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1. Introduction. In this article, new results on complete convergence with cor-
responding convergence rates are obtained by applying a recent result of Hu et al. [9].
The concept of complete convergence was introduced by Hsu and Robbins [7] as fol-
lows. A sequence of random variables {Un, n � 1} is said to converge completely
to a constant c if

∑∞
n=1 P{|Un − c| > ε} < ∞ for all ε > 0. By the Borel–Cantelli

lemma, this implies Un → c almost surely (a.s.), and the converse implication is true
if the {Un, n � 1} are independent. Hsu and Robbins [7] proved that the sequence
of arithmetic means of independent and identically distributed (i.i.d.) random vari-
ables converges completely to the expected value if the variance of the summands is
finite. Erdös [4] proved the converse. The Hsu–Robbins–Erdös [7], [4] result may be
formulated as follows.

Theorem 1.1 (see [7], [4]). If {X,Xn, n � 1} are i.i.d. random variables, then
n−1

∑n
k=1 Xk converges completely to 0 if and only if EX = 0 and EX2 < ∞.

This result has been generalized and extended in several directions (see [14], [15],
[8], [5], [18], [12], [16], and [9] among others). Some of these articles concern a Banach
space setting. A sequence of Banach space valued random elements is said to converge
completely to the 0 element of the Banach space if the corresponding sequence of norms
converges completely to 0.

In [14], weighted sums of i.i.d. random variables were considered, permitting
a more general normalization than in Theorem 1.1. Relying heavily on the tech-
niques of [14], the authors of [15] generalized Pruitt’s result to the case of indepen-
dent stochastically dominated random variables. A sequence of random variables
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{Xn, n � 1} is said to be stochastically dominated by a random variable X if there
exists a constant D < ∞ such that P{|Xn| > x} � DP{|DX| > x} for all x > 0 and
n � 1. We recall that an array of real numbers {ank, k � 1, n � 1} is said to be a
Toeplitz array if limn→∞ ank = 0 for each k � 1 and

∑∞
k=1 |ank| � C for all n � 1,

where C < ∞ is a constant.
Theorem 1.2 (see [14], [15]). Let {Xn, n � 1} be a sequence of independent

random variables which are stochastically dominated by a random variable X, and let
{ank, k � 1, n � 1} be a Toeplitz array such that supk�1 |ank| = O(n−γ) for some

γ > 0. If E|X|1+γ−1

< ∞, then
∑∞

k=1 ankXk converges a.s. for each n � 1, and∑∞
k=1 ankXk converges completely to 0 (as n → ∞).
It should be mentioned that Theorems 1.1 and 1.2 are markedly different results

with substantially different proofs. This is due to the fact that Theorem 1.1 concerns
the sequence of partial sums

∑n
k=1 Xk (each with a finite number of terms) whereas

Theorem 1.2 concerns the sequence of infinite series
∑∞

k=1 ankXk.
Hu et al. [9] presented a very general result establishing complete convergence

for the row sums of an array of row-wise independent but not necessarily identically
distributed Banach space valued random elements. Their result also specified the
corresponding rate of convergence. No geometric conditions were imposed on the
underlying Banach space. The result of Hu et al. [9] unifies and extends previously
obtained results in the literature in that many of them (for example, the results of Hsu
and Robbins [7], Hu, Móricz, and Taylor [8], Gut [5], Wang et al. [18], Kuczmaszewska
and Szynal [12], and Sung [16]) follow from it.

Theorem 1.3 (see [9]). Let {Vnk, 1 �k � kn � ∞, n � 1} be an array of
row-wise independent random elements in a separable real Banach space and let {cn,
n � 1} be a sequence of positive constants. Suppose that

∞∑
n=1

cn

kn∑
k=1

P{‖Vnk‖ > ε} < ∞ for all ε > 0,(1.1)

∞∑
n=1

cn

(
kn∑
k=1

E‖Vnk‖q
)J

< ∞ for some 0 < q � 2 and J � 2,(1.2)

Sn ≡
kn∑
k=1

Vnk
P→ 0,

and

if lim inf
n→∞ cn = 0, then

kn∑
k=1

P
{‖Vnk‖ > δ

}
= o(1) for some δ > 0.(1.3)

Then

∞∑
n=1

cnP
{‖Sn‖ > ε

}
< ∞ for all ε > 0.

It is implicitly assumed in Theorem 1.3 that if kn = ∞ for any n � 1, then for
that n the series Sn converges a.s. The pertinent devices employed in the proof of
Theorem 1.3 are

(i) an iterated version of the Hoffmann-Jørgensen [6] inequality due to Jain [10];
(ii) a Banach space version of the classical Marcinkiewicz–Zygmund inequality

due to de Acosta [1];
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(iii) a modified version of a result of Kuelbs and Zinn [13] concerning the
relationship between convergence in probability and mean convergence for sums of
independent bounded random variables.

The current work is devoted to presenting applications of Theorem 1.3 to obtain
new complete convergence results. The plan of the paper is as follows. In section 2,
we recall some well-known definitions pertaining to the current work. In section 3, we
apply Theorem 1.3 to obtain complete convergence for row sums with corresponding
rates of convergence. As in Theorem 1.3, no assumptions are made concerning the
geometry of the underlying Banach space. Finally, in section 4, we present some
examples which compare the results.

2. Preliminaries. Let (Ω,F ,P) be a probability space and let X be a separable
real Banach space with norm ‖·‖. A random element is defined to be an F-measurable
mapping of Ω into X equipped with the Borel σ-algebra (that is, the σ-algebra gen-
erated by the open sets determined by ‖ · ‖). A detailed account of basic properties
of random elements in separable real Banach spaces can be found in the book by
Taylor [17].

Let {Vnk, k � 1, n � 1} be an array of row-wise independent, but not necessarily
identically distributed, random elements taking values in X . The array of random
elements {Vnk, k � 1, n � 1} is said to be stochastically dominated by a random vari-
able X if there exists a constant D < ∞ such that P{‖Vnk‖ > x} � DP{|DX| > x}
for all x > 0 and for all n � 1 and k � 1.

Let {ank, k � 1, n � 1} be an array of constants (called weights) and consider the
sequence of weighted sums Sn ≡ ∑∞

k=1 ankVnk, n � 1. We assume without explicit
mention that each series Sn converges a.s. if such almost sure convergence is not
automatic from the hypotheses.

Let f(t) be a real function of bounded variation on [a, b], where −∞ < a <
b < ∞. Denote the total variation of f(t) on [a, b] by Vf(t)(a, b). The following simple
properties of total variation and Lebesgue–Stieltjes integration are well known and
may be found, for example, in the book by Apostol [2, Chaps. 6 and 7]:

If f(t) is nondecreasing, then Vf(t)(a, b) = f(b)− f(a);(2.1)

if f(t) = f1(t) + f2(t), then Vf(t)(a, b) � Vf1(t)(a, b) + Vf2(t)(a, b);(2.2)

for any constant c,Vf(t)+c(a, b) = Vf(t)(a, b);(2.3)

V−f(t)(a, b) = Vf(t)(a, b);(2.4) ∣∣∣∣
∫ b

a

f(x) dg(x)

∣∣∣∣ �
∫ b

a

|f(x)| dVg(t)(a, x);(2.5)

for a < c < b,Vf(t)(a, b) = Vf(t)(a, c) + Vf(t)(c, b).(2.6)

Finally, the symbol C denotes throughout a generic constant (0 < C < ∞) which is
not necessarily the same in each appearance, and for x � 0 the symbol [x] denotes
the greatest integer in x.

3. Main results. With the preliminaries accounted for, the main results may
now be established. The first main result, Theorem 3.1, generalizes Theorem 1.2 in
three directions, namely,

(i) we consider Banach space valued random elements instead of random variables;

(ii) we consider an array rather than a sequence;

(iii) we obtain the rate of convergence.
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Theorem 3.1. Let {Vnk, k � 1, n � 1} be an array of row-wise indepen-
dent random elements taking values in a separable real Banach space X . Suppose
that {Vnk, k � 1, n � 1} is stochastically dominated by a random variable X. Let
{ank, k � 1, n � 1} be an array of constants such that

sup
k�1

|ank| = O(n−γ) for some γ > 0,(3.1)

∞∑
k=1

|ank| = O(nα) for some α ∈ [0, γ).(3.2)

If

E|X|1+(1+α+β)/γ < ∞ for some β ∈ (−1, γ − α− 1](3.3)

and

Sn ≡
∞∑
k=1

ankVnk
P−→ 0,(3.4)

then

∞∑
n=1

nβP
{‖Sn‖ > ε

}
< ∞ for all ε > 0.(3.5)

Proof. Note at the outset that the stochastic domination hypothesis ensures that
E‖Vnk‖ � CE|X|, k � 1, n � 1, and hence for all n � 1, by the Beppo–Levi
theorem, (3.2), and (3.3),

E
∞∑
k=1

‖ankVnk‖ =

∞∑
k=1

E‖ankVnk‖ � CE|X|
∞∑
k=1

|ank| � C nα < ∞.

Thus for all n � 1,
∑∞

k=1 ‖ankVnk‖ < ∞ a.s., and so for all n � 1 and all K � 1,

sup
L>K

∥∥∥∥∥
L∑

k=1

ankVnk −
K∑

k=1

ankVnk

∥∥∥∥∥ = sup
L>K

∥∥∥∥∥
L∑

k=K+1

ankVnk

∥∥∥∥∥
� sup

L>K

L∑
k=K+1

‖ankVnk‖ =

∞∑
k=K+1

‖ankVnk‖ −−−−→
K→∞

0 a.s.

Thus for all n � 1, with probability 1, {∑K
k=1 ankVnk, K � 1} is a Cauchy sequence

in X , whence
∑∞

k=1 ankVnk converges a.s.
Let cn = nβ , n � 1. Then we only need to verify that conditions (1.1), (1.2),

and (1.3) (if β < 0) of Theorem 1.3 hold, with ankVnk playing the role of Vnk in the
formulation of that theorem. Set q = 1 + γ−1(1 + α + β). Then by (3.3) we have
E|X|q < ∞, where 1 < q � 2. Without loss of generality, ε can be taken to be 1
in (3.5) and, in view of (3.1) and (3.2), we can assume that

sup
k�1

|ank| = n−γ ,(3.6)

∞∑
k=1

|ank| = nα.(3.7)
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Now to verify (1.1), we will proceed as in Lemma 1 of [14]. Let bnk = 1/|ank|,
k � 1, n � 1, and G(x) = P{|DX| > x}, x � 0. To estimate the series

An =

∞∑
k=1

P
{‖ankVnk‖ > 1

}
=

∞∑
k=1

P
{‖Vnk‖ > bnk

}

� D

∞∑
k=1

P
{|DX| > bnk

}
(by stochastic domination)

= D

∞∑
k=1

G(bnk),(3.8)

we reformulate the problem as one of estimating a Lebesgue–Stieltjes integral. Let us
introduce the functions

Nn(x) =
∑

{k : bnk�x}
|ank|, x > 0, n � 1.

Then each Nn(x) is a step function with jumps at the points bnk. Moreover, for n � 1,

Nn(x) = 0 for x < nγ
(
since {k : bnk � x < nγ} = ∅ recalling (3.6)

)
,(3.9)

sup
x>0

Nn(x) =

∞∑
k=1

|ank| = nα
(
recalling (3.7)

)
.(3.10)

Then by (3.8) and expressing its right-hand side as a Lebesgue–Stieltjes integral and
employing integration by parts,

An � D

∞∑
k=1

G(bnk) = D

∫ ∞

0

xG(x) dNn(x)

= D

[
lim
t→∞ tG(t)Nn(t)−

∫ ∞

0

Nn(x) d
(
xG(x)

)]
.(3.11)

Now E|X| < ∞ and (3.10) ensure that limt→∞ tG(t)Nn(t) = 0 whence, by (3.11),
(3.9), and (2.5), we have

An � D

∫ ∞

nγ

Nn(x) dVtG(t)(0, x)

(3.10)
= Dnα

∫ ∞

nγ

dVtG(t)(0, x) = Dnα
∞∑
j=n

∫ (j+1)γ

jγ
dVtG(t)(0, x)

= Dnα
∞∑
j=n

(
VtG(t)

(
0, (j + 1)γ

)− VtG(t)(0, j
γ)
)

(2.6)
= Dnα

∞∑
j=n

VtG(t)

(
jγ , (j + 1)γ

)
(2.3)
= Dnα

∞∑
j=n

VtG(t)−jγG(jγ)

(
jγ , (j + 1)γ

)
.(3.12)

We will estimate each total variation in (3.12) separately. Define the func-
tions f1(t) and f2(t) by

f1(t) = (t− jγ)G(jγ), f2(t) = t
(
G(jγ)−G(t)

)
, t � jγ .
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Note that f1(t) and f2(t) are nondecreasing and f1(t)−f2(t) = tG(t)−jγG(jγ). Thus

VtG(t)−jγG(jγ)

(
jγ , (j + 1)γ

)
= Vf1(t)−f2(t)

(
jγ , (j + 1)γ

)
(2.2)

� Vf1(t)

(
jγ , (j + 1)γ

)
+ V−f2(t)

(
jγ , (j + 1)γ

)
(2.4)
= Vf1(t)

(
jγ , (j + 1)γ

)
+ Vf2(t)

(
jγ , (j + 1)γ

)
(2.1)
= f1

(
(j + 1)γ

)− f1(j
γ) + f2

(
(j + 1)γ

)− f2(j
γ)

=
(
(j + 1)γ − jγ

)
G(jγ) + (j + 1)γ

(
G(jγ)−G((j + 1)γ)

)
,

implying by (3.12) that

An � Dnα

[ ∞∑
j=n

(
(j + 1)γ − jγ

)
G(jγ) +

∞∑
j=n

(j + 1)γ
(
G(jγ)−G

(
(j + 1)γ

))]
.

(3.13)

Applying the Abel summation by parts lemma (see, e.g., Lemma 5.1.1(5) of [3, p. 114])
to the first series of (3.13) yields

∞∑
j=n

(
(j + 1)γ − jγ

)
G(jγ) =

∞∑
j=n

(j + 1)γ
(
G(jγ)−G

(
(j + 1)γ

))− (n+ 1)γ G(nγ)

� 2γ
∞∑
j=n

jγ
(
G(jγ)−G

(
(j + 1)γ

))
.

Then by (3.13),

An � Cnα
∞∑
j=n

jγ
(
G(jγ)−G

(
(j + 1)γ

))
.(3.14)

Thus,

∞∑
n=1

nβ
∞∑
k=1

P
{‖ankVnk‖ > 1

}
=

∞∑
n=1

nβAn

(3.14)

� C

∞∑
n=1

nβnα
∞∑
j=n

jγ
(
G(jγ)−G

(
(j + 1)γ

))

= C

∞∑
j=1

jγ
(
G(jγ)−G

(
(j + 1)γ

)) j∑
n=1

nα+β

� C

∞∑
j=1

jγjα+β+1
(
G(jγ)−G

(
(j + 1)γ

))
(since α+ β > −1).(3.15)

Now observe that (3.3) is equivalent to the convergence of the series in (3.15). Thus,
(1.1) is proved.
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To verify (1.2), note that for any J � 2,

∞∑
n=1

nβ

( ∞∑
k=1

E‖ankVnk‖q
)J

=

∞∑
n=1

nβ

( ∞∑
k=1

|ank|qE‖Vnk‖q
)J

�
∞∑

n=1

nβ

(
sup
k�1

|ank|(α+β+1)/γ
∞∑
k=1

|ank|E‖Vnk‖q
)J

� C

∞∑
n=1

nβ
(
n−γ((α+β+1)/γ)nαE|X|q

)J
= C

∞∑
n=1

nβ(n−β−1)J < ∞.

Here the second inequality is valid by (3.6), (3.7), and stochastic domination.
Finally, to verify (1.3) if β < 0, note that for any δ > 0,

∞∑
k=1

P
{‖ankVnk‖ > δ

}
�

∞∑
k=1

δ−qE‖ankVnk‖q (by the Markov inequality)

� C sup
k�1

|ank|q−1
∞∑
k=1

|ank|E‖Vnk‖q

� Cn−γ(q−1)nαE|X|q (by (3.6), (3.7), and stochastic domination)

= Cn−β−1 = o(1) (since β > −1).

Remarks. (i) Verification of (1.1) is substantially simpler if (3.2) is strengthened to

∞∑
k=1

|ank| = O

(
nα

(lnn)1+δ

)
for some α ∈ [0, γ) and some δ > 0.

The details are left to the reader.
(ii) Theorem 1.1 (sufficiency half), Theorem 1.2, and some results of Hu, Móricz,

and Taylor [8] and Wang et al. [18] are immediate corollaries of Theorem 3.1.
(iii) In Theorem 3.1 we consider general weighted sums

∑∞
k=1 ankVnk, whereas

Wang et al. [18] considered
∑n

k=1 Vnk/n
1/t (1 � t < 2), which is the standard par-

tial sum with a Marcinkiewicz–Zygmund normalization. Moreover, we assume (3.4),
whereas Wang et al. [18] assume

max
1�i�n

P

{
‖∑i

k=1 Vnk‖
n1/t

> ε

}
= o(1) for all ε > 0.

However, it must be pointed out that the work of Wang et al. [18] includes the
interesting case β = −1. Our method of proving Theorem 3.1 does not work for this
case. But the case β = −1 is included in the next two theorems.

The differences between Theorem 3.1 and the next theorem are that (i) (3.2) is
strengthened to (3.17); (ii) β can be −1; (iii) (3.4) does not need to be stated as an
assumption.

Theorem 3.2. Let {Vnk, k � 1, n � 1} be as in Theorem 3.1 and let {ank,
k � 1, n � 1} be an array of constants such that

sup
k�1

|ank| = O(n−γ) for some γ > 0,(3.16)

∞∑
k=1

|ank| = O(n−α) for some α ∈ (0, γ).(3.17)



462 T.-C. HU, D. LI, A. ROSALSKY, AND A. I. VOLODIN

If

E|X|1+(1+α+β)/γ < ∞ for some β ∈ [−1, γ − α− 1],(3.18)

then Sn ≡∑∞
k=1 ankVnk converges a.s. for each n � 1 and

∞∑
n=1

nβP
{‖Sn‖ > ε

}
< ∞ for all ε > 0.

Proof. As in Theorem 3.1, the hypotheses ensure that Sn converges a.s. for each
n � 1. Note at the outset that for arbitrary ε > 0,

P
{‖Sn‖ > ε

}
� ε−1E‖Sn‖ (by the Markov inequality)

� C

∞∑
k=1

|ank|E‖Vnk‖ (by the Beppo–Levi theorem)

� Cn−αE|X| (by (3.17) and stochastic domination)

= o(1) (by (3.18) and α > 0).

Thus Sn
P→ 0. Let cn = nβ , n � 1. As in the proof of Theorem 3.1, we only need

to verify that conditions (1.1), (1.2), and (1.3) (if β < 0) of Theorem 1.3 hold with
ankVnk playing the role of Vnk in the formulation of that theorem.

We now verify (1.1). Let q = 1 + γ−1(1 + α+ β). For arbitrary ε > 0,

∞∑
n=1

nβ
∞∑
k=1

P
{‖ankVnk‖ > ε

}

� D

∞∑
n=1

nβ
∞∑
k=1

P

{
|X| > ε

D|ank|
}

(by stochastic domination)

� C

∞∑
n=1

nβ
∞∑
k=1

|ank|qE|X|q (by the Markov inequality)

(3.18)
= C

∞∑
n=1

nβ
∞∑
k=1

|ank| |ank|(1+α+β)/γ
(3.17), (3.16)

� C

∞∑
n=1

nβn−αn−(1+α+β)

= C

∞∑
n=1

n−1−2α < ∞ (since α > 0),

thereby establishing (1.1).

Verification of (1.2) and (1.3) (if β < 0) follows as in the proof of Theorem 3.1
mutatis mutandis.

The next result was obtained by Hu et al. [9, Corollary 4.5] when δ > 1.

Theorem 3.3. Let {Vnk, k � 1, n � 1} be as in Theorem 3.1 and let {ank,
k � 1, n � 1} be an array of constants such that for some 0 < q � 2 and δ > 0

∞∑
k=1

|ank|q = O(n−δ).
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If E|X|q < ∞ and Sn ≡∑∞
k=1 ankVnk

P→ 0, then for all −1 � β < δ − 1,

∞∑
n=1

nβP
{‖Sn‖ > ε

}
< ∞ for all ε > 0.

Proof. The argument is a slight modification of Theorem 3.2. The details are left
to the reader.

The ensuing corollary is in effect a special case of Theorem 3.3 and is presented for
purposes of comparison with our other results. Corollary 3.1 replaces conditions (3.16)
and (3.17) of Theorem 3.2 by the weaker single condition (3.19). However, in contrast

to Theorem 3.2, it needs to be assumed in Corollary 3.1 that Sn =
∑∞

k=1 ankVnk
P→ 0.

Corollary 3.1. Let {Vnk, k � 1, n � 1} be as in Theorem 3.1 and let {ank,
k � 1, n � 1} be an array of constants such that for some constants γ, α, and β with
γ > 0, −1− β − γ < α � γ, and −1 � β � γ − α− 1,

∞∑
k=1

|ank|1+(1+α+β)/γ = O(n−δ) for some δ > β + 1.(3.19)

If E|X|1+(1+α+β)/γ < ∞ and

Sn ≡
∞∑
k=1

ankVnk
P→ 0,(3.20)

then
∑∞

n=1 n
βP{‖Sn‖ > ε} < ∞ for all ε > 0.

The next theorem handles the situation where δ > 0 satisfying (3.19) is taken
arbitrarily small, and this will be transparent from Corollary 3.2. The proof of The-
orem 3.4 again uses Theorem 1.2 but the overall argument is substantially different
from Theorems 3.1 and 3.2.

Theorem 3.4. Let {Vnk, k � 1, n � 1} be as in Theorem 3.1, and let {ank,
k � 1, n � 1} be an array of constants. Suppose that

sup
k�1

|ank| = O(n−γ) for some γ > 0,(3.21)

sup
n�1

|ank| = O(k−λ) for some λ >
1

2
,(3.22)

E|X|1/λ+(β+1)/γ < ∞ for some β ∈
(
− 1, 2γ − γ

λ
− 1

]
,(3.23)

∞∑
k=1

|ank|1/λ+(β+1)/γ = O(n−δ) for some δ > 0.(3.24)

If Sn ≡∑∞
k=1 ankVnk

P→ 0, then

∞∑
n=1

nβP
{‖Sn‖ > ε

}
< ∞ for all ε > 0.

Proof. Let cn = nβ , n � 1. Again, we only need to verify that conditions (1.1),
(1.2), and (1.3) (if β < 0) of Theorem 1.3 hold, with ankVnk playing the role of
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Vnk, k � 1, n � 1, in the formulation of that theorem. Let q = 1/λ+(β+1)/γ. Then
by (3.23), E|X|q < ∞ and 0 < q � 2.

To verify (1.1), without loss of generality suppose, by (3.21), that supk�1 |ank| �
n−γ , n � 1, and that ε = 1. Define bnk = 1/|ank|, k � 1, n � 1. Then infk�1 bnk � nγ ,

n � 1. For n � 1 and j � 1, let b−1
n (j) = max{k � 1: [bnk] � j}, where max ∅ = 0.

For j � 1, let n(j) = max{n � 1: [nγ ] � j}. Then
∞∑

n=1

nβ
∞∑
k=1

P
{‖ankVnk‖ > 1

}

� D

∞∑
n=1

nβ
∞∑
k=1

P
{|DX| > bnk

}
(by stochastic domination)

� D

∞∑
n=1

nβ
∞∑
k=1

∞∑
j=[bnk]

P
{
j < |DX| � j + 1

}

� D

∞∑
n=1

nβ
∞∑

j=[nγ ]

b−1
n (j)∑
k=1

P
{
j < |DX| � j + 1

}

= D

∞∑
n=1

nβ
∞∑

j=[nγ ]

b−1
n (j)P

{
j < |DX| � j + 1

}
(3.22)

� C

∞∑
n=1

nβ
∞∑

j=[nγ ]

j1/λP
{
j < |DX| � j + 1

}

= C

∞∑
j=1

n(j)∑
n=1

nβj1/λP
{
j < |DX| � j + 1

}

� C

∞∑
j=1

j1/λP
{
j < |DX| � j + 1

} [2j1/γ ]∑
n=1

nβ

� C

∞∑
j=1

j1/λj(β+1)/γP
{
j < |DX| � j + 1

}

� CE|X|1/λ+(β+1)/γ
(3.23)
< ∞.

Next, let us verify (1.2). Note that for any J � 2

∞∑
n=1

nβ

( ∞∑
k=1

E‖ankVnk‖q
)J

� C

∞∑
n=1

nβ

( ∞∑
k=1

|ank|qE|X|q
)J

(by stochastic domination)

(3.23),(3.24)

� C

∞∑
n=1

nβ−Jδ < ∞

provided J > (β + 1)/δ.
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Finally, to verify (1.3) if β < 0, note that

∞∑
k=1

P
{‖ankVnk‖ > 1

}

� D

∞∑
k=1

P
{|ank‖DX| > 1

}
(by stochastic domination)

� Dq+1
∞∑
k=1

|ank|qE|X|q (by the Markov inequality)

(3.23), (3.24)

� Cn−δ = o(1).

Remark. Let λ > 1
2 . If

|ank| ↓ as k ↑ for all n � 1,(3.25)

and if the series
∑∞

k=1 |ank|1/λ converges uniformly in n, that is,

lim
K→∞

sup
n�1

∞∑
k=K

|ank|1/λ = 0,(3.26)

then (3.22) holds.
Indeed, it follows from the triangle inequality and (3.26) that

lim
K→∞
K′→∞

sup
n�1

∣∣∣∣∣
K∑

k=1

|ank|1/λ −
K′∑
k=1

|ank|1/λ
∣∣∣∣∣ = 0.(3.27)

Then by the same argument used to prove the theorem in [11, p. 124], it follows
from (3.25) and (3.26) that

lim
k→∞

sup
n�1

k|ank|1/λ = 0,

implying (3.22).
The next corollary is in effect a reparametrization of Theorem 3.4 and it will be

compared with our other results. Corollary 3.2 weakens condition (3.19) of Corol-
lary 3.1 by permitting δ to be arbitrarily close to 0, but it also imposes additional
conditions ((3.28), (3.29), and β > −1).

Corollary 3.2. Let {Vnk, k � 1, n � 1} be as in Theorem 3.1 and let {ank,
k � 1, n � 1} be an array of constants. Suppose that

sup
k�1

|ank| = O(n−γ) for some γ > 0,(3.28)

sup
n�1

|ank| = O(k−γ/(γ+α)) for some α ∈ [0, γ),(3.29)

E|X|1+(1+α+β)/γ < ∞ for some β ∈ (−1, γ − α− 1],(3.30)
∞∑
k=1

|ank|1+(1+α+β)/γ = O(n−δ) for some δ > 0.(3.31)
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If Sn ≡∑∞
k=1 ankVnk

P→ 0, then

∞∑
n=1

nβP
{‖Sn‖ > ε

}
< ∞ for all ε > 0.

Proof. Let λ = γ/(γ + α). Then λ > 1
2 since γ > α and E|X|1/λ+(β+1)/γ =

E|X|1+(1+α+β)/γ < ∞ (by (3.30)). Moreover, by (3.30) −1 < β � γ − α − 1 =
2γ − γ/λ− 1. Finally,

∞∑
k=1

|ank|1/λ+(β+1)/γ =

∞∑
k=1

|ank|1+(1+α+β)/γ (3.31)
= O(n−δ).

Corollary 3.2 now follows immediately from Theorem 3.4.

4. Some examples. In this section, examples will be presented of arrays of
weights {ank, k � 1, n � 1} satisfying the conditions of some but not all of the
results in section 3. Moreover, an example is given wherein Corollary 3.1 applies but
Corollary 4.6 of [9] does not.

Example 4.1. Let γ > 0 and 0 � α < γ and set ank = n−γk−γ/(γ+α), k � 1,
n � 1. Then conditions (3.19) of Corollary 3.1 and (3.28), (3.29), and (3.31) of
Corollary 3.2 hold but conditions (3.2) of Theorem 3.1 and (3.17) of Theorem 3.2 fail.

Example 4.2. Let γ > 0 and set for n � 1

ank =

{
n−γk−1/2, k = 2, 22, 23, 24, . . . ,

n−γk−2 otherwise.

Then conditions (3.1) and (3.2) of Theorem 3.1, (3.16) and (3.17) of Theorem 3.2,
and (3.19) (provided α > −γ) of Corollary 3.1 all hold, but condition (3.29) of Corol-
lary 3.2 fails.

The array {ank, k � 1, n � 1} exhibited in the next example satisfies condi-
tions (3.28), (3.29), and (3.31) of Corollary 3.2 but does not satisfy conditions (3.19)
of Corollary 3.1 and (3.17) of Theorem 3.2.

Example 4.3. Let 1
2 < γ < 1 and α = 1− γ. Then 0 < α < γ. Set

ank =

{
n−γ , 1 � k � n, n � 1,

0, k > n, n � 1.

Let β = γ − α− 1 = 2γ − 2. Now

sup
k�1

|ank| = n−γ ,(4.1)

sup
n�1

|ank| = k−γ = k−γ/(γ+α),

and

∞∑
k=1

|ank|1+(1+α+β)/γ =

∞∑
k=1

a2
nk = n−(2γ−1).(4.2)
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Thus conditions (3.28), (3.29), and (3.31) (with δ = 2γ − 1) of Corollary 3.2 hold.
However, condition (3.19) of Corollary 3.1 fails for every δ > β + 1 since, then,∑∞

k=1 |ank|1+(1+α+β)/γ

n−δ

(4.2)
=

nδ

n2γ−1
=

nδ

nβ+1
→ ∞.

Finally, note that

∞∑
k=1

|ank| = n1−γ = nα(4.3)

and so condition (3.17) of Theorem 3.2 fails.
Remark. In the preceding example, conditions (3.1) and (3.2) of Theorem 3.1

indeed hold according to (4.1) and (4.3), respectively. It would be particularly inter-
esting to construct an example wherein the conditions of Corollary 3.2 are satisfied
but those of Theorem 3.1, Theorem 3.2, and Corollary 3.1 are not satisfied. The au-
thors were not able to accomplish this and hope that this problem will be considered
by an interested reader.

The last example shows that Corollary 3.1 can be applied when the conditions of
Corollary 4.6 of [9] fail, but barely so.

Example 4.4. Let {Vnk, k � 1, n � 1} be an array of row-wise independent
random elements taking values in a separable real Banach space. Suppose that {Vnk,
k � 1, n � 1} is stochastically dominated by a random variable X with EX2 < ∞.
Let 1 < p < 2, γ > 1, α = γ − 1, and β = 0. Set

ank = n−1/pk−1, k � 1, n � 1.

Suppose that E|X|p+1 = ∞. Note that

∞∑
k=1

|ank|1+(1+α+β)/γ =

∞∑
k=1

a2
nk = O(n−2/p) = O(n−δ),

where δ = 2/p > β + 1. Also

E|X|1+(1+α+β)/γ = EX2 < ∞.

Thus, by Corollary 3.1, if (3.20) is satisfied, then Sn =
∑∞

k=1 ankVnk converges com-
pletely to 0. However, Corollary 4.6 of [9] does not apply solely because E|X|p+1 = ∞.
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