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ABSTRACT. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise negatively orthant dependent random
variables which is stochastically dominated by a random variable X. Wang et al. [15. Complete
convergence for arrays of rowwise negatively orthant dependent random variables, RACSAM, 106
(2012), 235–245] studied the complete convergence for arrays of rowwise negatively orthant dependent
random variables under the condition that X has an exponential moment, which seems too strong. We
will further study the complete convergence for arrays of rowwise negatively orthant dependent random
variables under the condition that X has a moment, which is weaker than exponential moment. Our
results improve the corresponding ones of Wang et al. [15].
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1. Introduction

Let {X,Xn, n ≥ 1} be a sequence of identically distributed random variables and {ani, 1 ≤
i ≤ n, n ≥ 1} an array of constants. The strong convergence results for weighted sums

n∑
i=1

aniXi

have been studied by many authors, see for example, Bai and Cheng [2], Cai [3], Chen and Gan
[6], Cuzick [7], Sung [13], Wang et al. [15–18], Wu [19–21], Zhou et al. [27], Xu and Tang [25,
26], Wu et al. [22], Tang [14] and so forth. Many useful linear statistics are these weighted
sums. Examples include least squares estimators, nonparametric regression function estimators
and jackknife estimates among others. Bai and Cheng [2] proved the strong law of large numbers
for weighted sums

1

bn

n∑
i=1

aniXi → 0, a.s.

when {X,Xn, n ≥ 1} is a sequence of independent and identically distributed random variables
with EX = 0 and E exp(h|X|γ) <∞ for some h > 0 and γ > 0, and {ani, 1 ≤ i ≤ n, n ≥ 1} is an
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array of constants satisfying

Aα
.
= lim sup

n→∞
Aα,n <∞, Aαα,n

.
=

1

n

n∑
i=1

|ani|α

for some 1 < α < 2, where bn = n1/α(log n)1/γ+γ(α−1)/α(1+γ).

The concept of complete convergence was introduced by Hsu and Robbins [10] as follows: a
sequence of random variables {Un, n ≥ 1} is said to converge completely to a constant C if
∞∑
n=1

P (|Un − C| > ε) < ∞ for all ε > 0. In view of the Borel-Cantelli lemma, this implies

that Un → C almost surely (a.s.). The converse is true if the {Un, n ≥ 1} are independent. Hsu
and Robbins [10] proved that the sequence of arithmetic means of independent and identically
distributed (i.i.d.) random variables converges completely to the expected value if the variance
of the summands is finite. Erdös [8] proved the converse. The result of Hsu-Robbins-Erdös is a
fundamental theorem in probability theory and has been extended in several directions by many
authors. One of the most important generalizations is the Baum-Katz-Spitzer type result. For
more details about the Baum-Katz-Spitzer type results, one can refer to Spitzer [12], Baum and
Katz [4] and Gut [9], and so forth.

A finite collection of random variables X1, X2, . . . , Xn is said to be negatively associated (NA)
if for every pair of disjoint subsets A1, A2 of {1, 2, . . . , n},

Cov{f(Xi : i ∈ A1), g(Xj : j ∈ A2)} ≤ 0,

whenever f and g are coordinatewise nondecreasing such that this covariance exists. An infinite
sequence {Xn, n ≥ 1} is NA if every finite subcollection is NA.

An array of random variables {Xni, i ≥ 1, n ≥ 1} is called rowwise NA random variables if for
every n ≥ 1, {Xni, i ≥ 1} is a sequence of NA random variables.

A finite collection of random variables X1, X2, . . . , Xn is said to be negatively orthant dependent
(NOD) if

P (X1 > x1, X2 > x2, . . . , Xn > xn) ≤
n∏
i=1

P (Xi > xi)

and

P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤
n∏
i=1

P (Xi ≤ xi)

hold for all x1, x2, . . . , xn ∈ R. An infinite sequence {Xn, n ≥ 1} is said to be NOD if every finite
subcollection is NOD.

An array of random variables {Xni, i ≥ 1, n ≥ 1} is called rowwise NOD if for every n ≥ 1,
{Xni, i ≥ 1} is a sequence of NOD random variables.

The concepts of NA and NOD sequences were introduced by Joag-Dev and Proschan [11].
Obviously, independent random variables are NOD. Joag-Dev and Proschan [11] pointed out that
NOD is weaker than NA.

Recently, Cai [3] obtained the following complete convergence result for weighted sums of iden-
tically distributed NA random variables.

Theorem 1.1. Let {X,Xn, n ≥ 1} be a sequence of NA random variables with identical distribu-

tion, and {ani, 1 ≤ i ≤ n, n ≥ 1} be a triangular array of constants satisfying
n∑
i=1

|ani|α = O(n)

for 0 < α ≤ 2. Let bn = n1/α log1/γ n for some γ > 0. Furthermore, assume that EX = 0 when
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1 < α ≤ 2. If E exp
(
h|X|γ

)
<∞ for some h > 0, then for any ε > 0,

∞∑
n=1

1

n
P

(
max
1≤j≤n

∣∣∣∣ j∑
i=1

aniXi

∣∣∣∣ > εbn

)
<∞.

Wang et al. [15] extended the result of Cai [3] for sequences of NA random variables to the case
of arrays of rowwise NOD random variables and obtained the following result.

Theorem 1.2. Let {Xni : i ≥ 1, n ≥ 1} be an array of rowwise NOD random variables which
is stochastically dominated by a random variable X and {ani : i ≥ 1, n ≥ 1} be an array of real
numbers. Assume that there exist some δ with 0 < δ < 1 and some α with 0 < α ≤ 2 such that
n∑
i=1

|ani|α = O(nδ) and assume further that EXni = 0 when 1 < α ≤ 2. If for some h > 0 and

γ > 0 such that E exp(h|X|γ) <∞, then for any ε > 0,

∞∑
n=1

npα−2P

(
max
1≤j≤n

∣∣∣∣ j∑
i=1

aniXni

∣∣∣∣ > εbn

)
<∞,

where p ≥ 1/α and bn
.
= n1/α log1/γ n.

All the results above are based on the condition that E exp(h|X|γ) < ∞ for some h > 0 and
γ > 0 (or for all h > 0 and some γ > 0). The exponential moment seems too strong. The question
is that whether the exponential moment can be replaced by a moment, i.e., there exists a constant
β > 0 such that E|X|β <∞. Our answer is positive.

Our goal in this paper is to further study the complete convergence for arrays of rowwise NOD
random variables under the condition that X has a moment, which is weaker than exponential
moment. The results presented in this paper are inspired by Wang et al. [15]. The techniques
used in the paper are the truncated method and the Rosenthal type inequality for NOD random
variables.

Definition 1.1. An array of random variables {Xni, i ≥ 1, n ≥ 1} is said to be stochastically
dominated by a random variable X if there exists a positive constant C such that

P (|Xni| > x) ≤ CP (|X| > x)

for all x ≥ 0, i ≥ 1 and n ≥ 1.

The following lemmas are useful for the proofs of the main results. The first one is a basic
property for NOD random variables, which was given by Bozorgnia et al. [5].

Lemma 1.1. ([5]) Let random variables X1, X2, . . . , Xn be NOD, f1, f2, . . . , fn be all nondecreasing
(or all nonincreasing) functions, then random variables f1(X1), f2(X2), . . . , fn(Xn) are NOD.

The next one is the Rosenthal type inequality for NOD random variables. For the proofs, one
can refer to Asadian et al. [1] and Wu [24].

Lemma 1.2. ([1, 24]) Let p ≥ 2 and {Xn, n ≥ 1} be a sequence of NOD random variables with
EXn = 0 and E|Xn|p < ∞ for every n ≥ 1. Then there exists a positive constant C depending
only on p such that for every n ≥ 1,

E

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p ≤ C{ n∑
i=1

E|Xi|p +

( n∑
i=1

EX2
i

)p/2}
,

E

(
max
1≤j≤n

∣∣∣∣ j∑
i=1

Xi

∣∣∣∣p) ≤ C logp 2n

{ n∑
i=1

E|Xi|p +

( n∑
i=1

EX2
i

)p/2}
.
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The last one is a basic property for stochastic domination. For the proof, one can refer to Wu
[24] or Wang et al. [23].

Lemma 1.3. Let {Xn, n ≥ 1} be a sequence of random variables which is stochastically dominated
by a random variable X. Then for any α > 0 and b > 0,

E|Xn|αI
(
|Xn| ≤ b

)
≤ C1

[
E|X|αI

(
|X| ≤ b

)
+ bαP

(
|X| > b

)]
,

E|Xn|αI
(
|Xn| > b

)
≤ C2E|X|αI

(
|X| > b

)
,

where C1 and C2 are positive constants.

Throughout the paper, let I(A) be the indicator function of the set A. C denotes a positive
constant which may be different in various places and an = O(bn) stands for an ≤ Cbn.

2. Main results and their proofs

Our main results are as follows.

Theorem 2.1. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise NOD random variables which
is stochastically dominated by a random variable X and {ani, i ≥ 1, n ≥ 1} be an array of real
numbers. Assume that the following two conditions are satisfied:

(i) There exist some δ with 0 < δ < 1 and some α with 0 < α ≤ 2 such that
n∑
i=1

|ani|α = O(nδ)

and assume further that EXni = 0 when 1 < α ≤ 2;

(ii) p ≥ 1/α. For some β > max{pα2, α+ α(pα−1)
1−δ , α+ 2, α(pα− 1) + 2δ}, E|X|β <∞.

Then for any ε > 0,
∞∑
n=1

npα−2P

(
max
1≤j≤n

∣∣∣∣ j∑
i=1

aniXni

∣∣∣∣ > εbn

)
<∞, (2.1)

where bn
.
= n1/α log1/γ n for some γ > 0.

P r o o f. For fixed n ≥ 1, define

X
(n)
i = −bnI(Xni < −bn) +XniI(|Xni| ≤ bn) + bnI(Xni > bn), i ≥ 1,

T
(n)
j =

j∑
i=1

ani

(
X

(n)
i − EX(n)

i

)
, j = 1, 2, . . . , n.

It is easy to check that for any ε > 0,(
max
1≤j≤n

∣∣∣∣ j∑
i=1

aniXni

∣∣∣∣ > εbn

)
⊂
(

max
1≤i≤n

|Xni| > bn

)
∪
(

max
1≤j≤n

∣∣∣∣ j∑
i=1

aniX
(n)
i

∣∣∣∣ > εbn

)
, (2.2)

which implies that

P

(
max
1≤j≤n

∣∣∣∣ j∑
i=1

aniXni

∣∣∣∣ > εbn

)

≤ P
(

max
1≤i≤n

|Xni| > bn

)
+ P

(
max
1≤j≤n

∣∣∣∣ j∑
i=1

aniX
(n)
i

∣∣∣∣ > εbn

)

≤
n∑
i=1

P

(
|Xni| > bn

)
+ P

(
max
1≤j≤n

∣∣∣∣T (n)
j

∣∣∣∣ > εbn − max
1≤j≤n

∣∣∣∣ j∑
i=1

aniEX
(n)
i

∣∣∣∣).
(2.3)
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Firstly, we will show that

b−1n max
1≤j≤n

∣∣∣∣ j∑
i=1

aniEX
(n)
i

∣∣∣∣→ 0, as n→∞. (2.4)

By
n∑
i=1

|ani|α = O(nδ) and Hölder’s inequality, we have for 1 ≤ k < α that

n∑
i=1

|ani|k ≤
( n∑
i=1

(
|ani|k

)α
k
) k
α
( n∑
i=1

1

)α−k
α

≤ Cn. (2.5)

Hence, when 1 < α ≤ 2, we have by EXni = 0, Lemma 1.3, (2.5) (Taking k = 1), Markov’s
inequality and condition (ii) that

b−1n max
1≤j≤n

∣∣∣∣ j∑
i=1

aniEX
(n)
i

∣∣∣∣
≤

n∑
i=1

|ani|P (|Xni| > bn) + b−1n max
1≤j≤n

∣∣∣∣ j∑
i=1

aniEXniI(|Xni| > bn)

∣∣∣∣
≤ C

n∑
i=1

|ani|P (|X| > bn) + b−1n

n∑
i=1

|ani|E|Xni|I(|Xni| > bn)

≤ CnE|X|
β

bβn
+ Cb−1n

n∑
i=1

|ani|E|X|I(|X| > bn)

≤ Cn

nβ/α logβ/γ n
+ Cb−1n nE|X|I(|X| > bn)

=
Cn

nβ/α logβ/γ n
+ Cb−1n n

∞∑
k=n

E|X|I(bk < |X| ≤ bk+1)

≤ Cn

nβ/α logβ/γ n
+ Cb−1n n

∞∑
k=n

bk+1P (|X| > bk)

≤ Cn

nβ/α logβ/γ n
+ Cb−1n n

∞∑
k=n

bk+1
E|X|β

bβk

≤ Cn

nβ/α logβ/γ n
+ Cb−1n n

∞∑
k=n

(k + 1)1/α log1/γ(k + 1)

kβ/α logβ/γ k

≤ Cn

nβ/α logβ/γ n
+ Cb−1n

∞∑
k=n

k1/α+1−β/α

≤ Cn

nβ/α logβ/γ n
+
Cn1/α+2−β/α

n1/α log1/γ n
→ 0, as n→∞.

(2.6)

Elementary Jensen’s inequality implies that for any 0 < s < t,( n∑
i=1

|ani|t
)1/t

≤
( n∑
i=1

|ani|s
)1/s

. (2.7)
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Therefore, when 0 < α ≤ 1, we have by Lemma 1.3, (2.7), Markov’s inequality and condition
(ii) that

b−1n max
1≤j≤n

∣∣∣∣ j∑
i=1

aniEX
(n)
i

∣∣∣∣
≤

n∑
i=1

|ani|P (|Xni| > bn) + b−1n

n∑
i=1

|ani|E|Xni|I(|Xni| ≤ bn)

≤ C
n∑
i=1

|ani|P (|X| > bn) + Cb−1n

n∑
i=1

|ani|
(
E|X|I(|X| ≤ bn) + bnP (|X| > bn)

)
≤ Cb−1n nδ/αE|X|I(|X| ≤ bn) + Cnδ/αP (|X| > bn)

≤ Cb−1n nδ/α
n∑
k=2

E|X|I(bk−1 < |X| ≤ bk) +
Cnδ/αE|X|β

bβn

≤ Cb−1n nδ/α
n∑
k=2

bkP (|X| > bk−1) +
Cnδ/αE|X|β

nβ/α logβ/γ n

≤ Cb−1n nδ/α
n∑
k=2

bk
E|X|β

bβk−1
+
Cnδ/αE|X|β

nβ/α logβ/γ n

≤ Cb−1n nδ/α
n∑
k=2

k1/α log1/γ k

(k − 1)β/α logβ/γ(k − 1)
+
Cnδ/αE|X|β

nβ/α logβ/γ n

≤ Cb−1n nδ/α
n∑
k=2

k1/α−β/α +
Cnδ/αE|X|β

nβ/α logβ/γ n

≤ Cnδ/αn1/α−β/α+1

n1/α log1/γ n
+
Cnδ/αE|X|β

nβ/α logβ/γ n

=
C

nβ/α−δ/α−1 log1/γ n
+
Cnδ/αE|X|β

nβ/α logβ/γ n
→ 0, as n→∞.

(2.8)

By (2.6) and (2.8), we can get (2.4) immediately. Hence, for n large enough,

P
(

max
1≤j≤n

∣∣∣ j∑
i=1

aniXni

∣∣∣ > εbn

)
≤

n∑
i=1

P
(
|Xni| > bn

)
+ P

(
max
1≤j≤n

∣∣T (n)
j

∣∣ > ε

2
bn

)
.

To prove (2.1), we only need to show that

I
.
=

∞∑
n=1

npα−2
n∑
i=1

P
(
|Xni| > bn

)
<∞ (2.9)

and

J
.
=

∞∑
n=1

npα−2P
(

max
1≤j≤n

∣∣T (n)
j

∣∣ > ε

2
bn

)
<∞. (2.10)
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STRONG CONVERGENCE PROPERTIES FOR NOD RANDOM VARIABLES

By Definition 1.1, Markov’s inequality and condition (ii), we can see that

I
.
=

∞∑
n=1

npα−2
n∑
i=1

P

(
|Xni| > bn

)

≤ C
∞∑
n=1

npα−2
n∑
i=1

P

(
|X| > bn

)
≤ C

∞∑
n=2

npα−1E|X|β

bβn

≤ C
∞∑
n=2

npα−1

nβ/α logβ/γ n
< ∞, (since β > pα2).

(2.11)

For fixed n ≥ 1, it is easily seen that {X(n)
i , 1 ≤ i ≤ n} are still NOD by Lemma 1.1. For q > 2, it

follows from Lemma 1.2, Cr inequality and Jensen’s inequality that

J
.
=

∞∑
n=1

npα−2P

(
max

1≤j≤n

∣∣∣∣T (n)
j

∣∣∣∣ > ε

2
bn

)
≤ C

∞∑
n=2

npα−2b−qn E

(
max

1≤j≤n

∣∣∣∣T (n)
j

∣∣∣∣q)

≤ C
∞∑
n=2

npα−2b−qn (logn)q
[ n∑
i=1

|ani|qE
∣∣∣∣X(n)

i

∣∣∣∣q + ( n∑
i=1

|ani|2E
∣∣∣∣X(n)

i

∣∣∣∣2)q/2]
.
= J1 + J2.

(2.12)

Taking a suitable constant q such that max{2, α(pα − 1)/(1 − δ)} < q < min{β − α, β−pα
2+α
δ },

which implies that

β > α+ q,
β

α
− q

α
> 1, β > pα2 − α+ qδ,

β

α
− pα+ 2− q δ

α
> 1

and

pα− 2 + q
δ

α
− q

α
< −1, q > α.

It follows from Cr inequality, Lemma 1.3, (2.7), Markov’s inequality and condition (ii) that

J1
.
= C

∞∑
n=2

npα−2b−qn (logn)q
n∑
i=1

|ani|qE
∣∣∣∣X(n)

i

∣∣∣∣q
≤ C

∞∑
n=2

npα−2b−qn (logn)q
n∑
i=1

|ani|q
[
E

∣∣∣∣Xni∣∣∣∣qI(|Xni| ≤ bn) + bqnP (|Xni| > bn)

]

≤ C
∞∑
n=2

npα−2b−qn (logn)q
n∑
i=1

|ani|q
[
E|X|qI(|X| ≤ bn) + bqnP (|X| > bn)

]

≤ C
∞∑
n=2

npα−2+qδ/αb−qn (logn)qE|X|qI(|X| ≤ bn)

+ C

∞∑
n=2

npα−2+qδ/α(logn)qP (|X| > bn)

≤ C
∞∑
n=2

npα−2+qδ/αb−qn (logn)q
n∑
k=2

E|X|qI(bk−1 < |X| ≤ bk)

+ C

∞∑
n=2

npα−2+qδ/α(logn)q
E|X|β

bβn
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≤ C
∞∑
k=2

∞∑
n=k

npα−2+qδ/α−q/α(logn)q−q/γbqkP (|X| > bk−1)

+ C

∞∑
n=2

npα−2+qδ/α logq n

nβ/α logβ/γ n

≤ C
∞∑
k=3

bqk
E|X|β

bβk−1

+ C

∞∑
n=2

1

nβ/α−pα+2−qδ/α logβ/γ−q n

≤ C
∞∑
k=3

kq/α logq/γ k

(k − 1)β/α logβ/γ(k − 1)
+ C

∞∑
n=2

1

nβ/α−pα+2−qδ/α logβ/γ−q n

≤ C
∞∑
k=3

1

kβ/α−q/α
+ C

∞∑
n=2

1

nβ/α−pα+2−qδ/α logβ/γ−q n
< ∞.

(2.13)

By Cr inequality, Lemma 1.3, (2.7) and Jensen’s inequality, we can get that

J2
.
= C

∞∑
n=2

npα−2b−qn (logn)q
( n∑
i=1

|ani|2E
∣∣∣∣X(n)

i

∣∣∣∣2)q/2
≤ C

∞∑
n=2

npα−2b−qn (logn)q
( n∑
i=1

|ani|2
[
E|Xni|2I(|Xni| ≤ bn) + b2nP (|Xni| > bn)

])q/2
≤ C

∞∑
n=2

npα−2b−qn (logn)q
( n∑
i=1

|ani|2
[
EX2I(|X| ≤ bn) + b2nP (|X| > bn)

])q/2
≤ C

∞∑
n=2

npα−2+qδ/αb−qn (logn)q
[
EX2I(|X| ≤ bn) + b2nP (|X| > bn)

]q/2
≤ C

∞∑
n=2

npα−2+qδ/αb−qn (logn)q
[
EX2I(|X| ≤ bn)

]q/2
+ C

∞∑
n=2

npα−2+qδ/α(logn)q
[
P (|X| > bn)

]q/2
≤ C

∞∑
n=2

npα−2+qδ/αb−qn (logn)qE|X|qI(|X| ≤ bn)

+ C

∞∑
n=2

npα−2+qδ/α(logn)qP (|X| > bn) <∞. (by (2.13))

(2.14)

Therefore, the desired result (2.1) follows from (2.11)–(2.14) immediately. This completes the proof
of the theorem. �

Similar to the proof of Theorem 2.1 above and Theorems 2.3–2.6 of Wang et al. [15], we can
get the following results.

Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of NOD random variables which is stochastically
dominated by a random variable X and {an, n ≥ 1} be a sequence of real numbers. Assume that

there exist some δ with 0 < δ < 1 and some α with 0 < α ≤ 2 such that
n∑
i=1

|ai|α = O(nδ) and

assume further that EXn = 0 when 1 < α ≤ 2. If condition (ii) of Theorem 2.1 holds, then for
any ε > 0,

∞∑
n=1

npα−2P

(
max
1≤j≤n

∣∣∣∣Sj∣∣∣∣ > εbn

)
<∞
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and

lim
n→∞

|Sn|
bn

= 0 a.s.,

where bn
.
= n1/α log1/γ n for some γ > 0 and Sn =

n∑
i=1

aiXi for n ≥ 1.

Theorem 2.3. Let {Xni : i ≥ 1, n ≥ 1} be an array of rowwise NOD random variables which
is stochastically dominated by a random variable X and {ani : i ≥ 1, n ≥ 1} be an array of real

numbers. Assume that there exists some α with 0 < α ≤ 2 such that
n∑
i=1

|ani|α = O(n) and assume

further that EXni = 0 when 1 < α ≤ 2. If there exists some β > α+ 2 such that E|X|β <∞, then
for any ε > 0,

∞∑
n=1

n−1P

(
max
1≤j≤n

∣∣∣∣ j∑
i=1

aniXni

∣∣∣∣ > εbn

)
<∞,

where bn
.
= n1/α log1/γ n for some γ > 0.

Theorem 2.4. Let {Xn, n ≥ 1} be a sequence of NOD random variables which is stochastically
dominated by a random variable X and {ani, i ≥ 1, n ≥ 1} be an array of real numbers. Assume

that there exists some α with 0 < α ≤ 2 such that
n∑
i=1

|ani|α = O(n) and assume further that

EXn = 0 when 1 < α ≤ 2. If there exists some β > α + 2 such that E|X|β < ∞, then for any
ε > 0,

∞∑
n=1

n−1P

(
max
1≤j≤n

∣∣∣∣ j∑
i=1

aniXi

∣∣∣∣ > εbn

)
<∞,

where bn
.
= n1/α log1/γ n for some γ > 0.

Theorem 2.5. Let {Xn, n ≥ 1} be a sequence of NOD random variables which is stochastically
dominated by a random variable X and {an, n ≥ 1} be a sequence of real numbers. Assume that

there exists some α with 0 < α ≤ 2 such that
n∑
i=1

|ai|α = O(n) and assume further that EXn = 0

when 1 < α ≤ 2. If there exists some β > α+ 2 such that E|X|β <∞, then for any ε > 0,
∞∑
n=1

n−1P

(
max
1≤j≤n

∣∣∣∣Sj∣∣∣∣ > εbn

)
<∞

and

lim
n→∞

|Sn|
bn

= 0 a.s.,

where bn
.
= n1/α log1/γ n for some γ > 0 and Sn =

n∑
i=1

aiXi for n ≥ 1.
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