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ABSTRACT 
In this article we study three parameters crack distribution (CR) which has numerous 

applications in engineering. This distribution contains as special cases some well known two-
parameter distributions, namely, inverse Gaussian (IG), length biased inverse Gaussian (LB), and 
Birnbaum-Saunders (BS). The purpose of our research is estimate the parameters for crack 
distribution by the method of moments. Numerical methods are used to solve method of moments 
equations for three parameters of crack distribution for particular data sets. Computer algebra system, 
Maple version 11 is implemented and applied to solve numeric solutions for the method of 
moments. In future studies we could apply this three-parameters estimator to generate the random 
numbers that follow three-parameter Crack distribution and derive some distribution 
characteristics and graphs. 
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1. INTRODUCTION  
Three parameters crack distribution has many applications in engineering. This 

distribution contains well known special cases as two-parameter distributions, inverse 
Gaussian(IG),  length biased inverse Gaussian(LB), and Birnbaum-Saunders(BS). We will begin 
with the literatures survey on the inverse Gaussian, length biased inverse Gaussian, and 
Birnbaum-Saunders distributions. In the study of crack distribution, we will focus on the 
derivation of the characteristic function and parameters estimation by the method of moments.  In 
addition, we will explain the up-to-date existing literatures in this area and explain the interesting 
part of this subject.  

Ahmed et al (2008) studied parametric estimation for the parameters of Birnbaum-
Saunders lifetime distribution based on a new parametrization.A new parameterization of the two-
parameter Birnbaum-Saunders lifetime distribution is considered. Moreover, Leiva et al. (2008) 
provided a lifetime analysis based on the generalized Birnbaum–Saunders distribution. The 
estimation method is examined by means of Monte Carlo simulations.  

Recently, Besides, Lisawadi(2009), investigated parameter estimation by the method of 
moments for the two-sided Birnbaum-Saunders distribution. Life-time Birnbaum-Saunders 
distribution is commonly used in practical applications of the reliability theory for products with 
failure due to a development of fatigue cracks. Consider a rectangular metal block which is fixed 
from two sides, a periodic loading is applied to its middle part and this leads to a development of 
a fatigue crack. The same year, Kundu, Balakrishnan and Jamalizadeh (2009) studied bivariate 
Birnbaum-Saunders distribution and associated inference procedures. Univariate Birnbaum-
Saunders distribution has been used quite effectively in modeling positively skewed data, 
especially lifetime data and crack growth data.  

However, a revision of literature suggests us that nothing was done about the parameter 
estimation of crack distributions and its characteristics function.  Note that the crack distribution 
contains as special cases Birnbaum-Saunders, length biased inverse Gaussian (LB) distribution, 
and inverse-Gaussian distribution. Accordingly, it is interesting to investigate the estimation 
procedure for parameters of the crack distribution. Our research interest is to estimate the 
parameters by method of moments. The theoretical (true) moments of the crack distribution are 



 

derived by the method of Taylor series expansion of the characteristic function. Because crack 
distribution contains three parameters ( ), ,P λ θ , we need three central moments.  
2.RESEARCH OBJECTIVES  

In this research, we will estimate the parameters for crack distribution by the method of moments. 
We numerically estimate three parameters crack distribution with method of moments for particular data 
sets. 
3. METHODOLOGY  

3.1 Characteristic Function of LB, IG and BS Distribution  
The length biased inverse Gaussian (LB) distribution has the density function: 
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The characteristic function of the LB(λ , θ ) distribution is 
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The Inverse-Gaussian IG(λ , θ ) distribution has the density function: 
3 2
2 1( ; , ) exp ,

22IG
xf x

x x
λ θ θθ λ λ

θθ π

⎫⎛ ⎞ ⎪⎛ ⎞ ⎧= − −⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎩ ⎝ ⎠ ⎪⎭
where x>0 

The characteristic function of the IG(λ , θ ) distribution is 

{ }1/ 2( ; , ) exp 1 (1 2 )IG t i tϕ λ θ λ θ⎡ ⎤= − −⎣ ⎦  

The Birnbaum-Saunders BS(λ , θ ) distribution  has the density function: 
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The characteristic function of the BS(λ , θ ) distribution is 

{ }1/ 2 1/ 21( ; , ) 1 (1 2 ) exp 1 (1 2 )
2BS t i t i tϕ λ θ θ λ θ−⎡ ⎤ ⎡ ⎤= + − − −⎣ ⎦ ⎣ ⎦  

3.2 The method of moments  
The Moment method is oldest methods for deriving the estimators of distribution 

parameters. Nevertheless, Moment method is based on the assumption that the sample moments 
should provide good estimates of the corresponding population moments. Then because the 
population moments will be functions of population parameters, we will equate corresponding 
population and sample moments and solve for the desired parameters. the method outlined in 



 

Volodin, A. I. (2002), p.39-42. Although the moment of most distribution can be determined 
directly by evaluating the necessary integrals or sums, there is an alternative procedure which 
sometimes provides considerable simplifications. This technique utilizes characteristic functions 

Definition:The characteristic function of a random variable X ,where it exists is given by  
 ),(=)(=)( xfeeEt itx
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when X  is discrete and  
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when X  is continuous. The independent variable is t , and we are usually interested in values of 
t  in the neighborhood of 0. To explain why this function could help us to find moments of X , 
let us substitute for itxe  its Maclaurin's series expansion, namely,  

 LL ++++++
!
)(

3!
)(

2!
)(1=

32

r
itxitxitxitxe

r
itx  

For the discrete case, we thus get  

    )(
!
)(

2!
)(1=)(

2

xf
r

itxitxitxt
r

x
X ⎥

⎦

⎤
⎢
⎣

⎡
+++++∑ LLφ  

            LL +++++ ∑∑∑∑ )(
!
)()(

2!
)()()(= 2

2

xfx
r
itxfxitxxfitxf r

x

r

xxx
 

            LL +′++′++ r

r

r
ititit μμμ

!
)(

2!
)()(1= 2

2

 

And it can be seen that in the Maclaurin's series of the characteristic function of X , the 

coefficient of 
!
)(

r
it r

 is rμ′ ,the r -th moment about the origin. In the continuous case, the 

argument is the same.  
 Guy Lebanon(2006), The Method of Moment Estimator. We have defined some desirable 
properties of estimators such as efficiency, consistency and sufficiency.However, we have not 
seen any general purpose method for obtaining good estimators. The method of moment estimator 
and maximum likelihood estimator are two such general purpose methods. They generally obtain 
consistent estimators and are usually straightforward to numerically calcualte using computational 
software. In this note we present the method of moment estimation (MOME) method.  

 



 

Definition 1. The k-moment of a RV X is E (Xk). 

The motivation behind the mome is that if we have a good estimator θ̂ , the distribution 
that underlies θ̂  should be similar to the distribution of θ  - where similarity is compared by 
equality of moments. However, we do not know the moments of the distribution that corresponds 
to θ  since we don’t know the value of θ . For this reason we approximate it by the sample 
moment - the moment computed by the given sample (that was generated from θ̂ ). In other 
words, we would choose θ̂  such that. 
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In case that θ  is a vector of k components, we need more than one equation. Specifically 
we have k-unknown parameters so we need k equations. Therefore we require the equality of the 
first k moments. 

Definition 2. Let X1, . . . ,Xn be iid sample from P - a distribution with a k-dimensional 
parameter vectorθ . The method of moment estimator (MOME) θ̂  is the solution to the 
following system of equations. 
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3.3 Taylor and MacLaurin Series 
If the given function has derivatives of all orders and ( ) 0nR x →  as n →∞ . If a 

function ( )f x  has continuous derivatives up to (n+1)th order, then this function can be expanded 
in the following fashion. Taylor's theorem applies to any sufficiently differentiable function ƒ, 
giving an approximation, for x   near a point a, of the form 
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3.4 Characteristic Function for the Crack Distribution 
The density function of the CR(P,λ , θ ) distribution is 
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where x>0 ; λ  > 0; θ  > 0; 0 ≤  p ≤  1. 
The characteristic function of the CR(P,λ , θ ) distribution is 
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 We use the notation CR (P, λ , θ ) for this distribution. It is easy to see that  
CR(0, λ , θ )= LB(λ , θ ), CR(1, λ , θ )= IG(λ , θ ), and CR(1/2, λ , θ )= BS(λ , θ ). 

This can be derived from the formula  
fCR (x; p, λ , θ )= pfIG(x; λ ,θ )+(1-p)fLB(x; λ , θ )x > 0; λ  > 0; θ > 0; 0 ≤  p≤ 1. 

which gives the density function for the Crack distribution. 
3.5 Calculate of the first three moments for the Crack Distribution  
In the case of CR(P,λ , θ ) distribution, the logarithm of the characteristic function is 
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Here we assume θ  = 1. If this is not the case, then instead of t we should write θ t. Later 
we will return to general θ .  

For the series expansion we use the formulae below. We note that all the functions of a 
complex variable we consider here are analytic functions in some neighborhood of zero, if one is 
careful about choosing branches. If we remove the negative real axis and choose the value of 
arg(x) on the resulting domain, then all analytic functions have Taylor series with the coeffcients 
given by Taylor's formula and these series converge on some open disk about the origin. For our 
functions it will be sufficient to assume that this disk has radius 1, that is 1x < , cf. Ahlfors 
(1978). Thus, 
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where 1x <   
With 0 < t < 1/2 and x = 2it, we obtain from the formulae above 
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Now we use the formula 
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Hence, we have the expansion of the logarithm of the characteristic function 
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The expansion obtained gives the semi-invariants of a random variable τ  
having CR(P,λ , θ ) -distribution. Here we return to arbitraryθ : 
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The next step is to write the moments; 
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4. RESULTS 
Parameters estimate for crack distribution  

 The density function of the CR(P,λ , θ ) distribution is 
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where x>0 ; λ  > 0; θ  > 0; 0 ≤  p ≤  1. 
The characteristic function of the CR(P,λ , θ ) distribution is 
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The results of estimate the parameters for crack distribution by the method of moments 
following below equations. 
Population Value. 
 ( ) ( ) ( )1 1k pμ τ τ θ λ= = − + , ( ) ( ) ( ) ( )22 2
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Sample Value. 
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The numerical to solve method of moments estimates equations and use Maple Program 
version 11. The results of estimates equations for parameter estimated values by P = 0.5  For each 
fixed values of three parameters we run simulations of corresponding random numbers 
independently, the simulations are repeated 1,000 times for constructing  and reporting parameter 
estimation of  Crack distribution by using the  program Maple version 11.  

 
5. CONCLUSION AND FUTURE WORK  

The summary of the results on the crack distribution are presented below. We have the 
parameters estimator for Crack distribution by the method of moments. We provide a numerical  
solution of method of moments estimates equations and use Maple Program version 11 for a 
particular data set. The results of estimates equations for parameter estimated values by p = 0.5.  
The simulations are repeated 1,000 times for constructing and reporting parameter estimation of  
Crack distribution. There are the results of good parameter estimated have eight cases. We will 
find the the results of estimates equations for parameter estimated values by p = 0.5. There are the 
results of good parameter estimated have eight cases for observation is very large. For small 
samples method of moments estimates produce not precise results, especially for the estimation of 
parameter p. For future work we could suggest the following open problems: 

1. Use other method to estimate parameters of Crack distribution. 



 

2. Modify estimete equation of Crack distribution to simple form. 
3. Compare method  of different estimation methods . 
4. Apply a generator of random numbers that follow three-parameter Crack distribution 

to compare the shape of generated distributions for various values of parameters. 
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