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ABSTRACT

In this paper, the complete convergence and complete moment
convergence for arrays of rowwise negatively superadditive
dependent (NSD, in short) random variables are investigated. Some
sufficient conditions to prove the complete convergence and the
complete moment convergence are presented. The results obtained
in the paper generalize and improve some corresponding ones for
independent random variables and negatively associated random
variables.
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1. Introduction

Firstly, let us recall some definitions of the negative dependence. The first one is the concept
of negatively associated (NA) randomvariables, whichwas introduced byAlamand Saxena
[1] and carefully studied by Joag-Dev and Proschan [10].
Definition 1.1: A finite collection of random variables X1,X2, . . . ,Xn is said to be NA if
for every pair of disjoint subsets A1,A2 of {1, 2, . . . , n},

Cov{f (Xi : i ∈ A1), g(Xj : j ∈ A2)} ≤ 0,

whenever f and g are coordinatewise nondecreasing such that this covariance exists. An
infinite sequence {Xn, n ≥ 1} of random variables is NA if every finite subcollection is NA.

An array {Xni, i ≥ 1, n ≥ 1} of random variables is said to be rowwise NA if for all
n ≥ 1, {Xni, i ≥ 1} is NA.

The next one is the concept of negatively superadditive dependence, which is based on
the superadditive function introduced by Kemperman [11] as follows.
Definition 1.2: (cf. [11]) A function φ : R

n → R is called superadditive if φ(x ∨ y) +
φ(x ∧ y) ≥ φ(x) + φ(y) for all x, y ∈ R, where ∨ is for componentwise maximum and ∧
is for componentwise minimum.
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Definition 1.3: (cf. [9]) A random vector X = (X1,X2, . . . ,Xn) is said to be negatively
superadditive dependent (NSD, in short) if

Eφ(X1,X2, . . . ,Xn) ≤ Eφ(X∗
1 ,X

∗
2 , . . . ,X

∗
n), (1.1)

where X∗
1 ,X

∗
2 , . . . ,X

∗
n are independent such that X∗

i and Xi have the same distribution for
each i and φ is a superadditive function such that the expectations in (1.1) exist.

A sequence {Xn, n ≥ 1} of random variables is said to be NSD if for every n ≥ 1,
(X1,X2, . . . ,Xn) is NSD.

An array {Xni, i ≥ 1, n ≥ 1} of random variables is said to be rowwise NSD if for all
n ≥ 1, {Xni, i ≥ 1} is NSD.

The concept of NSD random variables, which was introduced by Hu [9], was based on
the class of superadditive functions. Hu [9] gave an example illustrating that NSD does not
imply negative association (NA, in short, see [10]), andposed anopenproblemwhetherNA
impliesNSD. In addition,Huprovided somebasic properties and three structural theorems
for NSD random variables. Christofides and Vaggelatou [5] solved this open problem
and indicated that NA implies NSD. Negatively superadditive dependent structure is an
extension of negatively associated structure and sometimes more useful than it and can
be used to get many important probability inequalities and moment inequalities. Eghbal
et al. [6] derived two maximal inequalities and strong law of large numbers of quadratic
forms of NSD random variables under the assumption that {Xi, i ≥ 1} is a sequence
of nonnegative NSD random variables with EXr

i < ∞ for all i ≥ 1 and some r > 1.
[13] established the strong limit theorems for NSD random variables. Wang et al. [15]
obtained the complete convergence for arrays of rowwise NSD random variables and gave
its applications to nonparametric regressionmodels. Shen et al. [14] gave some applications
of the Rosenthal-type inequality for negatively superadditive dependent random variables,
and so forth. For more details about the probability limiting behavior, one can refer toWu
[21–23], Wu and Jiang [24], Wang et al. [16,17], and so forth. The main purpose of the
paper is to further study the complete convergence and complete moment convergence
for arrays of rowwise NSD random variables.

Throughout the paper, let {Xnk, 1 ≤ k ≤ kn, n ≥ 1} be an array of random variables
defined on a probability space (�,F , P), {kn, n ≥ 1} be a sequence of positive integers
such that limn→∞ kn = ∞, and {cn, n ≥ 1} be a sequence of positive constants. Let C
be a positive constant not depending on n, which may be different in various places. I(A)

denotes the indicator function of set A. Denote X+ = XI(X > 0).
The following concept of slowly varying function will be used in this work.

Definition 1.4: A real-valued function l(x), positive andmeasurable on (0,∞), is said to
be slowly varying if

lim
x→∞

l(λx)
l(x)

= 1 for each λ > 0.

The concept of complete convergencewas introducedbyHsu andRobbins [8] as follows:
a sequence of random variables {Un, n ≥ 1} is said to converge completely to a constant C
if
∑∞

n=1 P(|Un − C| > ε) < ∞ for all ε > 0.
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In view of the Borel–Cantelli lemma, this implies thatUn → C almost surely (a.s.). The
converse is true if the {Un, n ≥ 1} are independent. Hsu and Robbins [8] proved that the
sequence of arithmetic means of independent and identically distributed (i.i.d.) random
variables converges completely to the expected value if the variance of the summands is
finite. Erdös [7] proved the converse. The result of Hsu–Robbins–Erdös is a fundamental
theorem in probability theory and has been generalized and extended in several directions
by many authors. Recently, Chen et al. [3] established the following complete convergence
result for arrays of rowwise NA random variables.
Theorem 1.1: Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise NA random variables
and {cn, n ≥ 1} be a sequence of positive constants. Suppose that the following conditions
are satisfied:

(i) for every ε > 0,
∞∑
n=1

cn
kn∑
i=1

P(|Xni| > ε) < ∞, (1.2)

(ii) for some δ > 0, there exists J ≥ 1 such that

∞∑
n=1

cn

⎛
⎝ kn∑

i=1

Var(XniI(|Xni| ≤ δ))

⎞
⎠

J

< ∞. (1.3)

Then for any ε > 0,

∞∑
n=1

cnP

(
max

1≤m≤kn

∣∣∣∣∣
m∑
i=1

(Xni − EXniI(|Xni| ≤ δ))

∣∣∣∣∣ > ε

)
< ∞. (1.4)

Chow [4] generalized the concept of complete convergence and introduced the concept
of complete moment convergence, which is more general than complete convergence. Let
{Zn, n ≥ 1} be a sequence of random variables and an > 0, bn > 0, q > 0. If

∞∑
n=1

anE{b−1
n |Zn| − ε}q+ < ∞ for all ε > 0,

then the above result was called the complete moment convergence.
Chow [4] obtained the following completemoment convergence result for i.i.d. random

variables.
Theorem 1.2: Suppose that {Xn, n ≥ 1} is a sequence of i.i.d. random variables with
EX1 = 0,α > 1/2, p ≥ 1 and αp > 1. If E[|X1|p + |X1| log (1 + |X1|)] < ∞, then for all
ε > 0,

∞∑
n=1

nαp−2−αE

⎧⎨
⎩max

1≤j≤n

∣∣∣∣∣∣
j∑

k=1

Xk

∣∣∣∣∣∣− εnα

⎫⎬
⎭

+
< ∞. (1.5)
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Wang and Zhao [19] extended the result of Theorem 1.2 for i.i.d. random variables to
the case of NA random variables, and obtained the following result.
Theorem 1.3: Let {Xk, k ≥ 1} be a sequence of NA random variables with EXk = 0.
Suppose that there exists a constant C > 0 such that supk≥1 P(|Xk| > x) ≤ CP(|X| > x) for
all x > 0. Let l(x) > 0 be a slowly varying function as x → ∞. If for α > 1/2, αp > 1 and
1 ≤ q < p, E|X|pl(|X|1/α) < ∞, then

∞∑
n=1

nαp−2−αql(n)E

⎧⎨
⎩max

1≤j≤n

∣∣∣∣∣∣
j∑

k=1

Xk

∣∣∣∣∣∣− εnα

⎫⎬
⎭

q

+
< ∞ for all ε > 0. (1.6)

Wu [25] improved the result of Theorem 1.3 under weaker conditions. Inspired by
Chen et al. [3], Wang and Zhao [19] and Wu [25], we will extend and improve the results
of Theorem 1.3 for NA random variables to the case of NSD random variables.

2. Preliminaries

To prove the main results of the paper, we need the following important lemmas. The first
one is a basic property for slowly varying function, which was established by Bai and Su
[2].
Lemma 2.1: If l(x) > 0 is a slowly varying function as x → ∞, then

(i) limx→∞ l(x+u)
l(x) for each u > 0;

(ii) limk→∞ sup2k≤x<2k+1
l(x)
l(2k) = 1;

(iii) limx→∞ xδ l(x) = ∞, limx→∞ x−δ l(x) = 0 for each δ > 0;
(iv) c12kr l(ε2k) ≤ ∑k

j=1 2
jr l(ε2j) ≤ c22kr l(ε2k) for every r > 0, ε > 0, positive integer k,

and some constants c1 > 0, c2 > 0;
(v) c32kr l(ε2k) ≤ ∑∞

j=k 2
jr l(ε2j) ≤ c42kr l(ε2k) for every r < 0, ε > 0, positive integer k,

and some constants c3 > 0, c4 > 0.

The following one was presented by Hu [9].
Lemma 2.2: Let (X1,X2, . . . ,Xn) be NSD.

(i) ( − X1,−X2, . . . ,−Xn) is also NSD.
(ii) If g1, g2, . . . , gn are all nondecreasing functions, then (g1(X1), g2(X2), . . . , gn(Xn)) is

NSD.

Remark 2.1: Let (X1,X2, . . . ,Xn) be NSD. Together with (i) and (ii) in Lemma 2.2, we
can see that if g1, g2, . . . , gn are all nondecreasing (or all nonincreasing) functions, then
(g1(X1), g2(X2), . . . , gn(Xn)) are NSD.

The next one is the Kolmogorov exponential type inequality for NSD random variables,
which was established by Wang et al. [15].
Lemma 2.3: Let {Xn, n ≥ 1} be a sequence of NSD random variables with zero mean and
finite second moments. Denote Sn = ∑n

i=1 Xi and Bn = ∑n
i=1 EX

2
i for each n ≥ 1. Then

for all x > 0, y > 0 and n ≥ 1

P
(
max
1≤k≤n

|Sk| ≥ x
)

≤ 2P
(
max
1≤k≤n

|Xk| > y
)

+ 8
(
2Bn
3xy

)x/12y
.
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With Lemma 2.3 accounted for, we can get the following complete convergence for
arrays of rowwise NSD random variables, which is a generalization of Theorem 1.1. The
proof is similar to that of Theorem 1.1 or Lemma 3.1 of Shen [12]. So we omit the details.
Lemma 2.4: Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise NSD random variables
and {cn, n ≥ 1} be a sequence of positive constants. Suppose that the following conditions
are satisfied:

(i) for every ε > 0,
∞∑
n=1

cn
kn∑
i=1

P(|Xni| > ε) < ∞, (2.1)

(ii) for some δ > 0, there exists J ≥ 1 such that

∞∑
n=1

cn

⎛
⎝ kn∑

i=1

Var(XniI(|Xni| ≤ δ))

⎞
⎠

J

< ∞. (2.2)

Then for any ε > 0,

∞∑
n=1

cnP

(
max

1≤m≤kn

∣∣∣∣∣
m∑
i=1

(Xni − EXniI(|Xni| ≤ δ))

∣∣∣∣∣ > ε

)
< ∞. (2.3)

The following concept of stochastic domination will be used in this work.
Definition 2.1: A sequence {Xn, n ≥ 1} of random variables is said to be stochastically
dominated by a random variable X if there exists a positive constant C such that

P(|Xn| > x) ≤ CP(|X| > x)

for all x ≥ 0 and n ≥ 1.
By the definition of stochastic domination and integration by parts, we can get the

following property for stochastic domination. For the details of the proof, one can refer to
Wu [20] or Wang et al. [18].
Lemma 2.5: Let {Xn, n ≥ 1} be a sequence of random variables which is stochastically
dominated by a random variable X. For any α > 0 and b > 0, the following two statements
hold:

E|Xn|αI
(|Xn| ≤ b

) ≤ C1
[
E|X|αI (|X| ≤ b

)+ bαP
(|X| > b

)]
, (2.4)

E|Xn|αI
(|Xn| > b

) ≤ C2E|X|αI (|X| > b
)
, (2.5)

where C1 and C2 are positive constants. Consequently, E|Xn|α ≤ CE|X|α , where C is a
positive constant.
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3. Main results and their proofs

Our main results are as follows.
Theorem 3.1: Let q ≥ 1, {Xnk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise NSD random
variables, and {cn, n ≥ 1} be a sequence of positive constants. Suppose that the following
conditions are satisfied:

(i) for every ε > 0,

∞∑
n=1

cn
kn∑
k=1

E|Xnk|qI(|Xnk| > ε) < ∞, (3.1)

(ii) for some δ > 0, there exists η > q such that

∞∑
n=1

cn

⎛
⎝ kn∑

k=1

EX2
nkI(|Xnk| ≤ δ)

⎞
⎠

η

< ∞, (3.2)

and

kn∑
k=1

E|Xnk|qI
(

|Xnk| > δ

128η

)
→ 0, as n → ∞. (3.3)

Then for all ε > 0,

∞∑
n=1

cnE

{
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

(Xnk − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣− ε

}q

+
< ∞. (3.4)

Proof: For fixed n ≥ 1, denote Sm = ∑m
k=1 (Xnk − EXnkI(|Xnk| ≤ δ)) for m =

1, 2, . . . , kn. For any fixed ε > 0, without loss of generality, we may assume that 0 < ε < δ.
It is easily seen that

∞∑
n=1

cnE
{

max
1≤m≤kn

|Sm| − ε

}q
+

=
∞∑
n=1

cn
∫ ∞

0
P
(

max
1≤m≤kn

|Sm| − ε > t1/q
)
dt

=
∞∑
n=1

cn

[∫ δq

0
P
(

max
1≤m≤kn

|Sm| > ε + t1/q
)
dt +

∫ ∞

δq
P
(

max
1≤m≤kn

|Sm| > ε + t1/q
)
dt

]

≤ δq
∞∑
n=1

cnP
(

max
1≤m≤kn

|Sm| > ε

)
+

∞∑
n=1

cn
∫ ∞

δq
P
(

max
1≤m≤kn

|Sm| > t1/q
)
dt

.= H1 + H2. (3.5)

In order to prove (3.4), we only need to show thatH1 < ∞ andH2 < ∞. Noting that (3.1)
implies (2.1) and (3.2) implies (2.2), we have H1 < ∞ by Lemma 2.4. In the following, we
will show that H2 < ∞.
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For t ≥ δq, denote for 1 ≤ k ≤ kn and n ≥ 1 that

Ynk = −t1/qI(Xnk < −t1/q) + XnkI(|Xnk| ≤ t1/q) + t1/qI(Xnk > t1/q),
Znk = −t1/qI(Xnk < −t1/q) + t1/qI(Xnk > t1/q).

It is easily seen that

P
(

max
1≤m≤kn

|Sm| > t1/q
)

= P
(

max
1≤m≤kn

|Sm| > t1/q, |Xnk| > t1/q for some 1 ≤ k ≤ kn
)

+ P
(

max
1≤m≤kn

|Sm| > t1/q, |Xnk| ≤ t1/q for all 1 ≤ k ≤ kn
)

≤
kn∑
k=1

P(|Xnk| > t1/q) + P
(

max
1≤m≤kn

∣∣∣∣
m∑
k=1

(XnkI(|Xnk| ≤ t1/q)

− EXnkI(|Xnk| ≤ δ))

∣∣∣∣ > t1/q
)
,

which implies that

H2 ≤
∞∑
n=1

cn
kn∑
k=1

∫ ∞

δq
P
(|Xnk| > t1/q

)
dt

+
∞∑
n=1

cn
∫ ∞

δq
P

(
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

(XnkI(|Xnk| ≤ t1/q) − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣ > t1/q
)
dt

.= H3 + H4.

It follows by (3.1) that

H3 ≤
∞∑
n=1

cn
kn∑
k=1

E|Xnk|qI(|Xnk| > δ) < ∞.

To prove H2 < ∞, it suffices to show H4 < ∞. For t ≥ δq, we have

P

(
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

(XnkI(|Xnk| ≤ t1/q) − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣ > t1/q
)

= P

(
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

(Ynk − EYnk − Znk + EZnk + EXnkI(δ < |Xnk| ≤ t1/q))

∣∣∣∣∣ > t1/q
)

≤ P
(

max
1≤m≤kn

∣∣∣∣
m∑
k=1

(Ynk − EYnk − Znk + EZnk)
∣∣∣∣

+ max
1≤m≤kn

∣∣∣∣
m∑
k=1

EXnkI(δ < |Xnk| ≤ t1/q)
∣∣∣∣ > t1/q

)
.

(3.6)
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It follows by (3.3) that

max
t≥δq

t−1/q max
1≤m≤kn

∣∣∣∣∣
m∑
k=1

EXnkI(δ < |Xnk| ≤ t1/q)

∣∣∣∣∣
≤ max

t≥δq
t−1/q

kn∑
k=1

E|Xnk|I(δ < |Xnk| ≤ t1/q)

≤ max
t≥δq

kn∑
k=1

E
|Xnk|

δ
I(δ < |Xnk| ≤ t1/q)

≤ δ−q
kn∑
k=1

E|Xnk|qI(|Xnk| > δ) → 0, as n → ∞,

which yields that for all n large enough,

max
1≤m≤kn

∣∣∣∣∣
m∑
k=1

EXnkI(δ < |Xnk| ≤ t1/q)

∣∣∣∣∣ < t1/q

2
, for all t ≥ δq. (3.7)

Combining (3.6) and (3.7), we can get that for all n large enough and t ≥ δq,

P

(
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

(XnkI(|Xnk| ≤ t1/q) − EXnkI(|Xnk| ≤ δ))

∣∣∣∣∣ > t1/q
)

≤ P

(
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

(Ynk − EYnk) −
m∑
k=1

(Znk − EZnk)

∣∣∣∣∣ > t1/q/2

)
.

≤ P

(
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

(Ynk − EYnk)

∣∣∣∣∣ > t1/q

4

)
+ P

(
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

(Znk − EZnk)

∣∣∣∣∣ > t1/q

4

)
.

Therefore,

H4 ≤ C
∞∑
n=1

cn
∫ ∞

δq
P

(
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

(Znk − EZnk)

∣∣∣∣∣ > t1/q

4

)
dt

+ C
∞∑
n=1

cn
∫ ∞

δq
P

(
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

(Ynk − EYnk)

∣∣∣∣∣ > t1/q

4

)
dt

.= CH5 + CH6. (3.8)

It follows by Markov’s inequality and (3.1) that

H5 ≤ C
∞∑
n=1

cn
kn∑
k=1

∫ ∞

δq
t−1/qE|Znk|dt ≤ C

∞∑
n=1

cn
kn∑
k=1

∫ ∞

δq
P(|Xnk| > t1/q)dt

≤ C
∞∑
n=1

cn
kn∑
k=1

E|Xnk|qI(|Xnk| > δ) < ∞.
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Next, we will prove H6 < ∞. Denote Bn = ∑kn
k=1 E(Ynk − EYnk)

2. It is easily seen that
for fixed n ≥ 1, {Ynk − EYnk, 1 ≤ k ≤ kn} are still NSD random variables by Lemma 2.2.
Applying Lemma 2.3 with x = t1/q/4 and y = t1/q/(48η), we have

H6 ≤ C
∞∑
n=1

cn
∫ ∞

δq
P
(

max
1≤k≤kn

|Ynk − EYnk| > t1/q/(48η)

)
dt

+ C
∞∑
n=1

cn
∫ ∞

δq

(
Bn
t2/q

)η

dt

.= CH7 + CH8.

By (3.3), we can see that for all n large enough,

kn∑
k=1

P
(

|Xnk| > δ

128η

)
≤

kn∑
k=1

E|Xnk|qI
(

|Xnk| > δ

128η

)
<

1
256η

,

which implies that for all n large enough,

max
t≥δq

max
1≤k≤kn

t−1/q|EYnk| ≤ max
t≥δq

max
1≤k≤kn

t−1/qE|Ynk|
≤ max

t≥δq
max

1≤k≤kn
[t−1/qE|Xnk|I(|Xnk| ≤ δ/128η)

+ t−1/qE|Xnk|I(δ/128η < |Xnk| ≤ t1/q) + P(|Xnk| > t1/q)]
≤ max

t≥δq
max

1≤k≤kn

[
t−1/qδ/128η + P(|Xnk| > δ/128η) + P(|Xnk| > t1/q)

]

≤ 1
128η

+
kn∑
k=1

P
(

|Xnk| > δ

128η

)
+

kn∑
k=1

P(|Xnk| > δ)

≤ 1
128η

+ 2
kn∑
k=1

P
(

|Xnk| > δ

128η

)
<

1
64η

.

Hence, we can get that for all n large enough,

max
1≤k≤kn

E|Ynk| < t1/q

64η
, t ≥ δq. (3.9)

Noting that |Ynk| ≤ |Xnk|, we have by (3.9) and (3.1) that

H7 ≤ C
∞∑
n=1

cn
∫ ∞

δq
P
(

max
1≤k≤kn

|Xnk| > t1/q

192η

)
dt

≤ C
∞∑
n=1

cn
kn∑
k=1

∫ ∞

δq
P
(

|Xnk| > t1/q

192η

)
dt

≤ C
∞∑
n=1

cn
kn∑
k=1

E|Xnk|qI
(

|Xnk| > δ

192η

)
< ∞.
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Since η > q ≥ 1, it follows by the Cr-inequality that

H8 ≤ C
∞∑
n=1

cn
∫ ∞

δq
(t−2/qBn)ηdt ≤ C

∞∑
n=1

cn
∫ ∞

δq

⎛
⎝t−2/q

kn∑
k=1

EY2
nk

⎞
⎠

η

dt

= C
∞∑
n=1

cn
∫ ∞

δq

⎡
⎣t−2/q

kn∑
k=1

EX2
nkI(|Xnk| ≤ t1/q) +

kn∑
k=1

P
(|Xnk| > t1/q

)⎤⎦
η

dt

≤ C
∞∑
n=1

cn
∫ ∞

δq

⎡
⎣t−2/q

kn∑
k=1

EX2
nkI(|Xnk| ≤ δ)

⎤
⎦

η

dt

+ C
∞∑
n=1

cn
∫ ∞

δq

⎡
⎣t−2/q

kn∑
k=1

EX2
nkI
(
δ < |Xnk| ≤ t1/q

)⎤⎦
η

dt

+ C
∞∑
n=1

cn
∫ ∞

δq

⎡
⎣ kn∑

k=1

P
(|Xnk| > t1/q

)⎤⎦
η

dt

.= CH81 + CH82 + CH83.

Noting η > q, we have by (3.2) that

H81 = C
∞∑
n=1

cn

⎛
⎝ kn∑

k=1

EX2
nkI(|Xnk| ≤ δ)

⎞
⎠

η ∫ ∞

δq
t−2η/qdt

≤ C
∞∑
n=1

cn

⎛
⎝ kn∑

k=1

EX2
nkI(|Xnk| ≤ δ)

⎞
⎠

η

< ∞.

Noting that

kn∑
k=1

E|Xnk|I(|Xnk| > δ) ≤ δ1−q
kn∑
k=1

E|Xnk|qI(|Xnk| > δ)

≤ δ1−q
kn∑
k=1

E|Xnk|qI
(

|Xnk| > δ

128η

)
→ 0, as n → ∞,

which together with (3.3) yields that for all n large enough,

kn∑
k=1

E|Xnk|I(|Xnk| > δ) < 1. (3.10)
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Hence, we have by η > q ≥ 1, (3.10) and (3.1) that

H82 ≤ C
∞∑
n=1

cn
∫ ∞

δq

⎡
⎣t−1/q

kn∑
k=1

E|Xnk|I
(
δ < |Xnk| ≤ t1/q

)⎤⎦
η

dt

≤ C
∞∑
n=1

cn

⎛
⎝ kn∑

k=1

E|Xnk|I(|Xnk| > δ)

⎞
⎠

η ∫ ∞

δq
t−η/qdt

≤ C
∞∑
n=1

cn
kn∑
k=1

E|Xnk|I(|Xnk| > δ)

≤ C
∞∑
n=1

cn
kn∑
k=1

E|Xnk|qI(|Xnk| > δ) < ∞.

For t ≥ δq, it follows by (3.10) that for all n large enough,

kn∑
k=1

P(|Xnk| > t1/q) ≤
kn∑
k=1

P(|Xnk| > δ) ≤
kn∑
k=1

E|Xnk|I(|Xnk| > δ) < 1. (3.11)

By (3.1) again and (3.11), we have

H83 ≤ C
∞∑
n=1

cn
∫ ∞

δq

kn∑
k=1

P(|Xnk| > t1/q)dt

≤ C
∞∑
n=1

cn
kn∑
k=1

E|Xnk|I(|Xnk| > δ) < ∞.

This completes the proof of the theorem. �
Remark 3.1: For fixed n ≥ 1, denote Sm = ∑m

k=1 (Xnk − EXnkI(|Xnk| ≤ δ)) for m =
1, 2, . . . , kn. Under the conditions of Theorem 3.1, we have for any ε > 0,

∞∑
n=1

cnP
(

max
1≤m≤kn

|Sm| > ε

)
< ∞. (3.12)

This can be obtained by the following inequality:

∞∑
n=1

cnE
{

max
1≤m≤kn

|Sm| − ε

}q
+

=
∞∑
n=1

cn
∫ ∞

0
P
(

max
1≤m≤kn

|Sm| > ε + t1/q
)
dt

≥
∞∑
n=1

cn
∫ εq

0
P
(

max
1≤m≤kn

|Sm| > ε + t1/q
)
dt

≥ εq
∞∑
n=1

cnP
(

max
1≤m≤kn

|Sm| > 2ε
)

.
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Hence, we can see that the complete moment convergence (3.4) is stronger than complete
convergence (3.12).

With Theorem 3.1 accounted for, we can get the following important corollaries.
Corollary 3.1: Let q ≥ 1, {Xnk, 1 ≤ k ≤ kn, n ≥ 1} be an array of rowwise NSD random
variables with mean zero, and {cn, n ≥ 1} be a sequence of positive constants. Suppose that
for all ε > 0 and some δ > 0, η > q, conditions (3.1), (3.2) and (3.3) hold. Then for all ε > 0,

∞∑
n=1

cnE

{
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

Xnk

∣∣∣∣∣− ε

}q

+
< ∞, (3.13)

and

∞∑
n=1

cnP

(
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

Xnk

∣∣∣∣∣ > ε

)
< ∞. (3.14)

Proof: It follows by EXnk = 0, (3.1) and (3.3) that

max
1≤m≤kn

∣∣∣∣∣
m∑
k=1

EXnkI(|Xnk| ≤ δ)

∣∣∣∣∣ = max
1≤m≤kn

∣∣∣∣∣
m∑
k=1

EXnkI(|Xnk| > δ)

∣∣∣∣∣
≤

kn∑
k=1

E|Xnk|I(|Xnk| > δ)

≤ δ1−q
kn∑
k=1

E|Xnk|qI(|Xnk| > δ). (3.15)

Note that for any real numbers a, b, c, the following inequality holds:

(|a + b| − |c|)+ ≤ (|a| − |c|)+ + |b|.

The desired result (3.13) follows by the inequality above, Cr-inequality, (3.15), (3.1), (3.3)
and (3.4) immediately.

Noting that

∞∑
n=1

cnE

{
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

Xnk

∣∣∣∣∣− ε

}q

+
=

∞∑
n=1

cn
∫ ∞

0
P

(
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

Xnk

∣∣∣∣∣ > ε + t1/q
)
dt

≥
∞∑
n=1

cn
∫ εq

0
P

(
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

Xnk

∣∣∣∣∣ > ε + t1/q
)
dt

≥ εq
∞∑
n=1

cnP

(
max

1≤m≤kn

∣∣∣∣∣
m∑
k=1

Xnk

∣∣∣∣∣ > 2ε

)
,

which together with (3.13) yields (3.14). This completes the proof of the corollary. �
By using Corollary 3.1, we can get the following corollary for sequences of NSD random

variables.
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Corollary 3.2: Let α > 0, αp > 0, q ≥ 1 and {Xk, k ≥ 1} be a sequence of NSD random
variables with mean zero. Let l(x) > 0 be a slowly varying function as x → ∞. Suppose that
the following conditions are satisfied:

(i) for every ε > 0,

∞∑
n=1

nαp−2−αql(n)
n∑

k=1

E|Xk|qI(|Xk| > εnα) < ∞, (3.16)

(ii) for some δ > 0, there exists η > q such that

∞∑
n=1

nαp−2−2αηl(n)

( n∑
k=1

EX2
k I(|Xk| ≤ δnα)

)η

< ∞, (3.17)

and

n−αq
n∑

k=1

E|Xk|qI(|Xk| > nαδ/128η) → 0, as n → ∞. (3.18)

Then for all ε > 0,

∞∑
n=1

nαp−2−αql(n)E

{
max
1≤m≤n

∣∣∣∣∣
m∑
k=1

Xk

∣∣∣∣∣− εnα

}q

+
< ∞, (3.19)

and

∞∑
n=1

nαp−2l(n)P

(
max
1≤m≤n

∣∣∣∣∣
m∑
k=1

Xk

∣∣∣∣∣ > εnα

)
< ∞. (3.20)

Proof: Taking cn = nαp−2l(n), kn = n, and replacing Xnk by Xk/nα for 1 ≤ k ≤ n
and n ≥ 1, we can get (3.19) and (3.20) by (3.13) and (3.14), respectively. The proof is
completed. �

By using Corollary 3.2, we can get the following result for sequences of NSD random
variables which are stochastically dominated by a random variable X.
Corollary 3.3: Let {Xk, k ≥ 1}be a sequence of NSD random variables with mean zero,
which is stochastically dominated by a random variable X. Let l(x) > 0 be a slowly varying
function as x → ∞. If for α > 1/2, αp > 1 and 1 ≤ q < p, E|X|pl(|X|1/α) < ∞, then for all
ε > 0, (3.19) and (3.20) hold.
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Proof: Wewill show that the conditions ofCorollary 3.2 are satisfied.Takeη>max{q, αp−1
2α−1}.

Firstly, we will show that (3.16) holds for any ε > 0. It follows by Lemma 2.1, Lemma
2.5 and E|X|pl(|X|1/α) < ∞ that

∞∑
n=1

nαp−2−αql(n)
n∑

k=1

E|Xk|qI(|Xk| > εnα)

≤ C
∞∑
n=1

nαp−1−αql(n)E|X|qI(|X| > εnα)

≤ C
∞∑
s=1

(2s)αp−αql(2s)E|X|qI(|X| > ε(2s)α)

≤ C
∞∑

m=1

E|X|qI(ε2mα ≤ |X| < ε2(m+1)α)

m∑
s=1

(2s)αp−αql(2s)

≤ C
∞∑

m=1

(2m)αp−αql(2m)E|X|qI(ε2mα ≤ |X| < ε2(m+1)α)

≤ C
∞∑

m=1

l(2m)E|X|pI(ε2mα ≤ |X| < ε2(m+1)α)

≤ CE|X|pl(|X|1/α) < ∞,

which implies (3.16).
Next, we will prove (3.17). It follows by Lemma 2.5 again and Cr-inequality that

∞∑
n=1

nαp−2−2αηl(n)

( n∑
k=1

EX2
k I(|Xk| ≤ δnα)

)η

≤ C
∞∑
n=1

nαp−2−2αη+ηl(n)
[
EX2I(|X| ≤ δnα)

]η

+ C
∞∑
n=1

nαp−2+ηl(n)[P(|X| > δnα)]η
.= CJ1 + CJ2. (3.21)

If 1 ≤ p < 2, we have

[EX2I(|X| ≤ δnα)]η ≤ Cn(2−p)αη(E|X|p)η,

and thus,

J1 ≤ C
∞∑
n=1

n−1−(αp−1)(η−1)l(n)(E|X|p)η < ∞. (3.22)
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If p > 2, then [EX2I(|X| ≤ δnα)]η < ∞. Noting that αp − 2 − (2α − 1)η < −1, we have

J1 =
∞∑
n=1

nαp−2−(2α−1)ηl(n)
[
EX2I(|X| ≤ δnα)

]η < ∞. (3.23)

It follows by Markov’s inequality that

J2 ≤ C
∞∑
n=1

nαp−2−αpη+ηl(n)(E|X|p)η

= C
∞∑
n=1

n−1−(αp−1)(η−1)l(n)(E|X|p)η < ∞. (3.24)

By (3.21)–(3.24), we can see that (3.17) holds.
Finally, we will prove that (3.18) holds. Noting that q < p,αp > 1 and E|X|p < ∞, we

have by Lemma 2.5 that

n−αq
n∑

k=1

E|Xk|qI(|Xk| > nαδ/128η) ≤ Cn1−αqE|X|qI(|X| > nαδ/128η)

≤ Cn1−αpE|X|p → 0, as n → ∞,

which implies (3.18). The desired result follows by Corollary 3.2 immediately. This com-
pletes the proof of the corollary. �
Remark 3.2: We point out that the conditions of Corollary 3.2 are much weaker than
those in Corollary 3.3. Hence, the results of Corollaries 3.1 and 3.2 generalize and improve
the corresponding one of Theorem 1.3.
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