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Abstract
In this article, the concept of J -uniform integrability of a sequence of random variables 
{

X
k

}

 with respect to 
{

a
nk

}

 is introduced where J  is a non-trivial ideal of subsets of the 
set of positive integers and 

{

a
nk

}

 is an array of real numbers. We show that this concept 
is weaker than the concept of 

{

X
k

}

 being uniformly integrable with respect to 
{

a
nk

}

 and is 
more general than the concept of B-statistical uniform integrability with respect to 

{

a
nk

}

 . 
We give two characterizations of J -uniform integrability with respect to 

{

a
nk

}

 . One of 
them is a de La Vallée Poussin type characterization. For a sequence of pairwise independ-
ent random variables 

{

X
k

}

 which is J -uniformly integrable with respect to 
{

a
nk

}

 , a law of 
large numbers with mean ideal convergence is proved. We also obtain a version without the 
pairwise independence assumption by strengthening other conditions. Supplements to the 
classical Mean Convergence Criterion are also established.
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1 Introduction

Probability limit theorems are crucial for making advances in mathematical statistics and 
its applications. The concept of uniform integrability plays an important role in establish-
ing probability limit theorems. It is well known that mean convergence of order p > 0 of a 
sequence of Lp random variables 

{

Xk

}

 to a random variable X implies that 
{

Xk

}

 converges 
in probability to X and that for p > 0 , convergence in probability of 

{

Xk

}

 to X does not 
guarantee that mean convergence of order p holds, even if Xk ∈ Lp , k ≥ 1 . However, con-
vergence in probability when combined with an additional uniform integrability condition 
is equivalent to mean convergence. This equivalence is made precise by the classical Mean 
Convergence Criterion (see Theorem 8 in Section 6).

The main motivation of summability theory is to make a non-convergent sequence or 
series converge in a more general sense. Summability theory has many applications (see 
the discussion in [22] and the references cited in that discussion).

In this article, we introduce the concept of J -uniform integrability of a sequence of 
random variables 

{

Xk

}

 with respect to an array 
{

ank
}

 of real numbers where J  is an ideal 
of subsets of the set of positive integers. (Technical terms will be defined below.) This con-
cept is more general than the concept of B-statistical uniform integrability with respect to 
{

ank
}

.
Let x =

{

xk ∶ k ≥ 1
}

 be a real sequence and let B =
{

bnk ∶ n ≥ 1, k ≥ 1
}

 be a summa-
bility matrix (an array of real numbers). Assume that the series

converges for all n ∈ ℕ , where ℕ is the set of positive integers. If the sequence 
{

(Bx)n ∶ n ≥ 1
}

 is convergent to a real number � , then we say that the sequence x is B-sum-
mable to the real number �.

A summability matrix B is said to be regular if lim
n→∞

(Bx)n = � whenever lim
k→∞

xk = � (see, 
[2]).

Let B a non-negative regular summability matrix and let S ⊂ ℕ . Then the number

is said to be the B-density of S whenever the limit exists (see, [3, 4, 16]). Regularity of the 
summability matrix B yields that 0 ≤ �B(S) ≤ 1 whenever �B(S) exists. If we take B = C , 
the Cesàro matrix, then �(S) ∶= �C(S) is called the (natural or asymptotic) density of S 
(see, [11]), where C = (cnk) is the summability matrix (Cesàro matrix) defined by

A real sequence x = {xk} is said to be B -statistically convergent (see, [9, 12]) to a real 
number � if for any 𝜀 > 0,

(Bx)n =

∞
∑

k=1

bnkxk

�B(S) ∶= lim
n→∞

∑

k∈S

bnk

c
nk

=

{

1

n
, if k ≤ n

0 , otherwise.
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holds. In this case, we write stB − lim
k→∞

xk = � . If we consider the Cesàro matrix then C-sta-

tistical convergence is known as statistical convergence [10, 23, 25]. In general, B-statisti-
cal convergence is regular (i.e., it preserves ordinary limits) and there exist sequences 
which are B-statistically convergent but not ordinary convergent.

The concept of J -convergence is based on the notion of an ideal J  of subsets of the 
set ℕ.

Let X be a nonempty set. A family J  of subsets of X is called an ideal of subsets of 
X if 

 i. A ∪ D ∈ J  whenever A,D ∈ J ,
 ii. If A ∈ J  and D ⊂ A , then D ∈ J  (see [17]).

An ideal J  of subsets of X is said to be a non-trivial ideal if J ≠ ∅ and X ∉ J  . If 
{x} ∈ J  for every x ∈ X , then J  is said to be an admissible ideal. Throughout this 
paper, all ideals are considered as non-trivial ideals of subsets of ℕ.

A real sequence x = {xk} is said to be J -convergent to a real number � , if for any 
𝜀 > 0

and in this case we write J − limk→∞ xk = � (see [17]).
Let Jfin be the ideal of all of the finite subsets of ℕ . Then Jfin is a non-trivial admissible 

ideal and Jfin-convergence coincides with the ordinary (Cauchy) convergence (see [17]).
Consider the family J  of B-density zero sets for a non-negative regular summability 

matrix B. Suppose that A,D ∈ J  . Then we have

On the other hand, as the elements of B are non-negative we can write

Now, by (1) and (2) we obtain

So, A ∪ D ∈ J  . To see (ii) let A ∈ J  and D ⊂ A . Then we have

and

Now, (3) and (4) yield that

�B(
{

k ∈ ℕ ∶ |

|

xk − �|
|

≥ �
}

) = 0

{

k ∈ ℕ ∶ |

|

xk − �|
|

≥ �
}

∈ J,

(1)lim
n→∞

∑

k∈A

bnk = lim
n→∞

∑

k∈D

bnk = 0.

(2)0 ≤

∑

k∈A∪D

bnk ≤
∑

k∈A

bnk +
∑

k∈D

bnk.

lim
n→∞

∑

k∈A∪D

bnk = 0.

(3)lim
n→∞

∑

k∈A

bnk = 0

(4)0 ≤

∑

k∈D

bnk ≤
∑

k∈A

bnk.
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So, D ∈ J  . Hence, J  is an ideal. It is clear from the Silverman-Toeplitz Theorem (see 
Theorem  2.3.7 of [2]) that J  is non-trivial and admissible. In this case, J -convergence 
coincides with B-statistical convergence. Note that the ideal given in (g) of Example 3.1 of 
[17] does not coincide with B-statistical convergence for any non-negative regular matrix 
B.

Furthermore, ordinary convergence implies J -convergence and a J -limit is unique 
whenever J  is an admissible ideal (see [17]).

The concepts of an ideal lower bound and an ideal upper bound of a real sequence are 
defined in [1]. Let x = (xk) be a real sequence and let J  be an ideal over ℕ . A real number a 
is said to be a J -lower bound of x if

and a real number b is said to be a J -upper bound of x if

As ∅ ∈ J  , a number is a J -lower (upper) bound of a sequence whenever it is an ordinary 
lower (upper) bound of it. The converse of this statement is not true in general (see, Theo-
rems 2.1 and 2.2 of [1]).

Now we recall the definitions of the concept of supremum and infimum with respect to 
an ideal. The supremum of all J -lower bounds of x is called the J -infimum of the sequence 
x and the infimum of all J -upper bounds of x is called the J -supremum of the sequence x. 
The J -infimum of x = (xk) is denoted by J − infk∈ℕ xk

 and the J -supremum of x = (xk) is 
denoted by 

J − supk∈ℕ xk
 [1]. It is also shown in [1] that

Remark 1 Suppose that 
J − supk∈ℕ xk = K < ∞

 . Then for any 𝜀 > 0 there exists 𝛽 < K + 𝜀 

such that 
{

k ∈ ℕ ∶ xk > 𝛽
}

∈ J  . Thus, we have

and

Now we recall some previous versions of the notion of uniform integrability.

Definition 1 A sequence of random variables {Xk, k ≥ 1} is said to be: 

1. Uniformly integrable in classical sense if 

2. Uniformly integrable with respect to {ank} if 

lim
n→∞

∑

k∈D

bnk = 0.

{

k ∈ ℕ ∶ xk < a
}

∈ J

{

k ∈ ℕ ∶ xk > b
}

∈ J.

(5)inf
k∈ℕ

xk ≤ J − inf
k∈ℕ

xk ≤ J − sup
k∈ℕ

xk ≤ sup
k∈ℕ

xk.

{

k ∈ ℕ ∶ xk > K + 𝜀
}

∈ J

{

k ∈ ℕ ∶ xk ≥ K + �
}

∈ J.

lim
c→∞

sup
k∈ℕ

𝔼|Xk|I{|Xk|>c} = 0.
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 provided that 

3. B-statistically uniformly integrable with respect to {ank} if 

 provided that B is regular summability matrix with non-negative elements and 

The notion of the uniform integrability in classical sense is well known and can be 
found in any graduate level textbook on probability theory (see, for example, [8] Chap-
ter 4, Section 4.5). The notion of uniform integrability with respect to {ank} was intro-
duced in [20] and [21] and the notion of B-statistical uniform integrability with respect 
to {ank} was introduced in [22].

The following result which characterizes uniform integrability in the classical sense 
is known as the classical uniform integrability criterion (see [7] Chapter 4, Section 4.2).

Theorem 1 A sequence of random variables {Xk} is uniformly integrable in the classical 
sense if and only if 

 i. 
supk∈ℕ 𝔼|Xk| < ∞

 and

 ii. for all 𝜀 > 0 , there exists 𝛿 > 0 such that for every event A with P(A) < 𝛿 , 

The condition (ii) is the property that the sequence of set functions {Qk} defined 
on the �-algebra of events by Qk(A) = �|Xk|IA, k ≥ 1 is uniformly absolutely continu-
ous with respect to the probability measure P (see Serfling (1980) [24] Chapter  1, 
Section 1.4).

It is easy to show via examples that (i) and (ii) are independent conditions in the 
sense that neither implies the other.

Remark 2 It was shown in [14] that (ii) is indeed equivalent to the apparently stronger 
condition

ii′. For all 𝜀 > 0 , there exists 𝛿 > 0 such that for every sequence of events {Ak} with 
P(Ak) < 𝛿, k ≥ 1,

lim
c→∞

sup
n∈ℕ

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|I{|Xk|>c} = 0

sup
n∈ℕ

∞
∑

k=1

|

|

ank
|

|

< ∞.

lim
c→∞

sup
n∈ℕ

stB

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|I{|Xk|>c} = 0

sup
n∈ℕ

stB

∞
∑

k=1

|

|

ank
|

|

< ∞.

sup
k∈ℕ

𝔼|Xk|IA < 𝜀.
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The following classical result of Charles de La Vallée Poussin (see [19] p. 19) provides 
another characterization of uniform integrability in the classical sense. It is referred to as 
the classical de La Vallée Poussin criterion for uniform integrability.

Theorem  2 A sequence of random variables {Xk} is uniformly integrable in the classi-
cal sense if and only if there exists a convex monotone function G defined on [0,∞) with 
G(0) = 0 such that

The proof of the necessity half is much more difficult than that of the sufficiency half. 
On the other hand, the sufficiency half provides a very useful method for establishing uni-
form integrability in classical sense of a sequence of random variables. For the sufficiency 
half, the condition that G is a convex monotone function defined on [0,∞) with G(0) = 0 
is not needed; it can weakened to the condition that G is a nonnegative Borel measurable 
function defined on [0,∞).

An alternative proof of the classical de La Vallée Poussin criterion for uniform integra-
bility was provided by [6].

Remark 3 In the following we will use the following two simple observations. Let 
{dn, n ≥ 1} and {en, n ≥ 1} be two sequences of nonnegative numbers and 𝜀 > 0 . Then, 

1. {n ∈ ℕ ∶ dn + en ≥ 𝜀} ⊂ {n ∈ ℕ ∶ dn ≥
𝜀

2
} ∪ {n ∈ ℕ ∶ en ≥

𝜀

2
}.

2. For any H > 0 : {n ∈ ℕ ∶ dnen ≥ 𝜀} ⊂ {n ∈ ℕ ∶ dn ≥
𝜀

H
} ∪ {n ∈ ℕ ∶ en ≥ H}.

  We will also need the following two famous inequalities:
3. The cp-inequality: For any p ≥ 1 and any two random variables X and Y with finite 

absolute pth moment, 

4. The von Bahr-Essen inequality: For any sequence X1,X2,… ,Xn of mean zero independ-
ent random variables with finite absolute pth moment, 1 ≤ p ≤ 2 , there exists a constant 
Cp < ∞ such that 

 In fact, the constant Cp = 2 works for all p ∈ [1, 2] . See Theorem 2 of [26].

The plan of the paper is as follows. The concept of J -uniform integrability of a 
sequence of random variables with respect to an array of real numbers is introduced in 
Section 2 where J  is a non-trivial ideal of subsets of the set of positive integers and two 
characterizations (Theorems 3 and 4) of this concept are given in Section 3. Theorem 3 
is an analogue of the classical uniform integrability criterion (Theorem  1) and Theo-
rem 4 is an analogue of the classical de La Vallée Poussin criterion for uniform integra-
bility (Theorem 2). In Section 4, the concepts of a sequence of random variables being 

sup
k∈ℕ

𝔼|Xk|IAk
< 𝜀.

lim
x→∞

G(x)

x
= ∞ and sup

k∈ℕ

𝔼G(|Xk|) < ∞.

�|X + Y|p ≤ 2p−1(�|X|p + �|Y|p).

�

|

|

|

|

|

n
∑

k=1

Xk

|

|

|

|

|

p

≤ Cp

n
∑

k=1

�|Xk|
p.
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J -convergent in the pth mean ( p > 0 ) to a random variable and being J -convergent in 
probability to a random variable are presented and analogues (Theorems 5, 6, and 7) 
of the classical Mean Convergence Criterion are established. Additional remarks on J
-uniform integrability are given in Section 5. In Section 6, supplements (Theorems 10 
and 11) to the classical Mean Convergence Criterion are presented.

2  Definition of J ‑uniform integrability with respect to {ank}

Now we are ready to define a new version of uniform integrability which is called J
-uniform integrability with respect to {ank} . Throughout this paper we assume that J  is 
an ideal over ℕ and {ank} is an array of real numbers such that 

J − supn∈ℕ
∑∞

k=1
�

�

ank
�

�

< ∞
 . 

Without loss of generality we assume that

Definition 2 A sequence of random variables {Xk} is said to be J -uniformly integrable 
with respect to {ank} if

Considering (5), we see that if a sequence of random variables {Xk} is uniformly inte-
grable with respect to {ank} , then it is J -uniformly integrable with respect to {ank} . Note 
that the notion of uniform integrability with respect to {ank} is more general than the 
notion of uniform integrability in the classical sense, (see [20] and [21]). Therefore, uni-
form integrability implies J -uniform integrability with respect to {ank} . Furthermore, if 
we consider the ideal of B-density zero sets, then J -uniformly integrability with respect 
to {ank} is reduces to B-statistical uniform integrability with respect to {ank}.

In the following example, we show that a sequence of random variables can be J
-uniformly integrable with respect to an array, but not uniformly integrable with respect 
to this array.

Example 1 Consider the infinite set of prime numbers {2, 3, 5,…} = {p1, p2,…} ⊂ ℕ . 
Next, consider the following subsets of ℕ:

Of course, the sets Δ̃i are not disjoint. To make them disjoint, consider the following proce-
dure producing a modified sequence of sets {Δi, i ∈ ℕ}:

In order to cover the set of natural numbers ℕ , we need to include the number 1 in one of 
these sets. We put it into the set Δ2 , for example.

(6)J − sup
n∈ℕ

∞
∑

k=1

|

|

ank
|

|

= 1.

lim
c→∞

J − sup
n∈ℕ

∞
∑

k=1

|

|

ank
|

|

𝔼|
|

Xk
|

|

I{|Xk|>c} = 0.

Δ̃i = {jpi, j ∈ ℕ}, i ≥ 1.

Δ1 = Δ̃1 and Δi = Δ̃i ⧵ (∪
i−1
j=1

Δj), i ≥ 2.
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First of all, we note that sets Δi are infinite because the sequence 
Ai = {pi, p

2
i
,… , pn

i
,…} ⊂ Δi . By the Fundamental Theorem of Arithmetic, sets {Δi, i ∈ ℕ} 

form a partition of the set ℕ.
Let F  be the class of all subsets A ⊂ ℕ that have a nonempty intersection with only a 

finite number of Δi’s.
Note that the class F  is nonempty because the aforementioned sequence Ai intersects 

only with one Δi, i ≥ 1 and hence belongs to F  . Also, F  contains all finite subsets of ℕ.
We now verify that F  is an ideal: 

1. For any A,D ∈ F  , the union A ∪ D intersects only with Δi ’s that A or D intersect. 
Because both A and D intersect with only finite number of Δi’s, we have that A ∪ D 
intersects with only finite number of Δi ’s as well; that is, A ∪ D ∈ F .

2. If A ∈ F  and D ⊂ A , then D ∈ F  because D intersects with no larger number of Δi ’s 
than A, which is finite.

In the following, the set of even numbers Δ1 plays an important role.
Note that the ideal F  is non-trivial because ℕ ∉ F  , and the ideal F  is admissible 

because for any n ∈ ℕ, {n} ∈ F .
Define an array {ank, n ≥ 1, k ≥ 1} of real numbers by

Then

Obviously, the usual supremum is infinite:

At the same time, the F − supn≥1
∑∞

k=1
ank is finite, namely

To see this, denote bn =
∑∞

k=1
ank, n ≥ 1 . The number 1 is an F  - upper bound of the 

sequence {bn, n ≥ 1} because by (7)

Next, any number b < 1 cannot be an F  - upper bound of the sequence {bn, n ≥ 1} because 
in this case by (7),

a
nk

=

⎧

⎪

⎨

⎪

⎩

1, if k ≤ n, n ∈ Δ1
1

n
, if k ≤ n, n ∉ Δ1

0, if k > n.

(7)
∞
∑

k=1

ank =

{

n, if n ∈ Δ1

1, if n ∉ Δ1.

sup
n≥1

∞
∑

k=1

ank = ∞.

F − sup
n≥1

∞
∑

k=1

ank = 1.

{n ∈ ℕ ∶ bn > 1} = Δ1 ∈ F.

{n ∈ ℕ ∶ bn > b} = ℕ ∉ F.
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Let {Xk, k ≥ 1} be a sequence of identically distributed random variables with finite mean. 
For any c ≥ 0 , denote

Then

If we assume that h(c) > 0 for all c > 0 (for example, the random variables are normal, or 
exponential, etc.), then the sequence {Xk, k ≥ 1} is not uniformly integrable with respect to 
the array {ank} because

and hence

At the same time,

by the same argument as above. Hence

Therefore, the sequence {Xk, k ≥ 1} is F -uniformly integrable with respect to the array 
{ank}.

3  Two characterizations of J ‑uniformly integrability with respect 
to an array of constants

The following theorem is a characterization of J -uniformly integrability with respect to 
{ank} and is an analogue of the classical uniform integrability criterion Theorem 1.

Theorem 3 A sequence of random variables {Xk} is J -uniformly integrable with respect to 
{ank} if and only if the following two conditions hold:

i. J − supn∈ℕ

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk| < ∞,

ii. For every 𝜀 > 0 , there exist 𝜇(𝜀) > 0 such that

h(c) = �|X1|I{|X1|>c}
.

∞
∑

k=1

ank�|Xk|I{|Xk|>c}
=

{

nh(c), if n ∈ Δ1

h(c), if n ∉ Δ1.

sup
n≥1

∞
∑

k=1

ank�|Xk|I{|Xk|>c}
= sup

n≥1

nh(c) = ∞

lim
c→∞

sup
n≥1

∞
∑

k=1

ank�|Xk|I{|Xk|>c}
= ∞.

F − sup
n≥1

∞
∑

k=1

ank�|Xk|I{|Xk|>c}
= sup

n≥1

h(c) = h(c)

lim
c→∞

F − sup
n≥1

∞
∑

k=1

ank�|Xk|I{|Xk|>c}
= lim

c→∞
h(c) = 0.
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for any sequence 
{

Hk

}

 of events with

Proof Assume that 
{

Xk

}

 is a J -uniformly integrable sequence of random variables with 
respect to 

{

ank
}

 . To prove (i) we fix 𝜀 > 0 . Then, there exists 𝛼 > 0 such that

From (6) and Remark 1 we have for any 𝜀 > 0 that

Now,

Taking complements of these sets, we obtain

As J  is an ideal by (10) we have �
n ∈ ℕ ∶

∑∞

k=1
�

�

a
nk
�

�

𝔼�
�

X
k
�

�

I{�Xk
�≤�} ≥ � + �∕2

�

∈ J
 . On 

the other hand, we have

J − sup
n∈ℕ

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|IHk
≤ �

(8)J − sup
n∈ℕ

∞
∑

k=1

|

|

ank
|

|

P(Hk) ≤ �(�).

(9)

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|I{|Xk|>𝛼} ≥ 𝜀∕2

}

∈ J.

(10)

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

≥ 1 + �∕(2�)

}

∈ J.

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

< 1 + 𝜀∕(2𝛼)

}

⊂

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|I{|Xk|≤𝛼} ≤ 𝛼

∞
∑

k=1

|

|

ank
|

|

< 𝛼 + 𝜀∕2

}

.

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|I{|Xk|≤𝛼} ≥ 𝛼 + 𝜀∕2

}

⊂

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

≥ 1 + 𝜀∕(2𝛼)

}

.

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

a
nk
|

|

𝔼|X
k
| ≥ 𝛼 + 𝜀

}

=

{

n ∈ ℕ ∶

(

∞
∑

k=1

|

|

a
nk
|

|

𝔼|X
k
|I{|Xk

|≤𝛼} − 𝛼

)

+

(

∞
∑

k=1

|

|

a
nk
|

|

𝔼|X
k
|I{|Xk

|>𝛼}

)

≥ 𝜀

}

⊂

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

a
nk
|

|

𝔼|X
k
|I{|Xk

|≤𝛼} ≥ 𝛼 + 𝜀∕2

}

∪

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

a
nk
|

|

𝔼|X
k
|I{|Xk

|>𝛼} ≥ 𝜀∕2

}

(by(1) of Remark3).
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Now, since J  is an ideal we obtain

Therefore, any real number larger than � + � is a J -upper bound of the sequence 
�
∑∞

k=1
�

�

ank
�

�

��Xk�, n ≥ 1
�
 which proves (i).

To prove (ii), let us choose �(�) = �

2�
 . For any sequence 

{

Hk

}

 of events such that (8) is 
satisfied we obtain

Furthermore, we get by (1) of Remark 3 that

Considering that J  is an ideal we have by (9) and (11) that

Hence, (ii) holds.

Conversely, let (i) and (ii) hold. If J − supn∈ℕ

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk| = K < ∞ , then by Remark 

1 we obtain

Now, using Markov’s inequality we get for any c > 0 that

As J  is an ideal, by (12) we have

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk| ≥ � + �

}

∈ J.

(11)

{

n ∈ ℕ ∶ 𝛼

∞
∑

k=1

|

|

ank
|

|

P(Hk) > 𝜀∕2

}

∈ J.

�

n ∈ ℕ ∶
∞
∑

k=1

�

�

ank
�

�

𝔼�Xk�IHk
> 𝜀

�

⊂

�

n ∈ ℕ ∶
∞
∑

k=1

�

�

ank
�

�

𝔼�Xk�IHk∩{�Xk�≤𝛼} > 𝜀∕2

�

∪

�

n ∈ ℕ ∶
∞
∑

k=1

�

�

ank
�

�

𝔼�Xk�IHk∩{�Xk�>𝛼} > 𝜀∕2

�

⊂

�

n ∈ ℕ ∶ 𝛼
∞
∑

k=1

�

�

ank
�

�

P(Hk) > 𝜀∕2

�

∪

�

n ∈ ℕ ∶
∞
∑

k=1

�

�

ank
�

�

𝔼�Xk�I{�Xk�>𝛼} > 𝜀∕2

�

.

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|IHk
> 𝜀

}

∈ J.

(12)

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk| > K + 𝜀

}

∈ J.

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

P(|Xk| > c) >
K + 𝜀

c

}

⊂

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk| > K + 𝜀

}

.
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Now, let c > K+𝜀

𝜇
 . Then, we get

Hence we have by (13) and (14) that

Using the inequality

and applying (ii) for the sequence of events 
{

|Xk| > c
}

 we have

By (15) we have �
n ∈ ℕ ∶

∑∞

k=1
�

�

ank
�

�

𝔼�Xk�I{�Xk�>c} > 𝜀
�

∈ J
 . Hence, we obtain

which completes the proof.   ◻

Remark 4 If we take J  as the ideal of B-density zero sets for a non-negative regular sum-
mability matrix B, then by Theorem 3 we immediately get Theorem 1 of [22].

Being motivated by the classical de La Vallée Poussin type characterizations of uni-
form integrability Theorem 2, we give the following de La Vallée Poussin type charac-
terization of J -uniform integrability with respect to {ank}.

Theorem 4 A sequence of random variables {Xk} is J -uniformly integrable with respect to 
{ank} if and only if there exists a Borel measurable function � ∶ (0,∞) → (0,∞) such that 
limt→∞

�(t)

t
= ∞ and

Proof Suppose that {Xk} is J -uniformly integrable with respect to {ank} . Then we can 
choose a sequence of positive integers {im} such that for any m ∈ ℕ

(13)

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

P(|Xk| > c) >
K + 𝜀

c

}

∈ J.

(14)

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

P(|Xk| > c) > 𝜇

}

⊂

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

P(|Xk| > c) >
K + 𝜀

c

}

.

(15)

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

P(|Xk| > c) > 𝜇

}

∈ J.

�|Xk|I{|Xk|>c} ≥ cP(|Xk| > c)

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|I{|Xk|>c} > 𝜀

}

⊂

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

P(|Xk| > c) > 𝜇

}

.

J − sup
n∈ℕ

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|I{|Xk|>c} ≤ 𝜀

J − sup
n∈ℕ

∞
∑

k=1

|

|

ank
|

|

𝔼𝜑(|Xk|) < ∞.
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Thus, for any fixed m ∈ ℕ , by Remark 1 with K = Km and 𝜀 =
1

2m
− Km > 0 we obtain that

Furthermore, using the fact that if 
∞
∑

m=1

cm >

∞
∑

m=1

c�
m
 , then there exists m0 ∈ ℕ such that 

cm0
> c′

m0
 , where cm and c′

m
 are real numbers. This yields that there exists m0 ∈ ℕ such that

Considering ∑∞

m=1

1

2m
= 1 and J  is an ideal we obtain by (16) and (17) that

On the other hand, there exists a Borel measurable function (see, [20]) � ∶ (0,∞) → (0,∞) 
such that limt→∞

�(t)

t
= ∞ and for any k ∈ ℕ

Therefore, we have that (see [20])

Now, by considering (18) and (19) we get

which yields that J − supn∈ℕ

∞
∑

k=1

|

|

ank
|

|

𝔼�(|Xk|) ≤ 1.

Conversely, assume that there exists such a function � that satisfies assumptions and let 
𝜀 > 0 . Then considering Remark 1 we can write

J − sup
n∈ℕ

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|I{|Xk|>im} = Km <
1

2m
.

(16)

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|I{|Xk|>im} >
1

2m

}

∈ J.

(17)

{

n ∈ ℕ ∶

∞
∑

m=1

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|I{|Xk|>im} >

∞
∑

m=1

1

2m

}

⊂

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|I
{

|Xk|>im0

} >
1

2m0

}

.

(18)

{

n ∈ ℕ ∶

∞
∑

m=1

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|I{|Xk|>im} > 1

}

∈ J.

�𝜑
(

|Xk|

)

≤

∞
∑

m=1

∞
∑

j=im

P
(

|Xk| > j
)

.

(19)

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

𝔼𝜑
(

|Xk|

)

> 1

}

⊂

{

n ∈ ℕ ∶

∞
∑

k=1

(

|

|

ank
|

|

∞
∑

m=1

∞
∑

j=im

P
(

|Xk| > j
)

)

> 1

}

⊂

{

n ∈ ℕ ∶

∞
∑

m=1

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|I{|Xk|>im} > 1

}

.

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

𝔼𝜑
(

|Xk|

)

> 1

}

∈ J
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where K ∶= J − sup
n∈ℕ

∞
∑

k=1

�

�

a
nk
�

�

𝔼�(�X
k
�) . Moreover, there exists 𝛼 > 0 such that 

𝜑(t)

t
>

K + 𝜀 + 1

𝜀
 whenever t > 𝛼 . Thus, we obtain

Hence, since J  is an ideal, (20) yields that

Hence, {Xk} is J -uniformly integrable with respect to {ank} .   ◻

4  Laws of large numbers with mean ideal convergence

Let {Xk} be a sequence of random variables with �|Xk|
p < ∞ , k ≥ 1 where p > 0 . If

then {Xk} is said to be J -convergent in the pth  mean to the random variable X.
A sequence {Xk} is said to be J -convergent to X in probability if for any 𝜀, 𝜈 > 0

and we write Xk

J,P
→ X . Various versions of such convergence can be found in [13, 15]. 

Considering the extended Markov’s inequality, we get that J -convergence in pth mean 
implies J -convergence in probability for p > 0.

Remark 5 Let 0 < p < q . Assume that a sequence of random variables {Xk} is J -conver-
gent to a random variable X in qth mean. Then we have for any 𝜀 > 0 that

On the other hand, as 
(

�|
|

Xk − X|
|

p)1∕p
≤
(

�|
|

Xk − X|
|

q)1∕q
, we obtain for any 𝜀 > 0

(20)

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

𝔼𝜑
(

|Xk|

)

> K + 𝜀

}

∈ J,

�

n ∈ ℕ ∶
∞
∑

k=1

�

�

ank
�

�

𝔼�Xk�I{�Xk�>𝛼} > 𝜀

�

⊂

�

n ∈ ℕ ∶
𝜀

K+𝜀+1

∞
∑

k=1

�

�

ank
�

�

𝔼𝜑
�

�Xk�

�

I{�Xk�>𝛼} > 𝜀

�

=

�

n ∈ ℕ ∶
∞
∑

k=1

�

�

ank
�

�

𝔼𝜑
�

�Xk�

�

I{�Xk�>𝛼} > K + 𝜀 + 1

�

⊂

�

n ∈ ℕ ∶
∞
∑

k=1

�

�

ank
�

�

𝔼𝜑
�

�Xk�

�

I{�Xk�>𝛼} > K + 𝜀

�

.

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

𝔼|Xk|I{|Xk|>𝛼} > 𝜀

}

∈ J.

J − lim
k→∞

�|
|

Xk − X|
|

p
= 0,

{

k ∈ ℕ ∶ P(
(

|

|

Xk − X|
|

) ≥ �
)

≥ �
}

∈ J

{

k ∈ ℕ ∶ 𝔼|
|

Xk − X|
|

q
≥ �q∕p

}

∈ J.

(21)
{

k ∈ ℕ ∶ 𝔼|
|

Xk − X|
|

p
≥ 𝜀

}

⊂
{

k ∈ ℕ ∶ 𝔼|
|

Xk − X|
|

q
≥ 𝜀q∕p

}

.
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Since J  is an ideal, from (21) we obtain

which yields that {Xk} is J -convergent to a random variable X in pth mean.

We need the following lemma for proving a main result. Recall that we say that 
two random variables X and Y are uncorrelated, if their covariance is zero, that is 
Cov(X, Y) = �[(X − �X)(Y − �Y)] = 0 . A sequence of random variables is said to be 
uncorrelated, if any two terms of it are uncorrelated.

Remark 6 The random series in Lemma 1, and Theorems 5–7 are assumed to be a.s. con-
vergent for each n ≥ 1 . Of course, a.s. convergence is automatic for any n ≥ 1 in which 
ank = 0 for all large k.

Lemma 1 Let {Xk} be an uncorrelated sequence of uniformly bounded random variables 
and let {ank} be an array such that (6) holds and

Then

Proof By (6) and Remark 1 by taking � = 1 we obtain

Let H > 0 denote a uniform bound of {Xk} . Then by (22) and Remark 1 we have that for 
any 𝜀 > 0

Considering the assumption that correlations are 0, we obtain

{

k ∈ ℕ ∶ 𝔼|
|

Xk − X|
|

p
≥ �

}

∈ J,

(22)J − lim
n→∞

sup
k∈ℕ

|

|

ank
|

|

= 0.

(23)J − lim
n→∞

�

(

∞
∑

k=1

ank(Xk − �Xk)

)2

= 0.

(24)

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

≥ 2

}

∈ J.

(25)
{

n ∈ ℕ ∶ sup
k∈ℕ

|

|

ank
|

|

≥ �∕2H2

}

∈ J.
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From this, since J  is an ideal by (24) and (25), we have

which yields (23).   ◻

With the preliminaries accounted for, we can now state and prove the main results 
concerning J -convergence in the pth mean.

Theorem 5 Let {Xk} be a sequence independent random variables, 1 < p ≤ 2 , and let {ank} 
be an array such that (6) and (22) hold. If {|Xk|

p} is J -uniformly integrable with respect to 
{

|ank|
p
}

 , then

and, a fortiori,

Proof From J -uniform integrability of {|Xk|
p} with respect to 

{

|ank|
p
}

 , for any 𝜀 > 0 there 
exists 𝛼 > 0 (we write � instead of �1∕p ) such that

where Cp is the constant from the von Bahr-Essen inequality, (4) of Remark 3. By Remark 
1 this implies

⎧

⎪

⎨

⎪

⎩

n ∈ ℕ ∶ 𝔼

�

∞
�

k=1

ank(Xk − 𝔼Xk)

�2

≥ 𝜀

⎫

⎪

⎬

⎪

⎭

=

�

n ∈ ℕ ∶

∞
�

k=1

a2
nk
𝔼(Xk − 𝔼Xk)

2
≥ 𝜀

�

(by (2) of Remark 3)

⊂

�

n ∈ ℕ ∶ H2 sup
k∈ℕ

�

�

ank
�

�

∞
�

k=1

�

�

ank
�

�

≥ 𝜀

�

⊂

�

n ∈ ℕ ∶ sup
k∈ℕ

�

�

ank
�

�

≥ 𝜀∕2H2

�

∪

�

n ∈ ℕ ∶

∞
�

k=1

�

�

ank
�

�

≥ 2

�

.

⎧

⎪

⎨

⎪

⎩

n ∈ ℕ ∶ 𝔼

�

∞
�

k=1

ank(Xk − 𝔼Xk)

�2

≥ �

⎫

⎪

⎬

⎪

⎭

∈ J.

J − lim
n→∞

�

|

|

|

|

|

∞
∑

k=1

ank(Xk − �Xk)
|

|

|

|

|

p

= 0

∞
∑

k=1

ank(Xk − �Xk)
J,P
→ 0.

J − sup
n∈ℕ

∞
∑

k=1

|

|

ank
|

|

p
𝔼|Xk|

pI{|Xk|>𝛼} < 𝜀∕(Cp2
2p),
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Now, let us define

for any k ∈ ℕ.
It is clear that the random variables 

{

Wk − �Wk

}

 are independent and hence uncorre-
lated with uniform bound 2� . Considering Lemma 1 and Remark 5 with q = 2 , we obtain

Thus we get that

Furthermore, the random variables 
{

Tk − �Tk
}

 have mean zero and are independent. By 
the von Bahr-Essen inequality, (4) of Remark 3, we get

From this and (26), since J  is an ideal, we have

Finally, since

(26)

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

p
𝔼|Xk|

pI{|Xk|>𝛼} ≥ 𝜀∕(Cp2
2p)

}

∈ J.

Wk = XkI{|Xk|≤𝛼} and Tk = XkI{|Xk|>𝛼}

J − lim
n→∞

�

|

|

|

|

|

∞
∑

k=1

ank(Wk − �Wk)
|

|

|

|

|

p

= 0.

(27)

{

n ∈ ℕ ∶ 𝔼

|

|

|

|

|

∞
∑

k=1

ank(Wk − 𝔼Wk)
|

|

|

|

|

p

≥ �∕2p

}

∈ J.

{

n ∈ ℕ ∶ 𝔼

|

|

|

|

|

∞
∑

k=1

ank(Tk − 𝔼Tk)
|

|

|

|

|

p

≥ 𝜀∕2p

}

⊂

{

n ∈ ℕ ∶ Cp

∞
∑

k=1

|ank|
p
𝔼|Tk − 𝔼Tk|

p
≥ 𝜀∕2p

}

⊂

{

n ∈ ℕ ∶ 2pCp

∞
∑

k=1

|

|

ank
|

|

p
𝔼|
|

Tk
|

|

p
≥ 𝜀∕2p

}

(by the cp-inequality, (3) of Remark 3)

=

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

p
𝔼|Xk|

pI{|Xk|>𝛼} ≥ 𝜀∕(Cp2
2p)

}

.

(28)

{

n ∈ ℕ ∶ 𝔼

|

|

|

|

|

∞
∑

k=1

ank(Tk − 𝔼Tk)
|

|

|

|

|

p

≥ �∕2p

}

∈ J.
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By (27) and (28) we obtain

Hence, the proof is completed.   ◻

For the case p = 1 , the assumption of the independence in Theorem 5 can be relaxed 
to the assumption of the pairwise independence.

Theorem 6 Let {Xk} be a sequence of pairwise independent random variables and let {ank} 
be an array such that (6) and (22) hold. If {Xk} is J -uniformly integrable with respect to 
{ank} , then

and, a fortiori,

The proof of Theorem 6 repeats the proof of Theorem 5 (pairwise random variables 
are also uncorrelated), with the only difference being that in (28) we do not need to 
apply the von Bahr-Essen inequality, (4) of Remark 3.

For the case 0 < p < 1 , the assumption of any kind of independence can be dropped 
by strengthening the other conditions. We consider this fact in the following theorem.

Theorem 7 Let 0 < p < 1 and let {ank} be an array satisfying (22) and

�

n ∈ ℕ ∶ 𝔼

�

�

�

�

�

∞
�

k=1

ank(Xk − 𝔼Xk)
�

�

�

�

�

p

≥ 𝜀

�

=

�

n ∈ ℕ ∶ 𝔼

�

�

�

�

�

�

�

∞
�

k=1

ank(Wk − 𝔼Wk)

�

+

�

∞
�

k=1

ank(Tk − 𝔼Tk)

�

�

�

�

�

�

�

p

≥ 𝜀

�

⊂

�

n ∈ ℕ ∶ 2p−1

�

𝔼

�

�

�

�

�

∞
�

k=1

ank(Wk − 𝔼Wk)
�

�

�

�

�

p

+ 𝔼

�

�

�

�

�

∞
�

k=1

ank(Tk − 𝔼Tk)
�

�

�

�

�

p�

≥ 𝜀

�

(by the cp-inequality, (3) of Remark 3)

⊂

�

n ∈ ℕ ∶ 𝔼

�

�

�

�

�

∞
∑

k=1

ank(Wk − 𝔼Wk)
�

�

�

�

�

p

≥ 𝜀∕2p

�

∪

�

n ∈ ℕ ∶ 𝔼

�

�

�

�

�

∞
�

k=1

ank(Tk − 𝔼Tk)
�

�

�

�

�

p

≥ 𝜀∕2p

�

(by (1) of Remark 3).

{

n ∈ ℕ ∶ 𝔼

|

|

|

|

|

∞
∑

k=1

ank(Xk − 𝔼Xk)
|

|

|

|

|

p

≥ �

}

∈ J.

J − lim
n→∞

�

|

|

|

|

|

∞
∑

k=1

ank(Xk − �Xk)
|

|

|

|

|

= 0

∞
∑

k=1

ank(Xk − �Xk)
J,P
→ 0.
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If 
{

|Xk|
p
}

 is a J -uniformly integrable sequence of random variables with respect to 
{

|

|

ank
|

|

p} , then

and, a fortiori,

Proof For any 𝜀 > 0 there exists 𝛼 > 0 such that

which yields that

By (6) and Remark 1 by taking � = 1 we have that

On the other hand, 
J − limn→∞ supk∈ℕ

|

|

ank
|

|

= 0
 yields that

Now, defining sequences of random variables 
{

Wk

}

 and 
{

Tk
}

 as in Theorem 5 we get

J − sup
n∈ℕ

∞
∑

k=1

|

|

ank
|

|

p
< ∞.

J − lim
n→∞

�

|

|

|

|

|

∞
∑

k=1

ankXk

|

|

|

|

|

p

= 0

∞
∑

k=1

ankXk

J,P
→ 0.

J − sup
n∈ℕ

∞
∑

k=1

|

|

ank
|

|

p
𝔼|Xk|

pI{|Xk|>𝛼} < 𝜀∕2

(29)

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

p
𝔼|Xk|

pI{|Xk|>𝛼} > 𝜀∕2

}

∈ J.

(30)

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

p
≥ 2

}

∈ J.

(31)
{

n ∈ ℕ ∶ sup
k∈ℕ

|

|

ank
|

|

≥ (�∕2�)1∕1−p
}

∈ J.

{

n ∈ ℕ ∶ 𝔼

|

|

|

|

|

∞
∑

k=1

ankWk

|

|

|

|

|

≥ 𝜀

}

⊂

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

𝔼|
|

Wk
|

|

≥ 𝜀

}

⊂

{

n ∈ ℕ ∶ 𝛼 sup
k∈ℕ

|

|

ank
|

|

1−p
∞
∑

k=1

|

|

ank
|

|

p
≥ 𝜀

}

⊂

{

n ∈ ℕ ∶ sup
k∈ℕ

|

|

ank
|

|

1−p
≥ 𝜀∕(2𝛼)

}

∪

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

p
≥ 2

}

(by (2) of Remark 3).
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Therefore, (30) and (31) imply

Hence, J − limn→∞ �

|

|

|

|

|

∞
∑

k=1

ankWk

|

|

|

|

|

= 0 . By Remark 5 we get that

Thus, we obtain

Moreover, since p < 1 , we obtain

Hence, by (29) we get

Next, we have

Hence, by (32) and (33), we get

which completes the proof.   ◻

{

n ∈ ℕ ∶ 𝔼

|

|

|

|

|

∞
∑

k=1

ankWk

|

|

|

|

|

≥ �

}

∈ J.

(32)J − lim
n→∞

�

|

|

|

|

|

∞
∑

k=1

ankWk

|

|

|

|

|

p

= 0.

{

n ∈ ℕ ∶ 𝔼

|

|

|

|

|

∞
∑

k=1

ankWk

|

|

|

|

|

p

≥ �∕2

}

∈ J.

{

n ∈ ℕ ∶ 𝔼

|

|

|

|

|

∞
∑

k=1

ankTk

|

|

|

|

|

p

≥ 𝜀∕2

}

⊂

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

p
𝔼|
|

Tk
|

|

p
≥ 𝜀∕2

}

=

{

n ∈ ℕ ∶

∞
∑

k=1

|

|

ank
|

|

p
𝔼|Xk|

pI{|Xk|>𝛼} ≥ 𝜀∕2

}

.

(33)

{

n ∈ ℕ ∶ 𝔼

|

|

|

|

|

∞
∑

k=1

ankTk

|

|

|

|

|

p

≥ �∕2

}

∈ J.

{

n ∈ ℕ ∶ 𝔼

|

|

|

|

|

∞
∑

k=1

ankXk

|

|

|

|

|

p

≥ 𝜀

}

⊂

{

n ∈ ℕ ∶ 𝔼

|

|

|

|

|

∞
∑

k=1

ankWk

|

|

|

|

|

p

+ 𝔼

|

|

|

|

|

∞
∑

k=1

ankTk

|

|

|

|

|

p

≥ 𝜀

}

⊂

{

n ∈ ℕ ∶ 𝔼

|

|

|

|

|

∞
∑

k=1

ankWk

|

|

|

|

|

p

≥ 𝜀∕2

}

∪

{

n ∈ ℕ ∶ 𝔼

|

|

|

|

|

∞
∑

k=1

ankTk

|

|

|

|

|

p

≥ 𝜀∕2

}

(by (1) of Remark 3).

{

n ∈ ℕ ∶ 𝔼

|

|

|

|

|

∞
∑

k=1

ankXk

|

|

|

|

|

p

≥ �

}

∈ J
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5  Additional remarks on J ‑uniform integrability

Let y = (yk) be a real sequence. If Jfin − supk∈ℕ yk = s < ∞ , then from Remark 1 we have

which means there exist finitely many k ∈ ℕ such that yk > s + 𝜀 . Hence, 
supk∈ℕ yk < ∞

.
If a sequence of random variables {Xk} is Jfin-uniformly integrable with respect to 

{

ank
}

 , 
then from Theorem 4 there exists a Borel measurable function � ∶ (0,∞) → (0,∞) such 
that limt→∞

�(t)

t
= ∞ and

From the observation presented above, we have

Now, from the de La Vallée Poussin type characterizations of uniform integrability with 
respect to {ank} (Theorem 3 of [20]), {Xk} is uniformly integrable with respect to {ank} . On 
the other hand, from (5) it is clear that if {Xk} is uniformly integrable with respect to {ank} , 
then it is Jfin-uniformly integrable with respect to {ank} . Hence, Jfin-uniform integrability 
with respect to {ank} is equivalent to uniform integrability with respect to {ank}.

If we take J  as the ideal of B-density zero subsets of ℕ for a non-negative regular sum-
mability matrix B, then by Theorem 6 we obtain Theorem 3 of [22] and if we take J  as 
Jfin , then by Theorem 6 we obtain Theorem 4 of [20]. Furthermore, if we take J  as the Jfin 
and if we take {ank} to be the Cesàro array, then by Theorem 6 we obtain Theorem 1 of [5].

If we take J  to be the ideal of B-density zero subsets of ℕ for a non-negative regular 
summability matrix B, then by Theorem 7 we obtain Theorem 4 of [22] and if we take J  to 
be the Jfin , by Theorem 7 we obtain Theorem 5 of [20].

6  Supplements to the classical mean convergence criterion

We close by presenting two new results, Theorems 10 and 11, regarding uniform integra-
bility in the classical sense.

The following theorem which is known as the classical Mean Convergence Criterion 
establishes the relationship between convergence in Lp for a sequence of random variables, 
convergence in probability, and uniform integrability in the classical sense (see, for exam-
ple, [7] Chapter 4, Section 4.2).

Theorem 8 Let {Xk} be a sequence of random variables, let X be a random variable, and 
let p > 0 . 

 i. If {Xk} is a sequence of Lp random variables and if Xk

Lp

−−→X , then X ∈ Lp,Xk

P
−→X , 

and {|Xk|
p} is uniformly integrable in the classical sense.

{

k ∈ ℕ ∶ yk > s + 𝜀
}

∈ Jfin,

Jfin − sup
n∈ℕ

∞
∑

k=1

|

|

ank
|

|

𝔼𝜑|Xk| < ∞.

sup
n∈ℕ

∞
∑

k=1

|

|

ank
|

|

𝔼𝜑|Xk| < ∞.
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 ii. If {|Xk|
p} is uniformly integrable in the classical sense and if Xk

P
−→X , then X ∈ Lp 

and Xk

Lp

−−→X.

Let us now introduce the following notation. For a sequence of random variables {Xk} 
and p > 0 , let the sequence of set functions {Qp,k} be defined on the �-algebra of events 
by

We note that if {|Xk|
p} is uniformly integrable in the classical sense, then by Theorem 1 

the sequence of set functions {Qp,k} is uniformly absolutely continuous with respect to the 
probability measure P. Consequently, Theorem 8 (ii) is an immediate consequence of the 
following result which may be found in [18] Chapter 3, Section 9.

Theorem 9 Let {Xk} be a sequence of Lp random variables where p > 0 and let X be a 
random variable. If the sequence of set functions {Qp,k} is uniformly absolutely continuous 

with respect to the probability measure P and if Xk

P
−→X , then

We now present an improved version of Theorem 9.

Theorem 10 Let {Xk} be a sequence of random variables, let X be a random variable, and 
let p > 0 . If the sequence of set functions {Qp,k} is uniformly absolutely continuous with 

respect to the probability measure P and if Xk

P
−→X , then

and {|Xk|
p} is uniformly integrable in the classical sense.

Proof We first show that Xk ∈ Lp, k ≥ 1 . By the uniformly absolutely continuous hypoth-
esis and Remark 2, there exists 𝛿 > 0 such that for every sequence of events {Ak} with 
P(Ak) < 𝛿, k ≥ 1,

Thus for k ≥ 1 , choosing ck > 0 so that P(|Xk| > ck) < 𝛿 , we have

and so Xk ∈ Lp, k ≥ 1.
Thus by Theorem 9,

Then by Theorem 8 (i), {|Xk|
p} is uniformly integrable in the classical sense.   ◻

Qp,k(A) = �|Xk|
pIA, k ≥ 1.

X ∈ Lp and Xk

Lp

−−→X.

Xk ∈ Lp, k ≥ 1,X ∈ Lp,Xk

Lp

−−→X,

sup
k∈ℕ

Qp,k(Ak) < 1.

�|Xk|
p = Qp,k([|Xk| ≤ ck]) + Qp,k([|Xk| > ck]) ≤ c

p

k
+ 1 < ∞

X ∈ Lp and Xk

Lp

−−→X.
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While the equivalences between (ii), (iii), (iv), and (v) in the next theorem are well 
known and indeed are contained in Theorems 8 and 9, it is the added equivalence between 
(i) and (ii) which establishes the novelty of the theorem.

Theorem 11 Let {Xk} be a sequence of Lp random variables for some p > 0 and suppose 
that Xk

P
−→X for some random variable X. Then the following five statements are equivalent: 

 i. lim
k→∞

�|Xk|
p = �|X|p < ∞.

 ii. |Xk|
p

L1

−−→|X|.
 iii. {|Xk|

p} is uniformly integrable in the classical sense.
 iv. The sequence of set functions {Qp,k} is uniformly absolutely continuous with respect 

to the probability measure P.

 v. Xk

Lp

−−→X.

Proof It follows from Theorem 1 that (iii) implies (iv). Moreover, it follows from Theo-
rem 9 that (iv) implies (v) and it follows from Theorem 8 (i) that (v) implies (iii). Thus 
(iii), (iv), and (v) are equivalent.

Next, let Yk = |Xk|
p, k ≥ 1 and Y = |X|p . Since the function | ⋅ |p is continuous, Yk

P
−→Y  . 

To complete the proof, we must show that the following three statements are equivalent:
i′ . limk→∞ �Yk = �Y < ∞.

ii′ . Yk
L1

−−→Y.
iii′ . {Yk} is uniformly integrable in the classical sense.
Now (ii′ ) and (iii′ ) are equivalent by Theorem 8 (with p = 1 ). Also,

and so (ii′ ) implies (i′ ). It remains to show that (i′ ) implies (ii′ ). It follows from the ele-
mentary identity

that

Note that for all k ≥ 1,

and Yk
P
−→Y  ensures that

Then by the Lebesgue dominated convergence theorem,

Then by (34), (i′ ), and (35),

|�Yk − �Y| = |�(Yk − Y)| ≤ �|Yk − Y|

|a − b| = a + b − 2min{a, b}

(34)
�|Yk − Y| = �(Yk + Y − 2min{Yk, Y})

= �Yk + �Y − 2�(min{Yk, Y}), k ≥ 1

0 ≤ min{Yk, Y} ≤ Y ∈ L1(by (i
�))

min{Yk, Y} =
Yk + Y

2
−

|Yk − Y|

2

P
−→

Y + Y

2
− 0 = Y .

(35)lim
k→∞

�(min{Yk, Y}) = �Y .
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and so (ii′ ) holds.   ◻

In the following example, it is shown that the implication (i) ⟹ (ii) in Theorem 11 can 

fail if the condition Xk

P
−→X is dispensed with.

Example 2 Let p = 1,C2 > C1 > 0,

where A is an event with P(A) = 1

2
 . Now for 0 < 𝜀 < C2 − C1,

so Xk

P
↛X . The condition (i) holds since

but the condition (ii) fails since

The following example of a sequence of L1 random variables Xk, k ≥ 1 is such that Xk 
converges in probability to a random variable X and the conditions (i)–(v) of Theorem 11 
fail.

Example 3 Let p = 1 and let Xk, k ≥ 1 be a sequence of random variables with

Then Xk converges in probability to 0 and �Xk = 1 does not converge to 0. Thus condition 
(i) of Theorem 11 fails and so by Theorem 11, the conditions (ii)–(v) also fail.
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