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ABSTRACT

The new lifetime distribution based on the non-classical parametrization model called
the two-sided length biased inverse Gaussian distribution is introduced. The physical phenomena
of  this situation can be explained in the case when a crack develops from two sides.
Some statistical properties of the distribution such as reciprocal properties and the first four
moments are investigated. The conventional point estimation, method of moment, is developed
to estimate the parameters of the distribution together with asymptotic analysis of the proposed
estimators. In order to evaluate the performance of  the suggested estimators, Monte Carlo
simulation studies are conducted. Furthermore, real data sets in a practical setting are used to
illustrate the presented estimation method. Concluding remarks and discussions are also
provided.

Keywords: method of moment estimate, lifetime distribution, parametrization, reciprocal
property, asymptotic property

1. INTRODUCTION

Lifetime distributions are frequently
studied in reliability aspects. It is easy to
consider a lifetime or failure time of
physical objects such as coins, electric light
bulbs, some pieces of machines, etc. They
provide useful information on certain
practical problems. Since some machines or
systems are very important and extremely
expensive, this information motivates
practitioners to prevent financial or industrial
damages occurring after the failure time
terminates.

One of the interesting views of lifetime

distributions in reliability analysis is in the
situation when a failure of the object under
consideration occurs from a fatigue crack
development. The common distributions
used in practical applications of this area
are Birnbaum-Saunders, inverse Gaussian,
and length biased inverse Gaussian [7, 14].

These distributions had been studied in
various cases. Birnbaum and Saunders [2]
introduced the two-parameter Birnbaum-
Saunders (BS) distribution as a lifetime
distribution for fatigue failure caused by
periodic loading. Ahmed et. al. [1] proposed
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the new parametrization of BS distribution.
Importantly, the physical situation under
this study are fitted by this re-parametrization
since the suggested parameters correspond
to the thickness of the object under study
and the nominal treatment loading on the
object, respectively. The original parameters
of the distribution do not give these
characteristics. Several studies regarding on
the inverse Gaussian (IG) distribution are
often referred to Chhikara and Folks [4],
Seshadri [16, 17],  Johnson  et. al. [11] and
Tweedi [18, 19]. Recently, Lisawadi [14]
presented two new distributions based on
the re-parametrization model proposed in
[1] and they were called the two-sided
Birbaum-Saunders and inverse Gaussian
lifetime distributions. These distributions
are considered in the situation of a crack
develops from two sides. A review of
applications of length biased distributions
was given in Gupta and Kirmani [10].
Akman and Gupta [2] had studied the length
biased inverse Gaussian (LBIG) distribution.
They provided comparative simulation
studies of different estimators for the mean
of  data from IG and LBIG distributions.
Gupta and Akman [9] offered statistical
properties involving the arithmetic and
harmonic means of  the LBIG distribution.

Essentially, as seen in the reviewed
literature, all of them were considered in
the term of  usual parameters except the
studies of Ahmed et. al. [1] and Lisawadi
[14]. In this article, we introduce a new
lifetime distribution based on non-classical
parameters presented by Ahmed et. al.[1].
The new distribution is called the two-sided
length biased inverse Gaussian lifetime
distribution denoted as TS-LBIG distribution.
Interestingly, our contribution is in the
investigation process. The probability model
of  the TS-LBIG distribution is formed
by applying the approach of Lisawadi [14].

The new distribution is considered in the
case when a crack develops from two sides.
For example, on a metallic rectangular object
which is fixed on two sides, a pressure is
applied to both upper and lower sides of
the object that leads to a crack development
from two sides. Some statistical properties of
the distribution such as reciprocal properties
and the first four moments are investigated.
The traditional point estimation, method
of moment, is developed together with
the asymptotic analysis of the proposed
estimators. Monte Carlo simulations are
utilized to study the efficiency of  the suggested
estimators, and illustrative examples for
explaining the given estimation method are
also provided.

The article is organized as follows.
The pdf of IG and LBIG distributions based
on non-classical parameters are provided
in section 2. Probability model of the
TS-LBIG is introduced in section 3.
Theoretical results are given in section 4.
Numerical results are shown in section 5.
Finally, conclusions and discussion are
reported in section 6.

2. MATERIALS AND METHODS

2.1 Inverse Gaussian Distribution
The usual pdf of inverse Gaussian

distribution of a continuous random variable
X is

f (x; μ, β ) =        x -3/2 exp              ;
(1)

x > 0 and μ, β > 0. The parameter μ stands
for the mean and β represents the scale
parameter.

The proposed parameters provided by
Ahmed et. al. [1] are λ > 0 and θ > 0 standing
for the thickness of the object under
consideration and the nominal treatment
loading on the object, correspondingly.

2π
β

2π 2x
β(x - μ)2
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The relationship between the classical and the
proposed parameters are the followings.

λ = β/μ, θ = μ 2/β, μ = λθ and β = λ2θ.

Hence, the pdf of IG distribution based on
the new parametrization is define as

f (x; λ, θ ) =                  ×

exp  -             - λ           ;  (2)

where λ > 0 and θ > 0.

2.2 Length Biased Inverse Gaussian
Distribution

We start with the definition of  a length
biased

pdf presented by Khattree [12].
Definition 2.2.1 Let  be a non-negative
random variable having an absolutely
continuous pdf, f (x). Assuming μ = E(X)
< c ∞, the length biased random variable Y
has a pdf defined as

g(⋅) =         ;  x > 0. (3)

It is known that μ = λθ , and by (2) and (3),
finally, the pdf  of  of  the length biased inverse
Gaussian (LBIG) distribution is define by

f (x ; λ, θ ) =                   ×

exp   -       λ       -            ; (4)

where λ > 0 and θ > 0.

3. PROBABILITY MODEL

The physical phenomena of this situation
can be explained in the case when a crack
develops from two sides of the object
under consideration. Let F(t), t > 0, be the
distribution function of the breakdown
time τ moment for one-sided loading.

We consider F(t) = F
LBIG

(t; λ, θ ). Let
Y = k/τ be the random variable interpreted
as a speed of the crack evolution. At the
bottom side of the metallic block, a crack is
developing with the distribution function of
the time to reach the length k. Simultaneously,
at the top side of the block, a crack is
developing with the same distribution
function as the bottom side. Then, we have
two random variables τ

1
 and τ

2
, and they

are assumed to be independent and
identically distributed. The speed of the
crack development for this two-sided case
is Y

1
 + Y

2
 = kτ

1
-1 + kτ

2
-1, and the random

variable τ =             = [τ
1
-1 + τ

2
-1]-1 corresponds

to a moment of the object under
consideration break down. The distribution
function and pdf of the two-sided length
biased inverse Gaussian distribution are
presented in the following theorems.
Theorem 3.1 A random variable τ has a
two-sided length biased inverse Gaussian
distribution denoted as TS-LBIG (λ, θ ),
if  it has a distribution function in the form:

Fτ(u) = 1 -   f               f            ,

and a density function in the following form:

Fτ(u) = u-2  f        f                        .

Proof Let τ be a random variable defined
above, T = 1/τ

1
 and S = 1/τ

2
. Then

F
T
(t ) = P(T ≤ t ) = P  τ

1
 >     = 1 - Fτ

1
,

and F
T
(t ) = F

T
 ′(t ) = f            .  Similarly,

F
S
(s) = 1 - Fτ      and f

s
(s) = f         . Thus,

Fτ(u) = P(T + S > u-1) = 
t + s > u

  f
T
(t)f

S
(s)dtds

θ   2π

λ
x
θ

3/2

2
1 x

θ x
θ

2

μ
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= 1 - 
t + s > u

  f       f

= 1 -    
  
f                f          .

The density function is obtained by
differentiating the Fτ(u). Therefore,

Fτ(u) = u -2  f                                .

Finally, we achieve the required expressions
which complete the proof. However, the
pdf  of  τ has no explicit form. This may be
difficult to directly find important functions
such as characteristic and moment generating
functions. Figures 1-2 show variety of  the
probability density functions for TS-LBIG.
It is indicated that the TS-LBIG is the
positively skewed distribution which is a
useful choice in this framework.

4. THEORETICAL RESULTS

4.1 Reciprocal Properties
Proposition 4.1.1 If random variable τ > 0
has the density function fτ(x), then the
reciprocal random variable 1/τ has the pdf,
f
1/τ(x) = x -2fτ(1/x).

Proof  For the reciprocal random variable
1/τ, applying a definition of a cumulative
distribution function, then its distribution
function is defined by F

1/τ(x) = P      ≤ x  =
P  τ  ≥      = 1 - Fτ     , and applying the
chain rule, the density function is f

1/τ(x) =
F ′

1/τ(x) = x -2fτ(1/x).

Proposition 4.1.2 If random variable τ = 0
has LBIG (λ, θ ) distribution, then the
reciprocal random variable 1/τ is IG
[λ, 1/(λ2θ )] distributed.

Proof By proposition 4.1.1,

f
1/τ(x) = x -2 f

LBIG
     ; λ, θ

=            exp  -    (λ(θx)1/2 - (θx)-1/2)2

-1 t
1

s
1 dtds

t 2s 2

t
1 dt

t 2
u -1

0

u -1-t

0 s
1 ds

s 2

u -1

0
t
1

u-1- t
1 dt

t 2(u -1 - t )2

Figure 1. The two-sided length biased inverse
Gaussian density function for λ = 2.

Figure 2. The two-sided length biased inverse
Gaussian density function for θ = 1.
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=                     ×

exp   -      λ               -

= IG[x ; λ, 1/(λ2θ )].

4.2 The First Four Moments
Finding the first four moments of the

TS-LBIG distribution, we deal with the
following way. The reciprocal property
is necessarily needed. The characteristic
function of the IG distribution is required.
Because of the difficulty of direct derivation,
Maclaurin expansion is applied. The first
four terms are considered to obtain the first
four cumulants. Then, they are modified to
gain the first four moments. The required
theorems are presented as follows.

Theorem 4.2.1 If a continuous random
variable X is inverse Gaussian distributed
with parameters λ and θ denoted as IG(λ, θ),
then its characteristic function is

ϕ
IG

(x ; λ, θ ) = exp{λ[1 - (1 - 2iθt )1/2]}.

Proof By definition, the characteristic function
of the IG(λ, θ ) is defined as

ϕ
IG

(x ; λ, θ ) =    exp(itx)f
IG
(x ; λ, θ )dx

= λ          exp(itx)x -3/2 ×

exp   -      + λ -         dx

= λeλ          x -3/2 ×

exp   -             x -        dx.

By applying the formula 3.472.5 from
Gradsthteyn and Ryzhik [6], (p. 369), we have
p =           and q =     , then we get

ϕ
IG

(x ; λ, θ ) = λeλ         ×

        exp  - 2                 ⋅

= eλ exp {- λ √ 1 - 2iθt }

= exp {λ [ 1 - (1 - 2iθt )1/2]}.

Theorem 4.2.2 If a random variable X is
two-sided length biased inverse Gaussian
distributed with parameters λ and θ
denoted as TS-LBIG(λ, θ), then the first
four moments are

μ(X) = k
1
(X) =       , σ 2(X) = k

2
(X) =         ,

μ
3
(X) = k

3
(X) =       ,

μ
4
(X) = k

4
(X) + 3σ 4(X) =             ,

Proof If ϕ(t )
 
is a characteristic function, then

its cumulants k
j 
; j = 1, 2, ..., m, are defined

from the Maclaurin expansion of the
logarithm of the characteristic function:

lnϕ(t ) = Σ     (it) j + o(|t|m).

Hence, the logarithm of the characteristic
function of IG(λ, θ) distribution is

lnϕ(t ) = λ - λ(1 - 2iθt )1/2 (5)

For the Maclaurin expansion, we use (1-x)1/2

= 1 -    x -    x2 -      x3 -      x4 - O(x5), (6)

where |x|< 1.

λ(1/λ2θ)1/2 x -3/2

2π
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2
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0

2x
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2π
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2x
λ2θ

2θ
1 - 2iθt

2x
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2π
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In this case, x = 2iθt and we assume that
0 < t < 1/2θ. Applying the equations (5) and
(6), we obtain

lnϕ(t ) = λ - λ  1 -       -         -

= λ(iθt) +    (iθt)2 +    (iθt)3 +     (iθt)4

+ O(t 5)

=     λθ +     λθ 2 +     3λθ 3 +      15λθ 4

+ O(t 5)

This expression gives us the cumulants of the
IG distribution:

k
1
 = μ = λθ, k

2
 = σ 2 = λθ 2,

k
3
 = μ

3
 = 3λθ 3 and k

4
 = μ

4
 - 3σ 4 = 15λθ 4.

By proposition 4.1.2, if τ  LBIG(λ, θ),
then the reciprocal 1/τ  IG[λ, 1/(λ2θ)].
Substituting θ by 1/(λ2θ), 1/τ has the
following cumulants:

k
1
(1/τ ) =     , k

2
(1/τ ) =       ,

k
3
(1/τ ) =       and k

4
(1/τ ) =          .

Because of  the i.i.d. property, the moments
for the random variable X = τ

1
-1 + τ

2
-1 will

be obtained by combining the cumulants for
1/τ. Finally, the first four moments for the
two-sided length biased inverse Gaussian
distribution are:

μ(X) = k
1
(X) =     , σ 2(X) = k

2
(X) =       ,

μ
3
(X) = k

3
(X) =       ,

μ
4
(X) = k

4
(X) + 3σ 4(X) =             .

4.3 Method of Moment Estimation
Estimation of the parameters λ and θ

by the method of moment for the TS-LBIG
distribution can be derived in the following
way. In the previous section, the first four
moments are investigated, and thus we obtain
formulas for the expectation and variance;

E(X)=μ(X)=     and Var(X)=σ 2(X)= .

Hence, the method of moment estimation is

X =    Σ X
i
 =      ; (7)

S 2 =    Σ X
i
2 - X 2 = (8)

Solving the equations (7) and (8) for λ and
θ, we obtain the desired estimates.
Let T = S 2/X2. Then, . Therefore, the method
of moment estimators are λ =      and
θ =       .

The formulas of  the asymptotic variances
and covariance are presented in the theorem
below.

Theorem 4.3.1 As n → ∞, the Var(λ), Var(θ)
and Cov(λ, θ) are given by

Var(λ) =                                 ,

Var(θ) =                                 ,

Cov(λ, θ) =

Proof The asymptotic distribution of an
estimate which smoothly depends on sample
moments is commonly obtained by their
decomposition into the Taylor series
expansion. For our case, λ = λ(X, S2),
θ = θ(X,S2), μ(X) is the true value of X, and
σ 2(X) is that of S2. Let a

1
 and a

2 
be the values

of partial derivatives of λ by X and S2 at
the point (μ(X), σ 2(X)), correspondingly.

2
2(iθt)

8
4(iθt)2

16
8(iθt)3

2
λ

2
λ

8
5λ

1!
(it)

2!
(it)2

3!
(it)3

4!
(it)4

λθ
1

λ3θ 2
1

λ5θ 3
3

λ7θ 4
15

λθ
2

λ3θ 2
2

λ5θ 3
6

λ7θ 4
30 + 12λ

λθ
2

λ3θ 2
2

n
1

n

i = 1 λθ
2

n
1

n

i = 1 λ3θ 2
2

2T
1

λX
2

2n 2(n - 1)
4λ2n 2 + 7λn 2 + 5λn - 12λ

λn 2(n - 1)
(2λ + 3)θ 2n2 + 6θ 2n - 9θ 2

2n 2(n - 1)
(4λθ + 18θ )n 2 - 15θn - 3θ
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The b
1 

and b
2 

are denoted as the values of
analogous derivatives of θ. Therefore, the
Taylor expansion can be written as

λ = λ+a
1
(X-μ(X))+a

2
(S2-σ 2(X))+O

p          
,

θ = θ+b
1
(X-μ(X))+b

2
(S2-σ 2(X))+O

p          
   .

The X
n
 = O

p
     , where {X

n
, n ≥ 1} is a

sequence of random variables, means
that there exists a constant C > 0 such that
lim sup P|X

n
 - C/n| > t = 0. These

expressions are understood in terms of
convergence in probability. Thus, the vector
(√n(λ - λ),  √n(θ - θ)) has limit in distribution,
the two-dimensional normal distribution with
zero means, variances

Var (λ) =
a

1
2Var(X) + a

2
2Var(S2) + 2a

1
a

2
Cov(X, S2) (9)

Var (λ) =
b

1
2Var(X) + b

2
2Var(S2) + 2b

1
b

2
Cov(X, S2)(10)

and
Cov(λ, θ) = a

1
b

1
Var(X) + a

2
b

2
Var(S2)

+ 2 (a
1
b

2
 + a

2
b

1
)Cov(X, S2). (11)

As presented results in section 4.2, we apply
the formulas outlined in Cho and Cho [5] and
Cramer [6], (p. 352-358), then we obtain:

Var(X) =         ,

Var(S2) =                    , (12)

Cov(X, S2) =           .

We firstly consider the derivatives of  the
estimate λ and we have

     =      ⋅      =       ⋅      .

Exchanging X and S2 on μ and σ 2, we get

a
1
 =      =         ⋅          = λ2θ.

Similarly, based on the appropriate
substitution, we obtain

a
2
 =      =  -       ⋅         = -       .

We secondly provide the analogous derivations
of the derivatives of the θ and we have

      =      ⋅

=  d      /dλ  ⋅      ⋅ X-1 +      (-1)X-2

= -        ⋅      +       .

Note that     (μ, σ 2) = a
1
, and hence

b
1
 =      (μ, σ 2) = -    λ2θ.

Equivalently,

b
2
 =      (μ, σ 2) =       .

Then, we substitute a
1
, a

2
, b

1
, b

2
 and (12) into

the equations (9), (10) and (11) to obtain
Var(λ), and Cov(λ, θ).
Hence,

Var(λ) = (λ2θ)2                      +          ×

                    + 2(λ2θ) -

=     +                       -

=                                 .

n
1

n
1

n
1

x → ∞ n ≥ 1

λ3θ 2 n
2

n(n - 1)λ7θ 4
8λn + 30n  - 30

n 2λ5θ 2
6(n - 1)

∂X
∂ λ

dT
dλ

∂X
∂T

2T 2
1

∂X
∂T

∂X
∂ λ

2
4λ2

2
θ

∂S 2
∂ λ

2
4λ2 λ2θ 2

4
λ2θ 2

2

∂X
∂ θ

dλ
dθ

∂X
∂ λ

λ
2

∂X
∂ λ

λ
2

λ2X
2

∂X
∂ λ

λX 2
2

∂X
∂ λ

∂X
∂ θ

2
3

∂S 2
∂ θ λ3θ 3

2

λ3θ 2n
2

2
λ4θ 2

n(n - 1)λ7θ 4
8λn + 30n - 30

2
λ4θ 2

2
n - 1

λ5θ  3
6

n
2λ

2n(n - 1)
4λ2n + 15λn - 15λ

n 2
(n - 1) 6λ

2n 2(n - 1)
4λ2n 2 + 7λn 2 + 5λn - 12λ
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Thus,

Var(θ) =  -                     +            ×

                    + 2  -

=      +                           +

=                                  .

Therefore,

Cov(λ, θ) = (λ2θ)  -

+  -

+ 2  (λ2θ)           +  -                      ×

= -     -                         +

= -                                 .

Finally, the proof  is complete.

5. NUMERICAL RESULTS

5.1 Simulaion Study
We studied the properties of  the

presented estimators by using the numerical
method. The results were reported to
investigate the behavior of the estimators via
calculating the estimated bias and mean square
error. Monte Carlo simulations were
performed for different sample sizes. The R
program version 3.1.2 was used to generate
and analyze the data. The number of iterations
was fixed at 5,000 for each combination of
λ, θ, and sample sizes n. We considered all

combinations of the following values of
λ, θ, and n as follows: λ = 2, 5, 10 and 50,
θ = 1, 5, 10 and 50, n = 10, 50 and 100.
Tables 1-3 show the estimated bias and
MSE of λ and θ for n = 10, 50 and 100,
respectively.

As seen in tables 1-3, the method
of moment estimators has generally a
systematic positive bias (underestimate).
In some situations, the estimators have a
negative bias (overestimate) when single or
both parameters are large. Furthermore, the
bigger parameters, the larger are the bias.
For instance, at n =100, λ = 2 and θ =5,
the bias of λ is 0.0892, while for λ = 50 and
θ =50, the bias of λ is -0.9187. However,
the magnitude of the bias may be assumed
to be relatively small. Tables 1-3 reveal that
the more increasing values of the parameters,
the more growing are the mean square error.

As the results from the numerical study,
it is observed that the λ and θ are consistent.
Thus, they are asymptotically unbiased
estimators. The simulated bias corresponds to
the theoretical background as it is a decreasing
function of sample sizes n. That is, when
sample sizes increase, the amount of the bias
decreases and tends to zero as n → ∞.
Similarly, the MSE is a decreasing function
of n. The larger sample size, the smaller is the
MSE, and it approaches to zero as n → ∞.

5.2 Illustrative Examples
The practical applications of the

suggested estimators are illustrated in this
section. Two real data sets are considered as
the followings.

Example 1. The following data provided
by Lieblein and Zelen [12] on the fatigue life
of the 23 deep groove ball bearings:
17.88  28.92  33.00  41.52  42.12  45.60  48.48
51.84   51.96  54.12  55.56  67.80  68.64  68.64
68.88 84.12  93.12  98.64 105.12 105.84
127.92 128.04 173.40.

2
3λθ 2

2
2

λ3θ 2n 2
λ3θ  3

2

n(n - 1)λ7θ 4
8λn + 30n - 30

2
3λθ 2

2
λ3θ  3

n 2λ5θ 3
6(n - 1)

2λn
9θ 2

2λn(n - 1)
4λθ 2n + 15θ 2n - 15θ 2

2λn 2
18θ 2(n - 1)

λn 2(n - 1)
(2λ + 3)θ 2n 2 + 6θ 2n - 9θ 2

2
3λθ 2 2

λ3θ 2n

2
λ4θ 2

2
λ3θ  3

n(n - 1)λ7θ 4
8λn + 30n - 30

λ3θ 3
2 2

λ4θ 2 3λθ 2
2

n 2λ5θ 3
6(n - 1)

n
3θ

2n(n - 1)
4λθn2 + 15θn - 15θ

n2

15θ (n - 1)

2n2(n - 1)

(4λθ + 18θ )n2 - 15θn - 3θ
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The above data had been analyzed by
Gupta and Akman [8] and the result
indicated that the data set comes from the
length biased inverse Gaussian distribution.
For two-sided case, we divide all data in pairs,
we have only 11 pairs of  observations,
and the last one is dropped. We obtain 11
observations: ( y

1
, y

2
),( y

3
, y

4
), ..., ( y

21
, y

22
).

Let u
1
 = (1/y

1
) + (1/y

2
), u

2
 = (1/y

3
) +

(1/y
4
), ..., u

11
 = (1/y

21
) + (1/y

22
) be the

observations drawn from the TS-LBIG
distribution. In this example, the point
estimates are reported in Table 4. Moreover,
using the relationship given in section 2.1,
the point estimates for parameters μ and β
are also computed.

Example 2. This example was taken
from Nichols and Padgett [14] consisting of
100 observations on breaking stress of  carbon
fibers (in GPa). These data had been analyzed
by assuming the Weibull distribution. In our
case, the data was ascendingly ordered.
Dealing with the analogous manner of the
example 1, finally, we obtain 50 observations
drawn from the TS-LBIG distribution.
The point estimates for the proposed and
original parameters are shown in Table 5.

Most importantly, the estimators λ and
θ represent the thickness of the object under
study and the nominal treatment pressure on
the object, correspondingly. On the other hand,
the estimators μ and β lack this physical
explanation.

6. CONCLUSIONS AND DISCUSSION

The new lifetime distribution based on
re-parametrization model called the two-sided
length biased inverse Gaussian distribution is
proposed. The reciprocal properties and
the first four moments of the distribution
are investigated. The conventional point
estimation, method of moment, is developed
for estimating the parameters of the
distribution and the asymptotic variances and

covariance of  the suggested estimators are
also provided.

In this article, we discussed on some
statistical properties of the TS-LBIG
distribution. According to previous results,
because the density function of the distribution
has no closed form, the characteristic and
moment generating functions cannot be
directly solved. We may use the reciprocal
property to accomplish this problem. The first
four cumulants are defined from the
Maclaurin expansion of the logarithm of
the characteristic function. There are two
important points we should concern: the
remainder of the Macluarin expansion and
the existing condition of the Maclaurin
extended terms. In the first point, our goal is
investigation of the first four cumulants since
the first four terms involve important
characteristics, i.e., mean, variance, skewness,
and kurtosis of the distribution, then the fifth
and higher exponents are considered to be
trivial. In the second point, the first four
cumulants for the TS-LBIG(λ, θ ) distribution
exist when the condition 0 < t < 1/2θ is
satisfied. In parameter estimation scheme,
we only focus on a point estimation. The
results ensure us that the method of
moment estimators provides consistent and
asymptotically unbiased statistics. Importantly,
we estimate the parameters which reflect the
physical nature of an object analyzed by a
statistical point of view of the distribution.
Consequently, one could continue
investigations for other point estimation
schemes such as maximum likelihood
estimators, although we expect to encounter
difficulties of mathematical derivation.
The density function of the TS-LBIG
distribution involves an integral, and finding
a maximum of their products even
numerically is not an easy task. Furthermore,
we may consider new other estimators, i.e.,
a regression-quantile (least square). This
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method is dealt with the regression analysis
of  sample quantiles. However, the method
of moment estimation can be examined as
a preliminary topic of studying for the
TS-LBIG distribution since it has a satisfying
property, e.g. simple computation. Interval
estimation and hypothesis testing issues
remain to be interesting for further

investigation. As presented results of the
asymptotic analysis, tests and confident interval
estimation procedures will be explored
regarding on a power of the test and coverage
probabilities. Nevertheless, they are above
the scope of this article and the investigation
will be separately communicated.

Table 2. The estimated bias and mean square error of  λ and θ for n =50.
∧ ∧

λ
2

5

10

50

θ
1
5
10
50
1
5
10
50
1
5
10
50
1
5
10
50

MSE(λ)
0.5081
0.4855
0.4783
0.5048
1.7735
1.7389
1.7864
1.7332
5.8227
5.7515
5.7532
5.9288

129.5475
130.6555
128.0641
132.8144

∧
MSE(θ)
0.1938
4.7132
18.7898
477.7856
0.0708
1.7413
7.0728

176.8778
0.0473
1.1636
4.7292

118.8181
0.0403
1.0128
3.9821

103.7690

∧λ-λ
0.0840
0.2781
0.7350
0.3839
0.0699
0.8911
0.2119
0.8411
0.9566
-0.1666
0.1923
0.0885
-1.3669
-1.6333
0.1813
1.0014

∧λ
1.9160
1.7219
1.2650
1.6161
4.9301
4.1089
4.7881
4.1589
9.0434
10.1666
9.8077
9.9115
51.3669
51.6333
49.8187
48.9986

∧
θ

0.7330
3.6200
9.5448
41.5526
0.8442
4.9859
8.7293
48.1984
1.0543
4.2394
9.5888
46.7098
0.9592
4.7817
10.0550
50.031

∧ θ-θ
0.2670
1.3800
0.4552
8.4474
0.1558
0.0141
1.2707
1.8016
-0.0543
0.7606
0.4112
3.2902
0.0480
0.2183
-0.0550
-0.0301

∧

Table 1. The estimated bias and mean square error of  λ and θ for n =10.
∧ ∧

λ
2

5

10

50

θ
1
5
10
50
1
5
10
50
1
5
10
50
1
5
10
50

λ
1.3703
1.6259
1.4576
1.3064
4.1880
4.0990
3.6782
4.0014
9.5862
11.2015
9.7968
10.7888
51.7070
52.8344
46.4884
47.2446

θ
0.9329
4.6382
9.3924
44.5593
1.0852
5.3294
10.4845
50.9950
0.9202
4.0934
8.5040
48.7552
1.0124
4.6693
10.9861
51.9597

λ-λ
0.6297
0.3741
0.5424
0.6936
0.8120
0.9010
1.3218
0.9986
0.4138
-1.2015
0.2030
-0.7888
-1.7070
-2.8344
3.5116
2.7554

θ-θ
0.0671
0.3618
0.6076
5.4407
-0.0852
-0.3294
-0.4845
-0.9950
0.0798
0.9066
1.4960
1.2448
-0.0124
0.3307
-0.9861
-1.9597

MSE(λ)
5.8276
5.0295
4.6658
4.6971
20.8110
20.5830
20.4278
25.5249
79.4018
80.4220
73.0999
85.8734

1924.1440
1867.7820
1815.5120
1895.5340

MSE(θ)
0.2760
6.9039
26.6801
675.4794
0.2032
4.9728
19.3153
522.8751
0.1950
4.8915
19.4146
522.2085
0.2113
5.4653
21.7748
528.9137

∧ ∧ ∧ ∧ ∧ ∧
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Table 4. Point estimates for Example 1. [3] Birnbaum Z.W. and Saunders S.C.,
J. Appl. Probab., 1969; 6: 319-327.

[4] Chhikara R.S. and Folks L., The Inverse
Gaussian Distribution: Theory, Methodology
and Applications , Marcel Dekker,
New York, 1989.

[5] Cho E. and Cho M.J., Proceedings of  the
2008 Joint Statistical Meetings, Section on
Survey Research Methods, American
Statistical Association, Washington DC,
2008; 1291-1293.

[6] Cramer H., Mathematical Methods of
Statistics, 6th Edn., Princeton University
Press, Princeton, 1946.

[7] Gradsthteyn I.S. and Ryzhik I.M.,
Table of  Integrals, Series, and Products,
7th Edn., Elsevier Academic Press, 2007.

[8] Gupta R.C. and Akman O., J. Stat. Plan.
Infer., 1995; 48: 69-83.

[9] Gupta R.C. and Akman O., J. Theor. Appl.
Stat., 1998; 31(4): 325-337.

Table 3. The estimated bias and mean square error of  λ and θ for n =100.
∧ ∧

Table 5. Point estimates for Example 2.
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