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Abstract 

There is detailed, consistent, and rigorous general probability model of growth of a one-sided 

crack for a metallic block presented below. So far there is no such model for a development of a 

fatigue cracks from upper and bottom sides of the block. Our goal is to present such detailed, 

consistent, and rigorous general probability model of growth of a two-sided cracks. The significance 

of this research follows from the fact that such type of investigations have numerous applications in 

physics, engineering, statistics, environment studies and economics. 

______________________________ 
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1.  Introduction 

We start with a brief literature survey on the Birnbaum-Saunders distribution, explaining what 

has been done in the area, and describe what new contribution to the field can be made in our paper. 

The two-parameter Birnbaum-Saunders distribution (in this paper we call it one-sided Birnbaum-

Saunders distribution) was introduced by Birnbaum and Saunders (1969a) as a failure-time 

distribution for fatigue failure caused under cyclic loading. This distribution is widely used as a 

lifetime distribution in the various models of reliability theory in the case when a failure of the object 

under consideration appears to be due to the development of fatigue cracks. Desmond (1985, 1986) 

provided a more general derivation based on a biological model and strengthened the physical 

justification for the use of this distribution. This derivation follows from considerations of renewal 

theory for the number of cycles needed to force a fatigue crack extension to exceed a critical value. 

Birnbaum and Saunders (1969b) presented a comprehensive review, both theoretical and practical, 

of the fitting of this family of distributions to the solution of the problem of crack development. 

Desmond (1986) considered estimation of the parameters for censored data. Ahmad (1988) 

considered the estimation of the scale parameter (which overestimates the median life) by the 

jackknife method to eliminate first-order bias. This estimate has the same limiting behavior as that of 
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Birnbaum and Saunders (1969b). Rieck (1995) derived an asymptotically optimal linear estimator for 

symmetrically type II censored samples. We refer to the monograph by Bogdanoff and Kozin (1985) 

for motivating examples of probabilistic models of cumulative damage. A more recent view on the 

problem of fatigue crack damages based on stochastic differential equations is suggested by 

Singpurwalla (1995). For the most recent publications on Birnbaum-Saunders distribution we refer 

to Xie and Wei (2007), Lemonte et al. (2007), Ng et al. (2006) Balakrishnan et al. (2007), From and 

Li (2006), Rieck (1999), Dupuis and Mills (1998), Chang and Tang (1993, 1994), and a review of 

these developments can be found in Johnson et al. (1995). 

The maximum likelihood estimators were first discussed by Birnbaum and Saunders (1969b), 

who suggested some iterative schemes to solve the required non-linear equation. Englehardt et al. 

(1981) established the asymptotic distribution of the maximum likelihood estimators. Conventional 

moment estimators have a drawback in that they may not always exist and, if they do exist, they may 

not be unique. Ng et al. (2003) considered the modified moment estimators for the parameters to 

overcome this problem. However, Wu and Wong (2004) reported that those expressions for the 

intervals of estimators for   suggested by Ng et al. (2003) are presented incorrectly. Furthermore, 

there is no guarantee that the upper bounds of those intervals are always positive. 

Ahmed et al. (2008) introduced the new parametrization of Birnbaum-Saunders distribution 

based on the recurrence relations which presents a general probability model of growth of a one-sided 

crack, see the discussion in the next section. Importantly, the physics of the phenomena under the 

study is fitted by this re-parametrization since the suggested parameters correspond to the thickness 

of the sample and the nominal treatment loading on the sample, respectively. 

The Birnbaum-Saunders distribution is a two-parameter life time distribution originated in 

modeling material fatigue data (Birnbaum and Saunders 1969a). Due to its mathematical tractability 

and ability to fit right skewed data, the Birnbaum-Saunders model is also used for many other 

applications. Recently, the Birnbaum-Saunders distribution has been extended to various classes of 

distributions. We propose a class of generalized Birnbaum-Saunders distribution families by using 

elliptically contoured density functions in place of standard normal density function. Ferreira et al. 

(2012) then discussed the tail behavior of this generalized Birnbaum-Saunders distribution in the 

context of extreme value theory. The authors show that the tail properties of the generalized 

Birnbaum-Saunders distribution are essentially governed by that of its auxiliary distribution (i.e., 

standard elliptically symmetric distribution). 

In this paper, we establish and investigate a probability model for two-sided Birnbaum-Saunders 

distribution. We consider different choices of impulse function that corresponds to the crack 

development from two sides and establish how does it influence on the resulting probability 

distribution. This allows us to evaluate the performance of the proposed models for different impulse 

functions. 

A general probability model of two-sided crack development will be constructed based on the 

new parametrization presented by Ahmed et al. (2008). We provide intense computer simulations for 

different choices of impulse function that corresponds to the crack development from two sides in 

order to establish how does it influence on the resulting probability distribution. 

 

2.  Definitions of One-Sided Birnbaum-Saunders Distribution 

2.1.  Definition by physical probabilistic model 

The following description of the general probability model of growth of a one-sided crack has 

been introduced in Ahmed et al. (2008). We present a modified and extended description of the 
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construction in the present paper because it is crucial for a similar construction of two-sided crack 

development. 

Consider a rectangular metal block which is fixed from two sides. A periodic loading is applied 

to its middle part and this leads to a development of a fatigue crack. Assume that at the beginning the 

length of the crack was 0 0,x   and after each loading we measure the crack length and obtain a 

sequence of nondecreasing numbers 1 2, ,...x x . First, we are interested in the prediction of the crack 

length after the n th loading. After we are interested in finding a distribution of the time when the 

block breaks down. 

It is obvious that the crack development is achieved under several factors, such as the strength 

of loading, quality of metal from which the block is made, and so on. Therefore we obviously are 

dealing with a stochastic forecasting problem. Therefore, we should consider the measurements 

1 2, ,...x x  as a realization of a sequence of random variables 1 2, ,...X X . We formalize mathematically 

the phenomenon of a crack development in terms of the increments 1k k kX X     of the crack 

lengths. 

It is natural to assume that the increment 0k   is achieved by the sum of all values produced 

by factors of the crack growth that we mentioned above. That is, under some nonnegative “impulse” 

( 0),k   there exists an approximate linear relationship between k  and k  such as ,k k k    

where k  depends on the previous crack length 1kX   that it achieved at 1k   loading. Let 

1( )k kg X   with the natural assumption of that the  impulse function ( )g   is nonnegative and 

continuous. Therefore, we have the following recurrent relations that describe the crack development 

after each loading:  

 1 1= ( ), = 1, 2,...k k k kX X g X k   . (1) 

Now we make some assumptions on distributions of the random variables , 1.k k   Assume 

that these random variables are nonnegative, independent identically distributed with finite second 

moment and denote by ( )ka E   their mean value and by 2 ( )kb Var   their variance. 

Recall that we are interested in the distribution of the random variable ,nX  whose realization 

nx  gives the length of a particular crack after the thn  loading. Rewrite the first n  recurrent relations 

(1) as  

1

1

, 1,...,
( )

k k
k

k

X X
k n

g X
 




   

and add all of them to obtain  

1

1 1 1

.
( )

n n
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k k k

X X

g X
 

  


   

If each impulse provides an insignificant increase in the crack length, that is, all 1k k kX X     

are small, then we can interpret the right hand side of the summation as an integral sum and obtain 

the approximate equality  

 
0=1

,
( )

n X

k x
k

dt

g t
    (2) 

 where nX X  is the final crack size. By the “  ” sign in (2), we mean that the left hand side of the 

expression is a pointwise approximation of the right hand side. 
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Since the function ( )g x  is positive, the integral in the right hand side of (2) represents some 

monotone increasing function ( ).h X  By the Central Limit Theorem applied to the left hand side of 

(2), we obtain the following statement: For some long time ( >> 1)n  after the crack started to grow, 

the distribution of its length X  is defined from the relations 2( ) : ( , ),h X N    where 

2 2, .na nb    By the monotonicity of the function ( ),h   the distribution function of the random 

variable X  is  

 
( )

( ) ( ) ( ( ) ( )) ,
h x

F x P X x P h X h x




 
      

 
 

where ( )x  is the standard normal distribution function. 

It is left to solve a problem with a choice of the function ( ).g   If we postulate that the increase 

of the crack is proportional to the length achieved, that is, to assume that ( ) =g t t  (this assumption 

is the most commonly used in the models of growth), then we obtain the lognormal distribution of 

the random variable .X  

In order to define the one-sided Birnbaum-Saunders distribution, consider the following 

problem. In the framework of the probability model of growth constructed above, we are interested 

not in the finding the distribution of the crack length .X  Let the critical length � of the crack be fixed 

and we are interested in the distribution of the moment of time (number of loadings) at which this 

length will be achieved. It is interesting that in the framework of our model, this distribution does not 

depend on a choice of the positive function ( ),g   the choice of g  influences only the concrete values 

of the parameters. The distribution of the time can be obtained by the following simple observations. 

Let   be a random variable which represents the moment when the length of the crack achieves 

the critical length .x  Then the event n   is equivalent to the event nX x  (recall that all 0k   

and for moment of time n  the crack length does not achieve the critical length ).x  Therefore,  

     
 

( ) ( ) Φ .n n

h x na
P n P X x P h X h x

b n


 
        

 
             (3) 

Replace the variable n  by a “continuous” variable t  and introduce new parameters   and ,  

defined as   2 2 2/ , / .ah x b b a    The chain of equalities (3) helps us to write the distribution 

function of the random moment of time   at which the crack achieves the critical length :x   

  ; , ( ) 1 , 0.BS

t t
F t P t t

t t

 
    

 

   
              

   
 

This distribution called the one-sided Birnbaum-Saunders distribution. 

The density function for this distribution is 

  
23 / 2 1/ 2

1 1
; , exp , 0.

22 2
BS

t t
f t t

t t

 
   

 

          
                       

 

 

2.2.  Formal definition by Brownian motion 

In this section, we would like to present a formal definition of the Birnbaum-Saunders 

distribution. This construction will not be used in the following, but it is interesting because most 
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probably this is the way how Birnbaum-Saunders have been arguing when they introduced their 

distribution in 1969. 

 Let { }tB  be a standard Brownian motion with zero drift. We define a process 

, 0, 0,t tX t B        which quantifies the level of stress or fatigue accumulated to a subject 

of interest up to time .t  The failure event occurs when the accumulated stress hits a critical threshold 

> 0.w  Then the failure time T  is the first hitting time of tX  to the threshold .w  By using quite 

advanced technique of Stochastic Analysis, namely Girsanov’s Theorem and the reflection principle, 

the distribution of T  is given as follows:  

 
22 /[ ] [ ( ) ] 1 ,ww t w t

P T t P M t w e
t t

  

 

     
         

   
 (4) 

where  

 
0

( ) { }.max s
s t

M t X
 

  

The Birnbaum-Saunders distribution is obtained as an approximation to (4) by ignoring the last 

term in the formula. Specifically, the distribution function of the Birnbaum-Saunders distribution, 

respectively, are  

 
1

( ) = 1 ,BS

t
F t

t



 

  
     

  

 

where = / > 0, = / > 0.w w      The parameters   and   are the shape and scale 

parameters, respectively. 

Note that the new parametrization of Birnbaum-Saunders distribution presented in the previous 

section develops the new parameters which are meaningful in a practical setting. Importantly, this re-

parametrization fits the physics of the phenomena under study since the proposed parameters   and 

  correspond to the thickness of the sample and the nominal treatment loading on the sample, 

respectively. 

 

3.  Formal Definition of Two-Sided Birnbaum-Saunders Distribution 

3.1.  Definition by physical probabilistic model 

Similar to case of one-sided Birnbaum-Saunders distribution, consider a rectangular metal block 

of size a  which is fixed from two sides. A periodic loading is applied first to its upper part, then 

immediately to its lower part (consider as one period of loading) and this leads to a development of 

a fatigue cracks from upper and lower sides of the block. Denote by iX  the length of the upper crack 

and by iY  the length of the lower crack after the thi loading. 

As above, we assume that the increases of the cracks lengths follow the following recurrence 

relations:  

 1 1 1 1( , ),i i i i iX X g X Y      

 1 2 1 1( , ).i i i i iY Y g X Y      (5) 

 Here each set { , 1}i i   and { , 1}i i   consists of positive independent identically distributed 

random variables with the finite second moments, and  impulse functions 1( , )g    and 2 ( , )g    are 

positive and continuous. Note that the growth of both cracks depends on the previous cracks lengths 

in the upper as well as in the bottom parts. 

Rewrite the recurrence relations in the following form:  
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1

1 1 1

,
( , )

i i
i

i i

X X

g X Y


 


      1

2 1 1

.
( , )

i i
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Y Y
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 


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Taking sums of all these equalities gives  

 1 1

1 11 1 1 2 1 1

( ).
( , ) ( , )

n n
i i i i

i i
i ii i i i

X X Y Y

g X Y g X Y
  

    

  
   

 
               (6) 

 Now we can investigate how the choice of functions 1g  and 2g  influences on the distribution 

of the random variable ,  the moment of the block breaks down under two-sided loading. 

Case 1 which reduces to one-sided Birnbaum-Saunders distribution. Consider the following 

choice of the impulse functions  c that is the impulse function depends only on the total length of the 

crack. Examples of such functions may be 1 2( , ) ( , ) ,g x y g x y x y    or 

1 2( , ) ( , ) exp( ),g x y g x y x y    or 2
1 2( , ) ( , ) ( ) .g x y g x y x y    

If we let 1 1,i i i i i iX X X Y Y Y        and assume that these increments are sufficiently small, 

then we obtain the integral sum  

 
1 11 1 1

( ) ( )
,

( ) ( )

n n
i i i

i ii i i

X Y Z

g X Y g Z   

  



   

where .i i iZ X Y   Finally exchanging 1iZ   by a close to it value ,iZ  we obtain 

 
0 01 11

( )
( ).

( ) ( )

n nX Yn ni
i iX Y

i ii

Z dx

g Z g x
 




 


     

This integral is an increasing function of the total crack length, hence the same arguments are 

true as in the physical model for one-sided Birnbaum-Saunders distribution presented above. The 

moment of the break down has the distribution function 

 
( ) 2

( ) ( ) ( ( ) ( )) .n n n n

h a n
P n P X Y a P h X Y h a

n






 
         

 
 

If we exchange n  by ,t  then we obtain one sided Birnbaum-Saunders distribution. Hence in the 

case of the impulse function depends only on the total length of the crack, then two-sided Birnbaum-

Saunders distribution is the same as one-sided Birnbaum-Saunders distribution up to parameter 

values. 

Case 2 which apparently reduces to one-sided Birnbaum-Saunders distribution, too. Assume that 

the length of a crack from each side depends only from its previous length, for example, impulse 

functions 1( , ) ( )g x y g x  and 2 ( , ) ( ),g x y g y  where function ( )g   is nonnegative and continuous. 

Then, formula (6) corresponds to two integrals:  

 1 1

0 01 1 1 1 2 1 1

.
( , ) ( , ) ( ) ( )

n X Yn ni i i i

X Y
i i i i i

X X Y Y dx dy

g X Y g X Y g x g y
 

    

  
   

 
    

Obviously, we cannot state that the sum of these integrals produce a monotone function of the 

total length .n nX Y  For example, if we take 1( , )g x y x  and 2 ( , ) ,g x y y  then sum of integrals is 

a monotone function of the product .n nX Y  Hence, the integral that has approximately normal 

distribution will be monotone increasing function of the product n nX Y  and will not be able to say 

that the events a   and n nX Y a   are the same in order to establish one-sided Birnbaum-

Saunders distribution. 
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Therefore, for the impulse functions 1( , )g x y  and 2 ( , )g x y  that are not monotone functions of 

,x y  the theoretical construction of the model is completely unsolved problem. Our goal is to model 

it by computer simulations for the case 1( , )g x y x  and 2 ( , )g x y y  and check how it is related to 

one-sided Birnbaum-Saunders distribution. 

Because the problem is not solvable analitically, we simulate the recurrent relation (5) with 

1( , ) ,g x y x  2 ( , )g x y y  and : (1), : (1).i iExp Exp   Let 0X  and 0Y  be initial crack lengths. We 

are interested in determining the time moment ,  when i iX Y  becomes more than the critical length 

1, that is, min( : 1).i ii X Y     

Simulation plan: 

1. Fix the values 0X  and 0Y  of the initial crack lengths. 

2. Obtain 1,000 simulated values of the random variable   using the recurrent relation (5) with 

1 2( , ) , ( , )g x y x g x y y   and : (1), : (1).i iExp Exp   

3. Estimate the parameters   and   of the one-sided Birnbaum-Saunders distribution by the 

method of maximum likelihood. This is not a simple task, see Ahmed et al.  (2008) for a detailed 

discussion of this problem. It is interesting to try to substitute the estimates of the parameters   and 

  of the one-sided Birnbaum-Saunders distribution by the method of minimum chi-square, see the 

discussion below. 

4. Use the chi-square test for the hypothesis of goodness-of-fit with one-sided Birnbaum-

Saunders distribution. 

For chi-square testing we divided our data into 8r   intervals (groups). 

Note that in the case when we know completely the hypothetical distribution (the values of 

parameters are known) and substitute the theoretical frequencies of falling into intervals into the chi 

square test statistic, then it has approximately chi-square distribution with 1r   degrees of freedom. 

But in our case when we substitute the estimates of the parameters and hence the distribution of the 

statistics changes. Fisher proved (see the proof in Cramér 1999) that if we substitute the estimates by 

the method of minimum chi-square, which are the points of minimum (by the parameter variables in 

theoretical frequencies) of chi-square statistics, then the statistics will have chi-square distribution 

with 1r s   degrees of freedom, where s  is the number of parameters. In the case when we 

substitute the estimates by the method of maximum likelihood, then the asymptotic distribution 

function will be in between chi-square distribution functions with 1r   and 1r s   degrees of 

freedom (see Chernoff and Lehmann 1954). Hence in our case, because we substitute the estimates 

by the maximum likelihood, = 8r  and = 2s , then the critical values should be found using quantiles 

of chi-square distribution with 8 1 7  and 8 2 1 5    degrees of freedom. From tables, the 5% 

critical values are 2
7df   14.0671 and 2

5df   11.0705. 

We also note that if we substitute the estimates of parameters obtained by other methods (for 

example, the method of moments is exceptionally simple for the one-sided Birnbaum-Saunders 

distribution), then we were not able to find any results in literature on a distribution of the resulting 

chi-square statistics. 

The simulation results show that the obtained random numbers for two-sided Birnbaum-

Saunders distribution are exceptionally well consistent with one-sided Birnbaum-Saunders 

distribution by chi-square distribution. Figures 1 to 3, we present the analysis of simulated data with 

different values 0X  and 0Y  of the intimal crack lengths. We also provide the histograms of the 

simulated data with fitted density functions by the method of maximum likelihood. 
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Figure 1 Histogram of the simulated data with values 0X = 0Y = 0.1 of the intimal crack lengths 

with fitted density function. The corresponding 2 = 5.22 . The X-axis represent the time moment 

,  when i iX Y  becomes more than the critical length 1, that is, min( : 1).i ii X Y      

The Y-axis provide the relative frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Histogram of the simulated data with values 0X = 0Y = 0.01 of the intimal crack lengths 

with fitted density function. The corresponding 2 = 4.75 . The X-axis represent the time moment 

,  when i iX Y  becomes more than the critical length 1, that is, min( : 1).i ii X Y      

The Y-axis provide the relative frequency. 
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Figure 3 Histogram of the simulated data with values 0X = 0Y = 0.001 of the intimal crack lengths 

with fitted density function. The corresponding 2 = 1.12 .  The X-axis represent the time moment 

,  when i iX Y  becomes more than the critical length 1, that is, min( : 1).i ii X Y      

The Y-axis provide the relative frequency. 

 

It is still unclear for us why we obtain such perfect fit of two-sided Birnbaum-Saunders 

distribution with one-sided Birnbaum-Saunders distribution. Maybe this happens because of the 

aproximate normality of not only one-sided, but also two-sided Birnbaum-Saunders distribution. We 

are working on this problem, too. 

 Case 3. Two-sided Birnbaum-Saunders distribution that arises from the above mentioned model 

with functions different than considered in Cases 1 and 2. We did not consider this case yet, but we 

expect that we will obtain distributions which are strictly different than a one-sided Birnbaum-

Saunders distribution. To observe how two-sided Birnbaum-Saunders distribution changes for 

different 1( , )g x y  and 2 ( , )g x y  is the problem we are working on now. 

 

3.2.  Formal definition of two-sided Birnbaum-Saunders distribution 

We should also mention the formal definition (not based on a physical model as above) of two-

sided Birnbaum-Saunders lifetime distributions presented in Lisawadi (2008). This distribution 

consider in the case when a crack develops from two sides of a metallic object. Consider a rectangular 

metallic block of hight ,a  which is fixed from both edges. To its middle area, a periodic loading is 

applied which leads to a development of fatigue cracks. Consider the case when a crack develops 

from two sides from the lower edge of the block and from the upper edge. 

Let U  be a random variable with one-sided Birnbaum-Saunders distribution, that is, U  is the 

break down time for one–sided loading at the upper side of the block. Then the random variable 

/U UY a   can be interpreted as a speed of the crack evolution from the upper side. If at the lower 

side of the block a crack is developing with the same Birnbaum-Saunders distribution, then we have 

two, assumed to be independent identically distributed random variables U  and .L  

Let ( ), 0,F t t   be the distribution function of the random variable U  (or ,L  they are 

identically distritbuted) and ( )f t  be its density function. Of course, we should consider the one-sided 
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Birnbaum-Saunders distribution and density functions for ( )F t  and ( ),f t  but these expressions are 

a little bit cumbersome to present them here in each formula. Then the random variable = /U UY a   

has the distribution function 1( ) = 1 ( )YF t F at  and density function 2 1( ) ( ).Yf t at f at   

The speed of the crack evolution for this two-sided case equals 1 1
U L U LY Y a a      and the 

random variable 
1

1 1 ,U L

U L

a

Y Y
  


     

 corresponds to a moment of the block break down. The 

distribution function of this random variable is  

 1 2 2

1 1
( ) ,

t s z

dtds
F z f f

t s t s
  

   
    

   
  

and its density function is  

 
 

1
2

1 20 2 1

1 1 1
( ) .

z

f z z f f dt
t z t t z t









   
        

  

We say that the random variable   has the two-sided Birnbaum-Saunders distribution. 

Obviously, there is no closed form of this integral when we substitute the one-sided Birnbaum-

Saunders density function for ( ).f t  

 

4.  Conclusions 

In this paper, we provided the probabilistic model of a crack development in a metalic plate when 

the crack is developing from two sides. We are interested in a distribution of the time when the total 

length of the crack reaches the critical value. Importantly, the model is based on the physical 

description of the phenomenon. Note that one-sided crack development leads to the famous 

Birnbaum-Saunders distribution and this was the reason why we named the resulting distribution for 

the crack developing from two sides as two-sided Birnbaum-Saunders distribution. Contrary to the 

classical one-sided Birnbaum-Saunders distribution, two-sided Birnbaum-Saunders distribution 

depends on the form of the impulse functions and the main goal was to investigate what is the infuse. 

It is proven mathematically that in the case when the impulse function depends only on the total 

length of the crack, the two-sided Birnbaum-Saunders distribution coincided with the classical one-

sided Birnbaum-Saunders distribution. The case when the impulse function depends on the previous 

length of each side length separately, is not trackable mathematically and hence the method of 

statistical simulations has been used. Surprisingly, we received a high similarity of the classical and 

two-sided Birnbaum-Saunders distributions in this case again. 

We would like to note that this is only a beginning of our investigations for the probabilistic 

model of two-sided crack development, right now we are working on simulations for other choices 

of the impulse functions with our graduate students.          
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