \geq 1\right\}$ be a sequence of independent and identically distributed (i.i.d.) B-valued random variables. As usual, let $S_{n}=\sum_{i=1}^{n} X_{i}, n \geq 1$ denote their partial sums. If $0<p<2$ and X is a real-valued random variable, then the following two statements, related to the Kolmogorov-MarcinkiewiczZygmund strong law of large numbers, are known to be equivalent:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left|S_{n}\right|}{n^{1 / p}} \geq \varepsilon\right)<\infty \text { for all } \varepsilon>0 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
E|X|^{p}<\infty, \text { where } E X=0 \text { whenever } p \geq 1 \tag{1.2}
\end{equation*}
$$

One can label this remarkable result as the Baum-Katz-Spitzer complete convergence theorem. By using a combinatorial lemma, Spitzer [1] established this result for the particularly important case of $p=1$. The equivalence of (1.1) and (1.2) in the general case, $0<p<2$, is due to Baum and Katz [2].

Versions of the Baum-Katz-Spitzer complete convergence theorem in a Banach space setting were obtained by Jain [3] for the case of $p=1$, Azlarov and Volodin [4] for the case of $1 \leq p<2$ under an appropriate geometric condition, and Yang and Wang [5] for the general case of $0<p<2$ without any geometric conditions. In fact, by using de Acosta's [6] inequality, Yang and Wang [5] proved that the following three statements are equivalent:

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left\|S_{n}\right\|}{n^{1 / p}} \geq \varepsilon\right)<\infty \text { for all } \varepsilon>0 \\
& \lim _{n \rightarrow \infty} \frac{S_{n}}{n^{1 / p}}=0 \text { almost surely (a.s.) } \\
& E\|X\|^{p}<\infty \text { and } \frac{S_{n}}{n^{1 / p}} \rightarrow_{P} 0 \tag{1.3}
\end{align*}
$$

Let $\left\{a_{n} ; n \geq 1\right\}$ be a sequence of positive constants such that

$$
\begin{equation*}
a_{n} \uparrow \text { and } 1<\liminf _{n \rightarrow \infty} \frac{a_{2 n}}{a_{n}} \leq \limsup _{n \rightarrow \infty} \frac{a_{2 n}}{a_{n}}<\infty . \tag{1.4}
\end{equation*}
$$

Since the condition (1.3) is, of course, equivalent to

$$
\sum_{n=1}^{\infty} P\left(\|X\| \geq n^{1 / p}\right)<\infty \text { and } \frac{S_{n}}{n^{1 / p}} \rightarrow_{P} 0
$$

it is natural to ask whether the following three statements are equivalent:

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left\|S_{n}\right\|}{a_{n}} \geq \varepsilon\right)<\infty \text { for all } \varepsilon>0 \tag{1.5}\\
& \lim _{n \rightarrow \infty} \frac{S_{n}}{a_{n}}=0 \text { a.s. } \tag{1.6}\\
& \sum_{n=1}^{\infty} P\left(\|X\| \geq a_{n}\right)<\infty \text { and } \frac{S_{n}}{a_{n}} \rightarrow_{P} 0 \tag{1.7}
\end{align*}
$$

The answer to this question turns out to be negative if $\left\{X, X_{n} ; n \geq 1\right\}$ is a sequence of realvalued random variables with $E X=0$ and $E X^{2}=1$, and we choose $a_{n}=\sqrt{2 n L L n}, n \geq$ 1 , where $L x=\log \max \{e, x\}, x \geq 0$. Then (1.6) fails by the classical Hartman-WintnerStrassen law of the iterated logarithm, but (1.7) holds by $E X^{2}<\infty$ and Chebyshev's inequality. However, it is clear that (1.6) always implies (1.7). Recently, Li, Zhang, and Rosalsky [7] have shown that (1.5) and (1.6) are equivalent.

The main purpose of the present paper is to exhibit the relationship between the Baum-Katz-Spitzer complete convergence theorem and the law of the iterated logarithm.

Theorem 1 Let $\left\{X, X_{n} ; n \geq 1\right\}$ be a sequence of i.i.d. B-valued random variables and let $\left\{a_{n} ; n \geq 1\right\}$ be a sequence of positive constants such that (1.4) holds. Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left\|S_{n}\right\|}{a_{n}}<\infty \quad \text { a.s. }, \tag{1.8}
\end{equation*}
$$

if and only if there exists a constant $0 \leq \lambda<\infty$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left\|S_{n}\right\|}{a_{n}} \geq \varepsilon\right)<\infty \text { for all } \varepsilon>\lambda \tag{1.9}
\end{equation*}
$$

Combining Theorem 1 above and Theorem 1 of Li, Zhang, and Rosalsky [7], we obtain the following result:
Theorem 2 Suppose that all conditions for Theorem 1 are satisfied. Then we have
(i) $\lim _{n \rightarrow \infty} \frac{S_{n}}{a_{n}}=0$ a.s., if and only if

$$
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left\|S_{n}\right\|}{a_{n}} \geq \varepsilon\right)<\infty \text { for all } \varepsilon>0
$$

(ii) There exists a constant $0<\lambda_{1}<\infty$ such that

$$
\limsup _{n \rightarrow \infty} \frac{\left\|S_{n}\right\|}{a_{n}}=\lambda_{1} \quad \text { a.s., }
$$

if and only if there exists a constant $0<\lambda_{2}<\infty$ such that

$$
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left\|S_{n}\right\|}{a_{n}} \geq \varepsilon\right) \begin{cases}<\infty, & \text { if } \varepsilon>\lambda_{2} \\ =\infty, & \text { if } 0<\varepsilon<\lambda_{2}\end{cases}
$$

(iii) $\lim \sup _{n \rightarrow \infty} \frac{\left\|S_{n}\right\|}{a_{n}}=\infty$ a.s., if and only if

$$
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left\|S_{n}\right\|}{a_{n}} \geq \varepsilon\right)=\infty \text { for all } \varepsilon>0
$$

We conjecture that, in general, $\lambda_{1}=\lambda_{2}$ in Part (ii). In fact, our conjecture is true under some mild additional conditions according to the next theorem.
Theorem 3 Let $\left\{X, X_{n} ; n \geq 1\right\}$ be a sequence of i.i.d. B-valued random variables. Let $\left\{a_{n} ; n \geq 1\right\}$ be a sequence of positive constants satisfying

$$
\begin{equation*}
\lim _{\beta \downarrow 1} \limsup _{n \rightarrow \infty} \frac{a_{[\beta n]}}{a_{n}}=1 . \tag{1.10}
\end{equation*}
$$

If

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} P\left(\frac{\left\|S_{n}\right\|}{a_{n}} \leq \varepsilon\right)>0 \text { for all } \varepsilon>0 \tag{1.11}
\end{equation*}
$$

then for all constants $0 \leq \lambda<\infty$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left\|S_{n}\right\|}{a_{n}}=\lambda \quad \text { a.s. }, \tag{1.12}
\end{equation*}
$$

if and only if

$$
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left\|S_{n}\right\|}{a_{n}} \geq \varepsilon\right) \begin{cases}<\infty, & \text { if } \varepsilon>\lambda \tag{1.13}\\ =\infty, & \text { if } \varepsilon<\lambda\end{cases}
$$

Although in the formulation of the statement of Theorem 3 we used the phrase "for all constants $0 \leq \lambda<\infty$ ", it should be noted that there cannot be more than one value of λ satisfying (1.12) and (1.13). As an application of Theorem 3, under (1.10) and (1.11), theoretically one can find the value of λ in (1.12). In fact

$$
\lambda=\sup \left\{\varepsilon \geq 0 ; \quad \sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left\|S_{n}\right\|}{a_{n}} \geq \varepsilon\right)=\infty\right\} .
$$

A similar observation pertains to Theorem 4 below.
In the case of real-valued random variables, it is natural to ask about the relationship between the one-sided Baum-Katz-Spitzer complete convergence theorem and the one-sided law of the iterated logarithm. The following theorem answers this question:
Theorem 4 Let $\left\{X, X_{n} ; n \geq 1\right\}$ be a sequence of i.i.d. real-valued random variables and let $\left\{a_{n} ; n \geq 1\right\}$ be a sequence of positive constants such that (1.10) holds. If

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} P\left(\frac{S_{n}}{a_{n}} \geq-\varepsilon\right)>0 \text { for all } \varepsilon>0 \tag{1.14}
\end{equation*}
$$

then for all constants $0 \leq \lambda<\infty$,

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{a_{n}}=\lambda \text { a.s. }
$$

if and only if

$$
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{S_{n}}{a_{n}} \geq \varepsilon\right) \begin{cases}<\infty, & \text { if } \varepsilon>\lambda, \\ =\infty, & \text { if } \varepsilon<\lambda\end{cases}
$$

Clearly, condition (1.11) (resp., condition (1.14)) is satisfied if

$$
\begin{equation*}
\frac{S_{n}}{a_{n}} \rightarrow_{P} 0 \tag{1.15}
\end{equation*}
$$

The condition (1.16) of the first corollary is the analytic condition that X lies outside of the domain of partial attraction of the normal law.
Corollary 1 Let $\left\{X, X_{n} ; n \geq 1\right\}$ be a sequence of i.i.d. real-valued symmetric random variables and let $\left\{a_{n} ; n \geq 1\right\}$ be a sequence of positive constants such that (1.4) holds. If

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{x^{2} P(|X| \geq x)}{E\left(X^{2} I(|X|<x)\right)}>0 \tag{1.16}
\end{equation*}
$$

then either

$$
\lim _{n \rightarrow \infty} \frac{S_{n}}{a_{n}}=0 \text { a.s. and } \sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left|S_{n}\right|}{a_{n}} \geq \varepsilon\right)<\infty \text { for all } \varepsilon>0
$$

or

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{a_{n}}=\infty \text { a.s. and } \sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left|S_{n}\right|}{a_{n}} \geq \varepsilon\right)=\infty \text { for all } \varepsilon>0 .
$$

Proof According to the work of Rogozin [8] and Heyde [9], it follows from (1.16) that there does not exist a constant $0<\lambda<\infty$ such that

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{a_{n}}=\lambda \text { a.s. }
$$

Thus, since $\left\{X_{n} ; n \geq 1\right\}$ are symmetric, either

$$
\lim _{n \rightarrow \infty} \frac{S_{n}}{a_{n}}=0 \text { a.s. or } \limsup _{n \rightarrow \infty} \frac{S_{n}}{a_{n}}=\infty \text { a.s., }
$$

and the conclusion follows from Theorem 2 .
Corollary 2 Let $\left\{X, X_{n} ; n \geq 1\right\}$ be a sequence of i.i.d. B-valued random variables. Let $h(\cdot):[0, \infty) \rightarrow(0, \infty)$ be continuous, nondecreasing, and slowly varying at infinity. Set $a_{n}=$ $\sqrt{n h(n)}, n \geq 1$. Then we have
(i) The relations (1.8) and (1.9) are equivalent;
(ii) If $S_{n} / a_{n} \rightarrow_{P} 0$, then for all constants $0 \leq \lambda<\infty$, the relations (1.12) and (1.13) are equivalent.

Under the conditions of Corollary 1, if any of (1.8) or (1.9) holds, then

$$
E(X)=0 \text { and } \sum_{n=1}^{\infty} P(\|X\| \geq c \sqrt{n h(n)})<\infty \text { for some } 0<c<\infty
$$

or, equivalently,

$$
\begin{equation*}
E(X)=0 \text { and } E\left(\Psi^{-1}(\|X\|)\right)<\infty, \tag{1.17}
\end{equation*}
$$

where $\Psi^{-1}(t)$ is the inverse function of $\Psi(t)=\sqrt{\operatorname{th(t)}}$. We leave it to the reader to verify that in type 2 Banach spaces, (1.17) implies (1.15). Hence Theorems 1 and 2 yield the following corollary:
Corollary 3 Let $\left\{X, X_{n} ; n \geq 1\right\}$ be a sequence of i.i.d. random variables taking values in a Banach space \mathbf{B} of type 2. Let $h(\cdot):[0, \infty) \rightarrow(0, \infty)$ be continuous, nondecreasing, and slowly varying at infinity and suppose that (1.17) holds. Set $a_{n}=\sqrt{n h(n)}, n \geq 1$. Then, for all constants $0 \leq \lambda<\infty$, the relations (1.12) and (1.13) are equivalent.

Let $\left\{X, X_{n} ; n \geq 1\right\}$ be a sequence of i.i.d. real-valued random variables. Let $p \geq 1$. Einmahl and $\operatorname{Li}([10$, Corollary 1]) proved that, for all constants $0 \leq \lambda<\infty$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|S_{n}\right|}{\sqrt{2 n(\log \log n)^{p}}}=\lambda \text { a.s. } \tag{1.18}
\end{equation*}
$$

if and only if

$$
\left\{\begin{array}{l}
E(X)=0, \quad E\left(\frac{X^{2}}{(\log \log (3+|X|))^{p}}\right)<\infty, \tag{1.19}\\
\quad \text { and } \lim \sup _{x \rightarrow \infty}(\log \log x)^{1-p} E\left(X^{2} I(|X| \leq x)\right)=\lambda^{2} .
\end{array}\right.
$$

Combining our Corollary 3 and Corollary 1 of Einmahl and Li [10], one can see that, for all constants $0 \leq \lambda<\infty$, (1.18) and (1.19) are each equivalent to

$$
\sum_{n=3}^{\infty} \frac{1}{n} P\left(\frac{\left|S_{n}\right|}{\sqrt{2 n(\log \log n)^{p}}} \geq \varepsilon\right) \begin{cases}<\infty, & \text { if } \varepsilon>\lambda \tag{1.20}\\ =\infty, & \text { if } \varepsilon<\lambda\end{cases}
$$

Clearly, for the particularly important case of $p=1$, which is related to the Hartman-WintnerStrassen law of the iterated logarithm, for all constants $0 \leq \lambda<\infty$, the following three statements are equivalent:

$$
\begin{align*}
& \sum_{n=3}^{\infty} \frac{1}{n} P\left(\frac{\left|S_{n}\right|}{\sqrt{2 n \log \log n}} \geq \varepsilon\right) \begin{cases}<\infty, & \text { if } \varepsilon>\lambda, \\
=\infty, & \text { if } \varepsilon<\lambda .\end{cases} \tag{1.21}\\
& \limsup _{n \rightarrow \infty} \frac{\left|S_{n}\right|}{\sqrt{2 n \log \log n}}=\lambda \text { a.s., } \tag{1.22}\\
& E(X)=0 \text { and } E\left(X^{2}\right)=\lambda^{2} . \tag{1.23}
\end{align*}
$$

Hartman and Wintner [11] proved that (1.23) implies (1.22) and the converse is due to Strassen [12]. The implication " $(1.23) \Longrightarrow(1.21)$ " should be due to Davis ([13], Theorem 4) which was remedied by Li, Wang, and Rao ([14], Corollary 2.3). For the implication "(1.21) $\Longrightarrow(1.23)$ ", see Gut ([15], Theorem 6.2).

Substantially simpler proofs of Strassen's [12] converse were discovered by Feller [16], Heyde [17], and Steiger and Zaremba [18]. Martikainen [19], Rosalsky [20], and Pruitt [21] simultaneously and independently obtained a "one-sided" converse to the Hartman-Wintner [11] law of the iterated logarithm. Specifically, they proved that, if

$$
0 \leq \lim _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=\lambda<\infty \quad \text { a.s. }
$$

then (1.23) holds.
Let $v>0$. Einmahl and Li ([10, Corollary 2]) proved that, for all constants $0 \leq \lambda<\infty$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|S_{n}\right|}{\sqrt{2 n(\log n)^{v}}}=\lambda \text { a.s., } \tag{1.24}
\end{equation*}
$$

if and only if

$$
\left\{\begin{array}{l}
E(X)=0, \quad E\left(\frac{X^{2}}{(\log (e+|X|))^{v}}\right)<\infty \tag{1.25}\\
\quad \text { and } \quad \lim \sup _{x \rightarrow \infty} \frac{\log \log x}{(\log x)^{v}} E\left(X^{2} I(|X| \leq x)\right)=2^{v} \lambda^{2}
\end{array}\right.
$$

Combining our Corollary 3 and Corollary 2 of Einmahl and Li [10], one can see that for all constants $0 \leq \lambda<\infty,(1.24)$ and (1.25) are each equivalent to

$$
\sum_{n=2}^{\infty} \frac{1}{n} P\left(\frac{\left|S_{n}\right|}{\sqrt{2 n(\log n)^{v}}} \geq \varepsilon\right) \begin{cases}<\infty, & \text { if } \varepsilon>\lambda \\ =\infty, & \text { if } \varepsilon<\lambda\end{cases}
$$

A version of the equivalence between (1.21) and (1.22) in a Banach space setting was obtained by Li [22] who proved that there exists a constant $0 \leq \lambda<\infty$ such that

$$
\sum_{n=3}^{\infty} \frac{1}{n} P\left(\frac{\left\|S_{n}\right\|}{\sqrt{2 n \log \log n}} \geq \varepsilon\right)<\infty \text { for all } \varepsilon>\lambda
$$

if and only if

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left\|S_{n}\right\|}{\sqrt{2 n \log \log n}}<\infty \text { a.s. } \tag{1.26}
\end{equation*}
$$

Ledoux and Talagrand ([23, Theorem 1.1]) showed that (1.26) holds if and only if

$$
\left\{\begin{array}{l}
E(X)=0, \quad E\left(\frac{\|X\|^{2}}{\log \log (3+\|X\|)}\right)<\infty \\
E\left(\phi^{2}(X)\right)<\infty \text { for all } \phi \in \mathbf{B}^{*}, \\
\text { and }\left\{\frac{S_{n}}{\sqrt{2 n \log \log n}} ; n \geq 3\right\} \text { is bounded in probability. }
\end{array}\right.
$$

If

$$
\frac{S_{n}}{\sqrt{2 n \log \log n}} \rightarrow_{P} 0
$$

then, from our Corollary 3 and Theorem 5.1 of Ledoux and Talagrand [24], for all constants $0 \leq \lambda<\infty$, the following three statements are equivalent:

$$
\begin{aligned}
& \sum_{n=3}^{\infty} \frac{1}{n} P\left(\frac{\left\|S_{n}\right\|}{\sqrt{2 n \log \log n}} \geq \varepsilon\right) \begin{cases}<\infty, & \text { if } \varepsilon>\lambda \\
=\infty, & \text { if } \varepsilon<\lambda\end{cases} \\
& \lim _{n \rightarrow \infty} \frac{\left\|S_{n}\right\|}{\sqrt{2 n \log \log n}}=\lambda \text { a.s.; } \\
& \left\{\begin{array}{c}
E(X)=0, \quad E\left(\frac{\|X\|^{2}}{\log \log (3+\|X\|)}\right)<\infty \\
\text { and } \sup \left\{E\left(\phi^{2}(X)\right) ; \phi \in \mathbf{B}^{*},\|\phi\| \leq 1\right\}=\lambda^{2} .
\end{array}\right.
\end{aligned}
$$

2 Proof of Theorem 1

The following lemmas will be used to prove Theorem 1:
Lemma 1 Let $\left\{U_{n} ; n \geq 1\right\}$ be a sequence of \mathbf{B}-valued random variables, let $\left\{U_{n}^{\prime} ; n \geq\right.$ $1\}$ be an independent copy of $\left\{U_{n} ; n \geq 1\right\}$. If there exists a constant $b>0$ such that $\liminf _{n \rightarrow \infty} P\left(\left\|U_{n}\right\| \leq b\right)>0$, then we have
(i) $\limsup \operatorname{sum}_{n \rightarrow \infty}\left\|U_{n}\right\|<\infty$ a.s. if and only if $\limsup _{n \rightarrow \infty}\left\|U_{n}-U_{n}^{\prime}\right\|<\infty$ a.s.;
(ii) There exists a constant $0 \leq b_{1}<\infty$ such that

$$
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\left\|U_{n}\right\| \geq \varepsilon\right)<\infty \text { for all } \varepsilon>b_{1}
$$

if and only if there exists a constant $0 \leq b_{2}<\infty$ such that

$$
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\left\|U_{n}-U_{n}^{\prime}\right\| \geq \varepsilon\right)<\infty \text { for all } \varepsilon>b_{2}
$$

Proof Part (i) is just a special case of Theorem 3 of Li [25]. To prove Part (ii), let $q>0$ be such that $P\left(\left\|U_{n}\right\| \leq b\right) \geq q$ for all large n. Then since

$$
\left\{\left\|U_{n}\right\| \leq \varepsilon,\left\|U_{n}^{\prime}\right\| \geq 2 \varepsilon\right\} \subset\left\{\left\|U_{n}-U_{n}^{\prime}\right\| \geq \varepsilon\right\}, \quad \varepsilon>0, n \geq 1
$$

we have, for all large n and $\varepsilon \geq b$, that

$$
P\left(\| U_{n} \mid \geq 2 \varepsilon\right) \leq(1 / q) P\left(\left\|U_{n}-U_{n}^{\prime}\right\| \geq \varepsilon\right) \leq(2 / q) P\left(\left\|U_{n}\right\| \geq \varepsilon / 2\right)
$$

Part (ii) follows immediately from this.
The following lemma is one of Lévy's inequalities in a Banach space setting; see, e.g., Araujo and Giné ([26, p. 102]) or Ledoux and Talagrand ([27, p. 47]).
Lemma 2 Let $\left\{V_{i} ; 1 \leq i \leq n\right\}$ be a finite sequence of independent symmetric B-valued random variables, and set $T_{j}=V_{1}+\cdots+V_{j}, j=1, \ldots, n$. Then

$$
P\left(\max _{1 \leq j \leq n}\left\|T_{j}\right\| \geq t\right) \leq 2 P\left(\left\|T_{n}\right\| \geq t\right), t>0
$$

The following lemma is due to Li, Zhang, and Rosalsky [7].
Lemma 3 Let $\left\{k_{n} ; n \geq 1\right\}$ be a sequence of integers such that $2^{n-1} \leq k_{n}<2^{n}$, $n \geq 1$. Then, for every integer $n \geq 1$ and each integer $0 \leq m<k_{n+1}$, there exist n numbers $w_{i} \in$ $\{0,1,2,3\}, i=1,2, \ldots, n$ depending only on m such that

$$
m=w_{1} k_{1}+w_{2} k_{2}+\cdots+w_{n} k_{n}
$$

Proof of Theorem 1 Set $I(n)=\left\{i ; 2^{n-1} \leq i<2^{n}\right\}, n \geq 1$. Let $\left\{X^{\prime}, X_{n}^{\prime} ; n \geq 1\right\}$ be an independent copy of $\left\{X, X_{n} ; n \geq 1\right\}$ and let $T_{n}=V_{1}+\cdots+V_{n}, n \geq 1$ where $V_{n}=$ $X_{n}-X_{n}^{\prime}, n \geq 1$.

We first prove that (1.8) implies (1.9). Note that the Kolmogorov zero-one law (see, e.g., Chow and Teicher ([28, Theorem 3.3]), (1.4), and (1.8) imply that there exists a constant $0 \leq b_{0}<\infty$ such that

$$
\limsup _{n \rightarrow \infty} \frac{\left\|\sum_{i \in I(n)} V_{i}\right\|}{a_{2^{n}}}=b_{0} \quad \text { a.s. }
$$

Hence, by the Borel-Cantelli lemma and identical distributions, we have that

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(\frac{\left\|T_{2^{n}}\right\|}{a_{2^{n}}} \geq \varepsilon\right)<\infty \text { for all } \varepsilon>b_{0} \tag{2.1}
\end{equation*}
$$

By (1.4), there exists a constant $1<\tau<\infty$ such that

$$
\begin{equation*}
a_{2 n} \leq \tau a_{n}, \quad n \geq 1 \tag{2.2}
\end{equation*}
$$

Now by (2.2) and Lemma 2, for $\varepsilon>0$,

$$
\begin{aligned}
P\left(\frac{\left\|T_{k}\right\|}{a_{k}} \geq \varepsilon\right) & \leq P\left(\max _{1 \leq j \leq 2^{n}} \frac{\left\|T_{j}\right\|}{a_{2^{n-1}}} \geq \varepsilon\right) \\
& \leq 2 P\left(\frac{\left\|T_{2^{n}}\right\|}{a_{2^{n-1}}} \geq \varepsilon\right) \\
& \leq 2 P\left(\frac{\left\|T_{2^{n}}\right\|}{a_{2^{n}}} \geq \varepsilon / \tau\right), \quad k \in I(n)
\end{aligned}
$$

Let $\lambda=\tau b_{0}$. Then $0 \leq \lambda<\infty$ and, on account of (2.1),

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left\|T_{n}\right\|}{a_{n}} \geq \varepsilon\right) & =\sum_{n=1}^{\infty} \sum_{k \in I_{n}} \frac{1}{k} P\left(\frac{\left\|T_{k}\right\|}{a_{k}} \geq \varepsilon\right) \\
& \leq 2 \sum_{n=1}^{\infty} P\left(\frac{\left\|T_{2^{n}}\right\|}{a_{2^{n}}} \geq \varepsilon / \tau\right) \\
& <\infty \quad \text { for all } \varepsilon>\lambda
\end{aligned}
$$

Thus, by Lemma 1 (ii), (1.9) follows.
We now show that (1.9) implies (1.8). Note that, for all $\varepsilon>\lambda$,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left\|S_{n}\right\|}{a_{n}} \geq \varepsilon\right) & \geq \sum_{n=1}^{\infty} \sum_{k \in I_{n}} \frac{1}{k} \min _{j \in I_{n}} P\left(\frac{\left\|S_{j}\right\|}{a_{j}} \geq \varepsilon\right) \\
& \geq \frac{1}{2} \sum_{n=1}^{\infty} \min _{j \in I_{n}} P\left(\frac{\left\|S_{j}\right\|}{a_{j}} \geq \varepsilon\right) .
\end{aligned}
$$

Hence, for fixed $\varepsilon>\lambda$, (1.9) implies that there exists a sequence $\left\{k_{n} ; n \geq 1\right\}$ of integers depending only on $\varepsilon>\lambda$ and the distribution of X such that $2^{n-1} \leq k_{n}<2^{n}, n \geq 1$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(\frac{\left\|S_{k_{n}}\right\|}{a_{k_{n}}} \geq \varepsilon\right)<\infty \tag{2.3}
\end{equation*}
$$

It is easy to see that (1.4) implies

$$
\begin{equation*}
c \triangleq \sup _{n \geq 1} \sum_{k=0}^{n+1} \frac{a_{2^{k}}}{a_{2^{n}}}<\infty \tag{2.4}
\end{equation*}
$$

For fixed integers $n \geq 1$ and m with $2^{n-1} \leq m<2^{n}\left(\leq k_{n+1}\right)$, by Lemma 3, there exist n numbers $w_{i} \in\{0,1,2,3\}, i=1,2, \ldots, n$, depending only on m such that $m=\sum_{i=1}^{n} w_{i} k_{i}$. Write

$$
l_{1}=w_{n} k_{n}, l_{2}=w_{n} k_{n}+w_{n-1} k_{n-1}, \ldots, l_{n}=w_{n} k_{n}+w_{n-1} k_{n-1}+\ldots+w_{1} k_{1}=m
$$

Then $l_{1} \leq l_{2} \leq \cdots \leq l_{n}$ and $l_{i}-l_{i-1}=w_{n-i+1} k_{n-i+1}, i=1,2, \ldots, n$, where $l_{0}=0$. Then

$$
S_{m}=\sum_{i=1}^{n} Y_{i}
$$

where

$$
Y_{i}=\sum_{l_{i-1}<j \leq l_{i}} X_{j}, i=1,2, \ldots, n
$$

Note that

$$
\begin{align*}
\frac{\left\|S_{m}\right\|}{a_{m}} & \leq \sum_{i=1}^{n-n_{0}} \frac{\left\|Y_{i}\right\|}{a_{m}}+\frac{\left\|\sum_{i=n-n_{0}+1}^{n} Y_{i}\right\|}{a_{m}} \tag{2.5}\\
& \leq \sum_{i=1}^{n-n_{0}}\left(\frac{a_{2^{n-i+1}}}{a_{2^{n-1}}}\right) \frac{\left\|Y_{i}\right\|}{a_{k_{n-i+1}}}+\frac{\left\|\sum_{i=n-n_{0}+1}^{n} Y_{i}\right\|}{a_{2^{n-1}}}
\end{align*}
$$

where $1 \leq n_{0}<n$. Since

$$
\sum_{i=n-n_{0}+1}^{n} w_{n-i+1} k_{n-i+1} \leq 6 \times 2^{n_{0}}
$$

and Y_{i} and $S_{w_{n-i+1} k_{n-i+1}}$ have the same distribution, $i=1,2, \ldots, n$, in view of (2.5) and (2.4), we get

$$
P\left(\frac{\left\|S_{m}\right\|}{a_{m}} \geq 6 c \varepsilon\right) \leq P\left(\sum_{i=1}^{n-n_{0}}\left(\frac{a_{2^{n-i+1}}}{a_{2^{n-1}}}\right) \frac{\left\|Y_{i}\right\|}{a_{k_{n-i+1}}} \geq 3 c \varepsilon\right)+P\left(\frac{\left\|\sum_{i=n-n_{0}+1}^{n} Y_{i}\right\|}{a_{2^{n-1}}} \geq 3 c \varepsilon\right)
$$

$$
\begin{aligned}
& \leq \sum_{i=1}^{n-n_{0}} P\left(\frac{\left\|Y_{i}\right\|}{a_{k_{n-i+1}}} \geq 3 \varepsilon\right)+\max _{1 \leq j \leq 6 \times 2^{n_{0}}} P\left(\frac{\left\|S_{j}\right\|}{a_{2^{n-1}}} \geq 3 c \varepsilon\right) \\
& \leq 3 \sum_{i=n_{0}+1}^{n} P\left(\frac{\left\|S_{k_{i}}\right\|}{a_{k_{i}}} \geq \varepsilon\right)+\max _{1 \leq j \leq 6 \times 2^{n_{0}}} P\left(\frac{\left\|S_{j}\right\|}{a_{2^{n-1}}} \geq 3 c \varepsilon\right) .
\end{aligned}
$$

Hence

$$
\max _{2^{n-1} \leq m<2^{n}} P\left(\frac{\left\|S_{m}\right\|}{a_{m}} \geq 6 c \varepsilon\right) \leq 3 \sum_{i=n_{0}+1}^{n} P\left(\frac{\left\|S_{k_{i}}\right\|}{a_{k_{i}}} \geq \varepsilon\right)+\max _{1 \leq j \leq 6 \times 2^{n_{0}}} P\left(\frac{\left\|S_{j}\right\|}{a_{2^{n-1}}} \geq 3 c \varepsilon\right) .
$$

Thus, recalling (2.3), we conclude that

$$
\begin{align*}
& \limsup _{n \rightarrow \infty} \max _{2^{n-1} \leq m<2^{n}} P\left(\frac{\left\|S_{m}\right\|}{a_{m}} \geq 6 c \varepsilon\right) \leq 3 \sum_{i=n_{0}+1}^{\infty} P\left(\frac{\left\|S_{k_{i}}\right\|}{a_{k_{i}}} \geq \varepsilon\right) \tag{2.6}\\
& \longrightarrow 0 \text { as } n_{0} \rightarrow \infty \text { for all } \varepsilon>\lambda .
\end{align*}
$$

Let $S_{n}^{\prime}=\sum_{i=1}^{n} X_{i}^{\prime}, n \geq 1$. Then $\left\{S_{n}^{\prime} ; n \geq 1\right\}$ is an independent copy of $\left\{S_{n} ; n \geq 1\right\}$. Clearly, (1.9) implies that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left\|S_{n}-S_{n}^{\prime}\right\|}{a_{n}} \geq \varepsilon\right)<\infty \text { for all } \varepsilon>2 \lambda \tag{2.7}
\end{equation*}
$$

By applying Lemma 2 , for all $\varepsilon>2 \tau^{2} \lambda$ and for all $k \in I(n+1), n \geq 1$, we have

$$
\begin{aligned}
P\left(\max _{j \in I(n)} \frac{\left\|S_{j}-S_{j}^{\prime}\right\|}{a_{j}} \geq \varepsilon\right) & \leq P\left(\max _{j \in I(n)}\left\|S_{j}-S_{j}^{\prime}\right\| \geq \varepsilon a_{2^{n-1}}\right) \\
& \leq P\left(\max _{1 \leq j \leq k}\left\|S_{j}-S_{j}^{\prime}\right\| \geq \varepsilon a_{2^{n-1}}\right) \\
& \leq 2 P\left(\left\|S_{k}-S_{k}^{\prime}\right\| \geq \varepsilon a_{2^{n-1}}\right) \\
& \leq 2 P\left(\left\|S_{k}-S_{k}^{\prime}\right\| \geq\left(\varepsilon / \tau^{2}\right) a_{k}\right) \quad(\text { by }(2.2))
\end{aligned}
$$

and this, together with (2.7), ensures that

$$
\sum_{n=1}^{\infty} P\left(\max _{j \in I(n)} \frac{\left\|S_{j}-S_{j}^{\prime}\right\|}{a_{j}} \geq \varepsilon\right)<\infty \text { for all } \varepsilon>2 \tau^{2} \lambda .
$$

Hence, by the Borel-Cantelli lemma,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left\|S_{n}-S_{n}^{\prime}\right\|}{a_{n}}<\infty \text { a.s. } \tag{2.8}
\end{equation*}
$$

Thus, in view of Lemma 1 (i), (1.8) follows from (2.8) and (2.6). The proof of Theorem 1 is therefore complete.

3 Proofs of Theorems 3 and 4

For the proofs of Theorems 3 and 4 we need the following three lemmas. The first lemma, i.e., Lemma 4, is due to Petrov [29] (see Petrov ([30, Theorem 2.3]).

Lemma 4 Let $\left\{V_{i} ; 1 \leq i \leq n\right\}$ be a finite sequence of independent real-valued random variables, and set $T_{j}=V_{1}+\cdots+V_{j}, j=1, \ldots, n$. If

$$
\min _{1 \leq j \leq n-1} P\left(T_{n}-T_{j} \geq-b\right) \geq q,
$$

for some constants $b \geq 0$ and $q>0$, then

$$
\begin{equation*}
P\left(\max _{1 \leq j \leq n} T_{j} \geq t\right) \leq(1 / q) P\left(T_{n} \geq t-b\right) \quad \text { for all real } t \tag{3.1}
\end{equation*}
$$

The following lemma is a version of Lemma 4 in a Banach space setting.

Lemma 5 Let $\left\{V_{i} ; 1 \leq i \leq n\right\}$ be a finite sequence of independent \mathbf{B}-valued random variables, and set $T_{j}=V_{1}+\cdots+V_{j}, j=1, \ldots, n$. If

$$
\begin{equation*}
\min _{1 \leq j \leq n-1} P\left(\left\|T_{n}-T_{j}\right\| \leq b\right) \geq q, \tag{3.2}
\end{equation*}
$$

for some constants $b \geq 0$ and $q>0$, then

$$
\begin{equation*}
P\left(\max _{1 \leq j \leq n}\left\|T_{j}\right\| \geq t\right) \leq(1 / q) P\left(\left\|T_{n}\right\| \geq t-b\right) \text { for all } t \geq 0 \tag{3.3}
\end{equation*}
$$

Proof Our proof of (3.3) is a modification of Petrov's [29] proof of (3.1). Let $\kappa_{q}(Y)$ denote a quantile of order $q, 0<q<1$, for a real-valued random variable Y. We first show that

$$
\begin{equation*}
P\left(\max _{1 \leq j \leq n}\left(\left\|T_{j}\right\|-\kappa_{q}\left(\left\|T_{n}-T_{j}\right\|\right)\right) \geq t\right) \leq(1 / q) P\left(\left\|T_{n}\right\| \geq t\right) \quad \text { for all } t \geq 0 \tag{3.4}
\end{equation*}
$$

We write

$$
\begin{aligned}
& M_{j}=\max _{1 \leq k \leq j}\left(\left\|T_{k}\right\|-\kappa_{q}\left(\left\|T_{n}-T_{k}\right\|\right)\right), \quad j=1,2, \ldots, n, \\
& D_{1}=\left\{\left\|T_{1}\right\|-\kappa_{q}\left(\left\|T_{n}-T_{1}\right\|\right) \geq t\right\}, \\
& D_{j}=\left\{M_{j-1}<t,\left\|T_{j}\right\|-\kappa_{q}\left(\left\|T_{n}-T_{j}\right\|\right) \geq t\right\}, \quad j=2, \ldots, n, \\
& E_{j}=\left\{\left\|T_{n}-T_{j}\right\|-\kappa_{q}\left(\left\|T_{n}-T_{j}\right\|\right) \leq 0\right\}, \quad j=1,2, \ldots, n .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
P\left(M_{n} \geq t\right)=\sum_{j=1}^{n} P\left(D_{j}\right) \tag{3.5}
\end{equation*}
$$

since

$$
\left\{M_{n} \geq t\right\}=\bigcup_{j=1}^{n} D_{j} \text { and } P\left(D_{k} \cap D_{j}\right)=0 \text { for } k \neq j
$$

Furthermore

$$
\begin{equation*}
P\left(E_{j}\right) \geq q, \quad j=1, \ldots, n \tag{3.6}
\end{equation*}
$$

Note that

$$
\bigcup_{j=1}^{n}\left(D_{j} \cap E_{j}\right) \subset\left\{\left\|T_{n}\right\| \geq t\right\}
$$

and

$$
P\left(\left\|T_{n}\right\| \geq t\right) \geq P\left(\bigcup_{j=1}^{n}\left(D_{j} \cap E_{j}\right)\right)=\sum_{j=1}^{n} P\left(D_{j} \cap E_{j}\right)=\sum_{j=1}^{n} P\left(D_{j}\right) P\left(E_{j}\right),
$$

since the events D_{j} and E_{j} are independent. Taking into account (3.5) and (3.6) we conclude that

$$
P\left(\left\|T_{n}\right\| \geq t\right) \geq q \sum_{j=1}^{n} P\left(D_{j}\right)=q P\left(M_{n} \geq t\right)
$$

thus proving (3.4). By (3.2), there exists a set of quantiles $\kappa_{q}\left(\left\|T_{n}-T_{j}\right\|\right), 1 \leq j \leq n-1$, such that

$$
\kappa_{q}\left(\left\|T_{n}-T_{j}\right\|\right) \leq b, \quad j=1, \ldots, n-1
$$

and hence, for every $t \geq 0$,

$$
\left\{\max _{1 \leq j \leq n}\left\|T_{j}\right\| \geq t\right\} \subset\left\{\max _{1 \leq j \leq n}\left(\left\|T_{j}\right\|-\kappa_{q}\left(\left\|T_{n}-T_{j}\right\|\right)\right) \geq t-b\right\} .
$$

Thus, from (3.4), (3.3) follows. The lemma is proved.
The following lemma, which is an extension of the divergence half of the Borel-Cantelli lemma, is due to Baum, Katz, and Stratton [31]. The formulation presented here is that of Petrov ([30, Lemma 7.5]).

Lemma 6 Let $\left\{B_{n} ; n \geq 1\right\}$ be a sequence of events such that $P\left(B_{n}\right) \geq \alpha$ for all large n, where α is a positive constant. If the following pairs of events are independent for every n : A_{n} and B_{n}, A_{n} and $B_{n} \cap \overline{A_{n-1} \cap B_{n-1}}, A_{n}$ and $B_{n} \cap \overline{A_{n-1} \cap B_{n-1}} \cap \overline{A_{n-2} \cap B_{n-2}}, \ldots$, (here \bar{A} is the complement of A) and if $\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty$, then $P\left(A_{n} \cap B_{n}\right.$ i.o. $) \geq \alpha$.
Proof of Theorem 3 Obviously, we need to show only that, for an arbitrary constant $0 \leq \lambda<$ ∞,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left\|S_{n}\right\|}{a_{n}} \leq \lambda \text { a.s., } \tag{3.7}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n} P\left(\frac{\left\|S_{n}\right\|}{a_{n}} \geq \varepsilon\right)<\infty \text { for all } \varepsilon>\lambda \tag{3.8}
\end{equation*}
$$

We first prove that (3.8) implies (3.7). To see this, let $\varepsilon>\lambda \geq 0$ and $\eta>0$ be arbitrary. By (1.10), there exists a constant $\beta_{0}>1$ such that, for every $\beta \in\left(1, \beta_{0}\right)$,

$$
\begin{equation*}
a_{[\beta n]} \leq(1+\eta) a_{n} \text { for all sufficiently large } n . \tag{3.9}
\end{equation*}
$$

Hence, for all large n,

$$
P\left(\max _{\beta^{n-1}<m \leq \beta^{n}} \frac{\left\|S_{m}\right\|}{a_{m}} \geq(1+3 \eta)^{2} \varepsilon\right) \leq P\left(\max _{\beta^{n-1}<m \leq \beta^{n}} \frac{\left\|S_{m}\right\|}{a_{\left[\beta^{n}\right]}} \geq(1+3 \eta) \varepsilon\right)
$$

Note that (1.11) ensures that there exists a constant $q_{1}>0$ depending on $\eta \varepsilon$ such that, for all sufficiently large n,

$$
\min _{0 \leq k \leq n} P\left(\frac{\left\|S_{n}-S_{k}\right\|}{a_{n}} \leq \eta \varepsilon\right)=\min _{1 \leq k \leq n} P\left(\frac{\left\|S_{k}\right\|}{a_{n}} \leq \eta \varepsilon\right) \geq q_{1}
$$

here and below $S_{0}=0$. It then follows from Lemma 5 that, for all sufficiently large n,

$$
\begin{equation*}
P\left(\max _{\beta^{n-1}<m \leq \beta^{n}} \frac{\left\|S_{m}\right\|}{a_{m}} \geq(1+3 \eta)^{2} \varepsilon\right) \leq\left(1 / q_{1}\right) P\left(\frac{\left\|S_{\left[\beta^{n}\right]}\right\|}{a_{\left[\beta^{n}\right]}} \geq(1+2 \eta) \varepsilon\right) . \tag{3.10}
\end{equation*}
$$

Again recalling (1.11), for all large n and $m \in\left[\left[\beta^{n}\right],\left[\beta^{n+1}\right]-1\right]$, another application of Lemma 5 yields

$$
\begin{align*}
& P\left(\frac{\left\|S_{\left[\beta^{n}\right]}\right\|}{a_{\left[\beta^{n}\right]}} \geq(1+2 \eta) \varepsilon\right) \\
& \quad \leq P\left(\max _{\left[\beta^{n}\right] \leq j \leq m} \frac{\left\|S_{j}\right\|}{a_{\left[\beta^{n}\right]}} \geq(1+2 \eta) \varepsilon\right) \\
& \quad \leq\left(1 / q_{1}\right) P\left(\frac{\left\|S_{m}\right\|}{a_{\left[\beta^{n}\right]}} \geq(1+\eta) \varepsilon\right) \tag{3.11}\\
& \quad \leq\left(1 / q_{1}\right) P\left(\frac{(1+\eta)\left\|S_{m}\right\|}{a_{\left[\beta^{n+1}\right]}} \geq(1+\eta) \varepsilon\right) \quad(\text { by }(3.9)) \\
& \quad \leq\left(1 / q_{1}\right) P\left(\frac{\left\|S_{m}\right\|}{a_{m}} \geq \varepsilon\right) .
\end{align*}
$$

Since $\left[\beta^{n+1}\right]-\left[\beta^{n}\right] \sim \frac{\beta-1}{\beta}\left(\left[\beta^{n+1}\right]-1\right)$, it follows from (3.10) and (3.11) that, for all large n,

$$
\begin{aligned}
& P\left(\max _{\beta^{n-1}<m \leq \beta^{n}} \frac{\left\|S_{m}\right\|}{a_{m}} \geq(1+3 \eta)^{2} \varepsilon\right) \\
& \quad \leq \frac{1}{q_{1}^{2}} \frac{\sum_{m=\left[\beta^{n}\right]}^{\left[\beta^{n+1}\right]-1} P\left(\frac{\left\|S_{m}\right\|}{a_{m}} \geq \varepsilon\right)}{\left[\beta^{n+1}\right]-\left[\beta^{n}\right]} \\
& \quad \leq \frac{2 \beta}{q_{1}^{2}(\beta-1)} \frac{\sum_{m=\left[\beta^{n}\right]}^{\left.\beta^{n+1}\right]-1} P\left(\frac{\left\|S_{m}\right\|}{a_{m}} \geq \varepsilon\right)}{\left[\beta^{n+1}\right]-1} \\
& \quad \leq \frac{2 \beta}{q_{1}^{2}(\beta-1)} \sum_{m=\left[\beta^{n}\right]}^{\left[\beta^{n+1}-1\right.} \frac{1}{m} P\left(\frac{\left\|S_{m}\right\|}{a_{m}} \geq \varepsilon\right) .
\end{aligned}
$$

Then, by (3.8) and the Borel-Cantelli lemma,

$$
P\left(\max _{\beta^{n-1}<m \leq \beta^{n}} \frac{\left\|S_{m}\right\|}{a_{m}} \geq(1+3 \eta)^{2} \varepsilon \text { i.o. }\right)=0
$$

whence

$$
\limsup _{n \rightarrow \infty} \frac{\left\|S_{n}\right\|}{a_{n}} \leq(1+3 \eta)^{2} \varepsilon \text { a.s. }
$$

Letting $\eta \downarrow 0$ and $\varepsilon \downarrow \lambda$, (3.7) follows.
We now prove that (3.7) implies (3.8). The authors take great pleasure in acknowledging that the proof of this implication was inspired by Petrov ([30, Theorem 7.5]). Let $0 \leq \lambda<\infty$ and suppose that (3.7) holds. Then

$$
\begin{equation*}
P\left(\frac{\left\|S_{n}\right\|}{a_{n}} \geq \varepsilon \text { i.o. }\right)=0 \text { for all } \varepsilon>\lambda . \tag{3.12}
\end{equation*}
$$

Let $\varepsilon>\lambda$ be arbitrary and let $\varepsilon_{1} \in(\lambda, \varepsilon)$. For an arbitrary nondecreasing sequence of positive integers $k_{n} \rightarrow \infty$ and arbitrary $\eta>0$, consider the events

$$
A_{n}=\left\{\frac{\left\|S_{k_{n}}-S_{k_{n-1}}\right\|}{a_{k_{n}}} \geq \varepsilon_{1}+\eta\right\}, \quad B_{n}=\left\{\frac{\left\|S_{k_{n-1}}\right\|}{a_{k_{n}}} \leq \eta\right\}, \quad n \geq 1,
$$

where $k_{0}=0$. Obviously, by (3.12),

$$
P\left(A_{n} \cap B_{n} \quad \text { i.o. }\right) \leq P\left(\frac{\left\|S_{n}\right\|}{a_{n}} \geq \varepsilon_{1} \text { i.o. }\right)=0 .
$$

Therefore, by (1.11) and Lemma 6, we conclude that

$$
\sum_{n=1}^{\infty} P\left(\frac{\left\|S_{k_{n}}-S_{k_{n-1}}\right\|}{a_{k_{n}}} \geq \varepsilon_{1}+\eta\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty .
$$

Thus, for every $\beta>1$ and every integer $r \geq 1$, putting $k_{n}=\left[\beta^{r n+i}\right], n \geq 1$ for $i=0,1, \ldots, r-1$, we have, for all $i=0,1, \ldots, r-1$, that

$$
\sum_{n=1}^{\infty} P\left(\frac{\left\|S_{\left[\beta^{r n+i}\right]}-S_{\left[\beta^{r n+i-r}\right]}\right\|}{a_{\left[\beta^{r n+i}\right]}} \geq \varepsilon_{1}+\eta\right)<\infty
$$

and hence

$$
\begin{align*}
& \sum_{n=1}^{\infty} P\left(\frac{\left\|S_{\left[\beta^{n}\right]-\left[\beta^{n-r}\right]}\right\|}{a_{\left[\beta^{n}\right]}} \geq \varepsilon_{1}+\eta\right) \\
& \quad=\sum_{n=1}^{\infty} P\left(\frac{\left\|S_{\left[\beta^{n}\right]}-S_{\left[\beta^{n-r}\right]}\right\|}{a_{\left[\beta^{n}\right]}} \geq \varepsilon_{1}+\eta\right) \tag{3.13}\\
& \quad=\sum_{i=0}^{r-1} \sum_{n=1}^{\infty} P\left(\frac{\left\|S_{\left[\beta^{r n+i}\right]}-S_{\left[\beta^{r n+i-r}\right]}\right\|}{a_{\left[\beta^{r n+i}\right]}} \geq \varepsilon_{1}+\eta\right) \\
& \quad<\infty .
\end{align*}
$$

We first choose $\eta>0$ such that $\varepsilon_{1}+2 \eta<\varepsilon /(1+2 \eta)$. By (1.10), secondly we choose $\beta_{0}>1$ such that (3.9) holds for every $\beta \in\left(1, \beta_{0}\right)$. We then choose a $\beta \in\left(1, \beta_{0}\right)$ and a positive integer r such that $\beta /\left(1-\beta^{-r}\right)<\beta_{0}$. Let $j_{n}=\left[\beta^{n}\right]-\left[\beta^{n-r}\right], n \geq r$. Note that

$$
\lim _{n \rightarrow \infty} \frac{\left[\beta^{n}\right]}{\left[\beta^{n-1}\right]-\left[\beta^{n-1-r}\right]}=\frac{\beta}{1-\beta^{-r}}
$$

It then follows from (3.9) that, for all large n and every $m \in\left(j_{n-1}, j_{n}\right]$,

$$
P\left(\frac{\left\|S_{m}\right\|}{a_{m}} \geq \varepsilon\right) \leq P\left(\frac{\left\|S_{m}\right\|}{a_{\left[\beta^{n}\right]}} \geq \frac{\varepsilon}{1+2 \eta}\right) \leq P\left(\frac{\left\|S_{m}\right\|}{a_{\left[\beta^{n}\right]}} \geq \varepsilon_{1}+2 \eta\right) .
$$

Now it is easy to see that (1.11) and Lemma 5 ensure that there exists a constant $q_{2}>0$ depending on η such that, for all large n and every $m \in\left(j_{n-1}, j_{n}\right]$,

$$
P\left(\frac{\left\|S_{m}\right\|}{a_{\left[\beta^{n}\right]}} \geq \varepsilon_{1}+2 \eta\right) \leq\left(1 / q_{2}\right) P\left(\frac{\left\|S_{j_{n}}\right\|}{a_{\left[\beta^{n}\right]}} \geq \varepsilon_{1}+\eta\right) .
$$

Thus, for all large n and every $m \in\left(j_{n-1}, j_{n}\right]$,

$$
\begin{equation*}
P\left(\frac{\left\|S_{m}\right\|}{a_{m}} \geq \varepsilon\right) \leq\left(1 / q_{2}\right) P\left(\frac{\left\|S_{j_{n}}\right\|}{a_{\left[\beta^{n}\right]}} \geq \varepsilon_{1}+\eta\right) . \tag{3.14}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} j_{n} / j_{n-1}=\beta$, it follows from (3.14) and (3.13) that, for some sufficiently large n_{0},

$$
\begin{aligned}
\sum_{m=j_{n_{0}-1}+1}^{\infty} \frac{1}{m} P\left(\frac{\left\|S_{m}\right\|}{a_{m}} \geq \varepsilon\right) & \leq\left(1 / q_{2}\right) \sum_{n=n_{0}}^{\infty} \sum_{m=j_{n-1}+1}^{j_{n}} \frac{1}{m} P\left(\frac{\left\|S_{j_{n}}\right\|}{a_{\left[\beta^{n}\right]}} \geq \varepsilon_{1}+\eta\right) \\
& \leq\left(\beta / q_{2}\right) \sum_{n=n_{0}}^{\infty} P\left(\frac{\left\|S_{j_{n}}\right\|}{a_{\left[\beta^{n}\right]}} \geq \varepsilon_{1}+\eta\right) \\
& <\infty .
\end{aligned}
$$

Since $\varepsilon>\lambda$ is arbitrary, (3.8) follows. This completes the proof of Theorem 3.
Proof of Theorem 4 Using Lemma 4 and the same argument as in the proof of Theorem 3 with some obvious modifications, for example, replacing

$$
A_{n}=\left\{\frac{\left\|S_{k_{n}}-S_{k_{n-1}}\right\|}{a_{k_{n}}} \geq \varepsilon_{1}+\eta\right\}, \quad B_{n}=\left\{\frac{\left\|S_{k_{n-1}}\right\|}{a_{k_{n}}} \leq \eta\right\}, \quad n \geq 1
$$

by

$$
A_{n}=\left\{\frac{S_{k_{n}}-S_{k_{n-1}}}{a_{k_{n}}} \geq \varepsilon_{1}+\eta\right\}, \quad B_{n}=\left\{\frac{S_{k_{n-1}}}{a_{k_{n}}} \geq-\eta\right\}, \quad n \geq 1,
$$

the conclusion of Theorem 4 follows.

References

[1] Spitzer, F.: A combinatorial lemma and its application to probability theory. Trans. Amer. Math. Soc., 82, 323-339 (1956)
[2] Baum, L. E., Katz, M.: Convergence rates in the law of large numbers. Trans. Amer. Math. Soc., 120, 108-123 (1965)
[3] Jain, N. C.: Tail probabilities for sums of independent Banach space valued random variables. Z. Wahrsh. Verw. Gebiete, 33, 155-166 (1975)
[4] Azlarov, T. A., Volodin, N. A.: Laws of large numbers for identically distributed Banach-space valued random variables. Teor. Veroyatnost. i Primenen., 26, 584-590 (1981), in Russian; English translation in Theory Probab. Appl., 26, 573-580 (1981)
[5] Yang, X. Y., Wang, X. C.: Tail probabilities for sums of independent and identically distributed Banach space valued random elements. Northeast. Math. J., 2, 327-338 (1986)
[6] de Acosta, A.: Inequalities for \mathbf{B}-valued random vectors with applications to the law of large numbers. Ann. Probab., 9, 157-161 (1981)
[7] Li, D. L., Zhang, F. X., Rosalsky, A.: A supplement to the Baum-Katz-Spitzer complete convergence theorem. Acta Mathematica Sinica, English Series, 23(3), (2007)
[8] Rogozin, B. A.: On the existence of exact upper sequences. Teor. Veroyatnost. i Primenen., 13, 701-707 (1968), in Russian; English translation in Theory Probab. Appl., 13, 667-672 (1968)
[9] Heyde, C. C.: A note concerning behaviour of iterated logarithm type. Proc. Amer. Math. Soc., 23, 85-90 (1969)
[10] Einmahl, U., Li, D.: Some results on two-sided LIL behavior. Ann. Probab., 33, 1601-1624 (2005)
[11] Hartman, P., Wintner, A.: On the law of the iterated logarithm. Amer. J. Math., 63, 169-176 (1941)
[12] Strassen, V.: A converse to the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete, 4, 265-268 (1966)
[13] Davis, J. A.: Convergence rates for the law of the iterated logarithm. Ann. Math. Statist., 39, 1479-1485 (1968)
[14] Li, D. L., Wang, X. C., Rao, M. B.: Some results on convergence rates for probabilities of moderate deviations for sums of random variables. Internat. J. Math. \& Math. Sci., 15, 481-497 (1992)
[15] Gut, A.: Convergence rates for probabilities of moderate deviations for sums of random variables with multidimensional indices. Ann. Probab., 8, 298-313 (1980)
[16] Feller, W.: An extension of the law of the iterated logarithm to variables without variance. J. Math. Mech., 18, 343-356 (1968)
[17] Heyde, C. C.: On the converse to the iterated logarithm law. J. Appl. Probab., 5, 210-215 (1968)
[18] Steiger, W. L., Zaremba, S. K.: The converse of the Hartman-Wintner theorem. Z. Wahrsch. Verw. Gebiete, 22, 193-194 (1972)
[19] Martikainen, A. I.: A converse to the law of the iterated logarithm for a random walk. Teor. Veroyatnost. i Primenen., 25, 364-366 (1980), in Russian; English translation in Theory Probab. Appl., 25, 361-362 (1981)
[20] Rosalsky, A.: On the converse to the iterated logarithm law. Sankhy \bar{a} Ser. A, 42, 103-108 (1980)
[21] Pruitt, W. E.: General one-sided laws of the iterated logarithm. Ann. Probab., 9, 1-48 (1981)
[22] Li, D. L.: Convergence rates of law of iterated logarithm for B-valued random variables. Sci. China Ser. A, 34, 395-404 (1991)
[23] Ledoux, M., Talagrand, M.: Characterization of the law of the iterated logarithm in Banach spaces. Ann. Probab., 16, 1242-1264 (1988)
[24] Ledoux, M., Talagrand, M.: Some applications of isoperimetric methods to strong limit theorems for sums of independent random variables. Ann. Probab., 18, 754-789 (1990)
[25] Li, D. L.: A remark on the symmetrization principle for sequences of B-valued random elements. Acta Sci. Natur. Univ. Jilin., 1988, 17-20 (1988), in Chinese
[26] Araujo, A., Giné, E.: The Central Limit Theorem for Real and Banach Valued Random Variables, John Wiley, New York, 1980
[27] Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes, Springer-Verlag, Berlin, 1991
[28] Chow, Y. S., Teicher, H.: Probability Theory: Independence, Interchangeability, Martingales, 3rd Edition, Springer-Verlag, New York, 1997
[29] Petrov, V. V.: A generalization of a certain inequality of Lévy. Teor. Verojatnost. i Primenen., 20, 140-144 (1975), in Russian; English translation in Theory Probab. Appl., 20, 141-145 (1975)
[30] Petrov, V. V.: Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Clarendon Press, Oxford University Press, New York, 1995
[31] Baum, L. E., Katz, M., Stratton, H. H.: Strong laws for ruled sums. Ann. Math. Statist., 42, 625-629 (1971)

[^0]: Received October 12, 2005, Accepted March 8, 2006
 The work of both De Li Li and Andrei Volodin is supported by a grant from the Natural Sciences and Engineering Research Council of Canada

