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Special cases in order statistics for the alternative parametrization of the
Generalized Power Function Distribution
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ABSTRACT
This paper investigates the order statistics based on the moment-generating function for the
Generalized Power Function Distribution for the two different forms of this distribution. In
this paper, we continue our investigation on the distribution of order statistics assuming that
the original sample Y = (Y1, Y2, . . . , Yn) of size n is taken from a population that follows the
Generalized Power Function Distribution. Two different forms of the Generalized Power
Function Distribution with its special cases are presented and some order statistics related to
these different forms are discussed. The main technique is the consideration of the moment-
generating function.
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1. Introduction

The Generalized Power Function Distribution (GPFD) is
one of the useful lifetime distribution models which
offers a good fit to various sets of failure data. This
paper investigates the moment generating function
and moments for the special cases of the order stat-
istics for the GPFD by the classical method of
moment generating functions [1].

The GPFD [2] is defined as

f (y) = p
sbp

y − u

s
+ a

( ) p−1

,

u− as ≤ y ≤ u+ (b− a)s, 0 otherwise,

(1)

where p ≥ 1, and a and b are defined as:

b = ( p+ 1)

�������
p+ 2
p

√
, a =

����������
p(p+ 2)

√
. (2)

It is well known that the GPFD is a special case of
Beta (p, q) when q = 1 distribution [2].

The following is the alternative parametrization of
the GPFD [3]:

f (y) = p
(b− a)p

(y − a) p−1, p . 1, a ≤ y ≤ b. (3)

In the following, we will always assume that parameter
p . 1, and we will not specify this anymore.

Figure 1 shows the probability density function for
the GPFD for the parametrization (3) for different

values for the shape p, scale b and location a
parameters.

2. Parametrization (3)

Let Y = (Y1, Y2, . . . Yn) be a random sample of size n
from a population which follows the GPFD with the
probability density function (3). Al Mutairi [4] derived
the probability density function of the r-th order stat-
istic Y(r), 1 ≤ r ≤ n, Y(1) ≤ Y(2) ≤ . . . ≤ Y(r) ≤ . . . ≤ Y(n),
obtained from this random sample in the following
form:

gY(r) (y)= rp
n

r

( )∑n−r

k=0

n− r

k

( )
(− 1)k

(b− a)(n−k)p (y− a)(n−k)p−1,

a≤ y ≤ b, 0 otherwise.

In addition, Al Mutairi [4] derived the moment gen-
erating function for the order statistic Y(r), 1 ≤ r ≤ n as
follows:

MY(r) (u) =
∑n−r

k=0

Cke
au

∑1
n=0

[(b− a)u]n

n!

(n− k)p
(n− k)p+ n

{ }
,

(4)

where

Ck = (− 1)k

n− k
r

n
r

( )
n− r
k

( )
.
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Hence the m-th moment of the order statistic Y(r) is
given as:

E(Ym
(r)) =

∑n−r

n=0
Ck(n− k)p

(b− a) p(r+k)

∑(n−k)p−1

n=0

(n− k)p− 1

n

( )

× (− a)n

(n− k)p− n+m
[b(n−k)p−n+m − a(n−k)p−n+m].

(5)

In particular, the first moment of the order statistics
Y(r) is obtained by settingm = 1 in Equation (5) and this
leads to

E(Y(r)) =

∑n−r

k=0
Ck(n− k)p

(b− a)(n−k)p

∑(n−k)p−1

n=0

(n− k)p− 1

n

( )

× (− a)n[b(n−k)p−n+1 − a(n−k)p−n+1]
(n− k)p− n+ 1

.

The second non-central moment m(2)
Y(r) is obtained by

settingm = 2 in Equation (5). The same as in Al Mutairi
[4], we obtain

E(Y2
(r)) =

∑n−r

k=0
Ck(n− k)p

(b− a)(n−k)p

∑(n−k)p−1

n=0

(n− k)p− 1

n

( )

× (− a)n[b(n−k)p−n+2 − a(n−k)p−n+2]
(n− k)p− n+ 2

2.1. Special case

Let a = 0 and b = 1 in Equation (3) to get one of the
most important special cases which is known as a
standard Power Function distribution that has
many applications. For example, see ref. [3] where
data representing the failure time in minutes of an
electrical insulation device are considered and have
been modelled as a standard Power Function
distribution.

To derive some properties for this special case, we
consider the moment generating function of the
order statistic Y(r) (Equation (4)) as follows:

MY(r) (u) =
∑n−r

k=0

Ck
∑1
n=0

(u)n

n!

(n− k)p
(n− k)p+ n

[ ]

=
∑n−r

k=0

Ck 1+ (n− k)pu
[(n− k)p+ 1]1!

[

+ (n− k)pu2

[(n− k)p+ 2]2!
+ . . .

]
. (6)

Then, by differentiating Equation (6) and setting
u = 0, the first moment (mean) mY(r) of the order stat-
istic Y(r) for the GPFD with a = 0 and b = 1 is obtained
as

d
du

MY(r) (u)=
∑n−r

k=0

Ck
(n− k)p

(n− k)p+ 1
+ 2(n− k)pu
((n− k)p+ 2)2!

+ . . .

[ ]

mY(r) =
d
du

MY(r) (u)|u=0 =
∑n−r

k=0

Ck
(n− k)p

(n− k)p+ 1

[ ]
.

In the same way, the second non-central moment
m(2)
Y(r) for the order statistic for the Standard Power Func-

tion Distribution is computed as

m(2)
Y(r) =

∑n−r

k=0

Ck
(n− k)p

(n− k)p+ 2

[ ]
.

The variance s2
Y(r) of the order statistic Y(r) for the GPFD

with a = 0 and b = 1 can be obtained as follows:

s2
Y(r) = m(2)

Y(r) − (mY(r) )
2

=
∑n−r

k=0

Ck
(n− k)p

(n− k)p+ 2

{ }
−

∑n−r

k=0

Ck
(n− k)p

(n− k)p+ 1

[ ]{ }2

=
∑n−r

k=0

Ck

(n− k)p[(n− k)p+ 1]2

−∑n−r

k=0
Ck(n− k)2p2[(n− k)p+ 2]

[(n− k)p+ 2][(n− k)p+ 1]2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Figure 1. Probability density functions for the GPFD of the form (3).
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3. Alternative parametrization (1)

A special case of the alternative parametrization of the
GPFD can be obtained by setting u = 0 and s = 1 in
Equation (1). Then we obtain

f (y) = p
bp

(y + a) p−1, − a ≤ y ≤ b− a, (7)

where p is the shape parameter, b is the scale par-
ameter and a is the location parameter [3]. Moreover,
a special case of Equation (7) can be obtained by
setting a = 0 and b = 1 which leads to the same
formula of Standard GPFD that is discussed in
Section 2.1.

The probability density function of the r-th order
statistic Y(r) is given [4] as follows:

gY(r) (y) = rp
n

r

( )∑n−r

t=0

n− r

t

( )
(− 1)t

b(n−t)p
(y + a)(n−t)p−1,

− a ≤ y ≤ b− a. (8)

See refs. [5] and [6].
With preliminaries accounted for, we can now for-

mulate and prove the following theorem.

Theorem 1: If Y(r) is the r-th order statistic for a sample
from the population with GPFD of the form (7), then:

(i) The moment generating function MY(r) (u) of the order
statistic Y(r) is given as:

MY(r) (u) =
∑n−r

t=0

Cte
−au

∑1
n=0

[bu]n

n!

(n− t)p
(n− t)p+ n

{ }
. (9)

(ii) The first moment(mean) mY(r) , second non-central
moment m(2)

Y(r) and the variance s2
Y(r) of the order stat-

istic Y(r) are given in [7] as

mY(r) =
∑n−r

t=0

Ct
(n− t)bp

(n− t)p+ 1
− a

( )
(10)

m2
Y(r) =

∑n−r

t=0

Ct a2 − 2a(n− t)bp
(n− t)p+ 1

+ (n− t)b2p
(n− t)p+ 2

( )

(11)

(iii) The m-th moment E(Ym
(r)) of the order statistic Y(r) is

E(Ym
(r)) =

∑n−r

n=0
Ct(n− t)p

(b− a) p(r+k)

∑(n−t)p−1

n=0

(n− t)p− 1

n

( )

× an

(n− t)p− n+m

× [(b− a)(n−t)p−n+m − (− a)(n−t)p−n+m]. (13)

Proof: (i) The moment generating function of the
order statistic Y(r) can be obtained by the considering
the probability density function

gY(r) (yr)=
n!

(r− 1)!(n− r)!
(yr − a)p

(b− a)p

[ ]r−1

1− (yr − a)p

(b− a)p

[ ]n−r

× p
(b− a)p

(yr − a)p−1, − a≤ yr ≤ b− a. (14)

This leads to

MY(r) (u) = E(euyr ) =
∫b−a

−a
euyr

∑n−r

t=0

Ctf (yr) dyr ,

where f (yr) is given by

f (yr) = (n− k)p(yr − a)(n−k)p−1

(b− a)(n−k)p . (15)

Then using the following substitution:

yr = bx − a hence dyr = bdx.

The limits of integration become as follows:

yr = −a ⇒ x = 0yr = b− a ⇒ x = 1.

s2
Y(r) =

∑n−r

k=0

Ct

(n− t)3p3 (b−a)2−∑n−r

t=0
Ct(b−a)2

[ ]
+ (n− t)2p2 (b2−4ab+3a2)+ (b−a)2+2

∑n−r

t=0
Cta(b−a)−2

∑n−r

t=0
Ct(b−a)2

[ ]
[(n− t)p+2][(n− t)p+1]2

⎡
⎢⎢⎣

⎤
⎥⎥⎦

=
(n− t)p[2a+ (b2−4ab+3a2)−∑n−r

t=0
Cta2+4

∑n−r

t=0
Cta(b−a)]+2a2−2

∑n−r

t=0
Cta2

[(n− t)p+2][(n− t)p+1]2
(12)
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Thus, the previous equation becomes

MY(r) (u) =
∑n−r

t=0

Ct

∫1
0
e[bux−au] (n− t)p[bx](n−t)p−1

b(n−t)p−1
dx

=
∑n−r

t=0

Ct(n− t)pe−au
∫1
0
ebuxx(n−t)p−1dx

=
∑n−r

t=0

Ct(n− t)pe−au
∫1
0
x(n−t)p−1

× 1+ bux
1!

+ b2u2x2

2!
+ . . .

{ }
dx

=
∑n−r

t=0

Ct(n− t)pe−au 1
(n− t)p

+ bu
((n− t)p+ 1)1!

{

+ b2u2

((n− t)p+ 2)2!
+ . . .

}

=
∑n−r

t=0

Cte
−au 1+ (n− t)bpu

((n− t)p+ 1)1!

{

+ (n− t)b2pu2

((n− t)p+ 2)2!
+ . . .

}

=
∑n−r

t=0

Cte
−au

∑1
n=0

[bu]n

n!

(n− t)p
(n− t)p+ n

{ }
.

(16)

This formula proves Equation (9) in Theorem 1,
which provides the moment generating function
MY(r) (u) of the order statistic Y(r).

(ii) The first moment (mean) mY(r) for the order stat-
istic Y(r) is calculated by differentiating Equation (9)
with respect to u and setting u = 0:

dMY(r)

du
(u) =

∑n−r

t=0

Ct −ae−au 1+ (n− t)bpu
((n− t)p+ 1)1!

+ (n− t)b2pu2

((n− t)p+ 2)2!
+ . . .

[ ]{

+e−au (n− t)bp
((n− t)p+ 1)1!

+ 2(n− t)b2pu
((n− t)p+ 2)2!

+ . . .

[ ]}
.

Then, by setting u = 0, we obtain

mY(r) =
d
du

MY(r) (u)|u=0

=
∑n−r

t=0

Ct
(n− t)bp

(n− t)p+ 1
− a

[ ]
,

which represents the first moment (mean) mY(r) for the
order statistic Y(r).

The second non-central moment m(2)
Y(r)

of the order
statistics is calculated as:

d2MY(r) (u)
du2

=
∑n−r

t=0

Ct a2e−au 1+ (n− t)bup
((n− t)p+ 1)

[{

+ (n− t)b2u2p
2((n− t)p+ 2)

+ . . .

]

−ae−au (n− t)bp
((n− t)p+ 1)

+ (n− t)b2up
((n− t)p+ 2)

+ . . .

[ ]

+e−au (n− t)b2p
((n− t)p+ 2)

[ ]}
.

Then, by setting u = 0, we obtain

m(2)
Y(r) =

d2

du2
MY(r) (u)|u=0 =

∑n−r

t=0

Ct a2 − a
(n− t)bp

(n− t)p+ 1

[ ]{

−a
(n− t)bp

(n− t)p+ 1

[ ]
+ (n− t)b2p

(n− t)p+ 2

}

=
∑n−r

t=0

Ct a2 − 2a(n− t)bp
(n− t)p+ 1

+ (n− t)b2p
(n− t)p+ 2

{ }
,

which represents the second non-central moment m(2)
Y(r)

of the order statistic Y(r).
In addition, the variance s2

Y(r) of the order statistic Y(r)
can be calculated as follows:which represents the var-
iance s2

Y(r) for the order statistic Y(r).

(iii) Finally, the m-th moment E(Ym
(r)) for the order

statistic is

E(Ym
(r)) =

∫b−a

−a
ymr

∑n−r

t=0

CtfZt (yr)dyr

=
∫b−a

−a
ymr

∑n−r

t=0

Ct
(n− t)p(yr + a)(n−t)p−1

b(n−t)p
dyr .

s2
Y(r) = m(2)

Y(r) − (mY(r) )
2

=
∑n−r

k=0

Ct

(n− t)3p3[(b− a)2 − ∑n−r

t=0
Ct(b− a)2]+ (n− t)2p2[(b2 − 4ab+ 3a2)+ (b− a)2 + 2

∑n−r

t=0
Cta(b− a)− 2

∑n−r

t=0
Ct(b− a)2]

[(n− t)p+ 2][(n− t)p+ 1]2

=
+(n− t)p[2a+ (b2 − 4ab+ 3a2)− ∑n−r

t=0
Cta2 + 4

∑n−r

t=0
Cta(b− a)]+ 2a2 − 2

∑n−r

t=0
Cta2

[(n− t)p+ 2][(n− t)p+ 1]2
,
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Using the binomial expansion, we obtain the follow-
ing:

E(Ym
(r)) =

∑n−r

t=0
Ct(n− t)p

b(n−t)p

∫b−a

−a
ymr

∑(n−t)p−1

n=0

(n− t)p− 1

n

( )

× any(n−t)p−n−1
r dyr

=
∑n−r

t=0
Ct(n− t)p

b(n−t)p

∑(n−t)p−1

n=0

(n− t)p− 1

n

( )

× an
∫b−a

−a
y(n−t)p−n−1+m
r dyr

=
∑n−r

t=0
Ct(n− t)p

b(n−t)p

∑(n−t)p−1

n=0

(n− t)p− 1

n

( )

× an

(n− t)p− n+m

×[(b− a)(n−t)p−n+m − (− a)(n−t)p−n+m].

This result proves Equation (13) in Theorem 1, which
represents them-th moment E(Ym

(r)) of the order statistic
Y(r).

Now we consider first two moments for (7). We can
obtain the first moment (mean) mY(r) of the order stat-
istic Y(r) by setting m = 1 in Equation (13) as follows:

E(Y(r)) =
∑n−r

t=0
Ct(n− t)p

b(n−t)p

∑(n−t)p−1

n=0

(n− t)p− 1

n

( )

× an

(n− t)p− n+ 1

× [(b− a)(n−t)p−n+1 − (− a)(n−t)p−n+1].

Similarly, by setting m = 2 in Equation (13), we get:

E(Y2
(r)) =

∑n−r

t=0
Ct(n− t)p

b(n−t)p

∑(n−t)p−1

n=0

(n− t)p− 1

n

( )

× an

(n− t)p− n+ 2

× [(b− a)(n−t)p−n+2 − (− a)(n−t)p−n+2]. (17)

This gives the second non-central moment m(2)
Y(r) for

GPFD.

4. Conclusion

In this paper, two different forms of the GPFD with its
special cases are presented and some order statistics
related to these different forms are discussed. The
main technique is the consideration of the moment
generating function.
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