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ABSTRACT
In this correspondence, we investigate mean convergence of order
p for the weighted sums of Banach space valued random elements
under a suitable (compactly) uniformly integrable condition with or
without a geometric condition placed on the Banach space.
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1. Introduction andmain results

Let (�,F ,P) be a probability space andB be a real separable Banach space with norm ‖ · ‖.
A B-valued random element X is defined as an F-measurable function from (�,F) into
B equipped with its Borel σ -algebra B which is the σ -algebra generated by the topology of
open subsets of B determined by ‖ · ‖.

For a B-valued random element sequence {Xn, n ≥ 1} and an array of real constants
{ank, n ≥ 1, k ≥ 1}, the limiting behaviour of the weighted sums

∑∞
k=1 ankXk enjoys a

large literature of investigation (see, e.g. [6,8,15,23–25]). The impetus for the study of lim-
iting behaviour of weighted sums comes from the fact that such sums can play an important
role in various applied and theoretical problems. For example, in a quality control study,
if we consider that each random variable Xk (random element taking values in the real
line) is a statistic computed from a sample of size n, then the sum

∑∞
k=1 ankXk is used to

determine the variation in the quality of the output, summing over the entire past.
In this paper we study mean convergence for weighted sums of random elements. Our

results will extend and generalize some well-known results.
We first review some concepts.
The expected value or mean of a random element X, denoted EX, is defined to be the

Pettis integral provided it exists; that is, X has expected value EX ∈ B if f (EX) = E(f (x))
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for every f ∈ B
∗, where B

∗ is the (dual) space of all continuous linear functionals on B. A
sufficient condition for X to have an expected value is that E‖X‖ < ∞ (see, e.g. [22]).

Let B
∞ = B × B × B × · · · and let {Yn, n ≥ 1} be a symmetric Bernoulli sequence;

that is, {Yn, n ≥ 1} is a sequence of independent and identically distributed (i.i.d.) random
variables where P{Y1 = 1} = P{Y1 = −1} = 1/2. Let

C(B) =
{

(x1, x2, . . .) ∈ B
∞ :

∞∑
n=1

Ynxn converges in probability

}
.

Let p ∈ [1, 2]. Then B is said to be of Rademacher type p if there exists a constant Cp ∈
(0,∞) such that

E

∥∥∥∥∥
∞∑
n=1

Ynxn

∥∥∥∥∥
p

≤ Cp

∞∑
n=1

‖xn‖p for all (x1, x2, . . .) ∈ C(B).

The condition of B being of Rademacher type p is actually equivalent to the structurally
simpler condition that there exists a constant Cp ∈ (0,∞) such that

E

∥∥∥∥∥
N∑

n=1
Ynxn

∥∥∥∥∥
p

≤ Cp

N∑
n=1

‖xn‖p for all N ≥ 1 and all xn ∈ B, 1 ≤ n ≤ N.

This equivalence is established in [18].
It is proved in [7] for p ∈ [1, 2] that a real separable Banach space is of Rademacher type

p if and only if there exists a constant Cp ∈ (0,∞) such that

E

∥∥∥∥∥
n∑

k=1

Xk

∥∥∥∥∥
p

≤ Cp

n∑
k=1

E‖Xk‖p

for every finite collection {X1, . . . ,Xn} of independent mean 0 random elements.
If a real separable Banach space is of Rademacher type p for some p ∈ (1, 2], then it is

of Rademacher type q for all q ∈ [1, p].
For a random element X and a sub-σ -algebra G of F , the conditional expectation

E(X |G) was introduced in [20] and is defined in a manner which is analogous to that in
the real-valued random variable case and enjoys similar properties. A complete develop-
ment of the notion of conditional expectationmay be found in [20] including Banach space
valued martingales (which will be defined below) and martingale convergence theorems.

A sequence {Xn, n ≥ 1} of B-valued random elements is said to be a martingale with
respect to a non-decreasing sequence of sub-sigma-algebras {Fn, n ≥ 1} ofF (a filtration)
if EXn exists for all n ≥ 1,Xn is Fn-measurable for all n ≥ 1, and

E(Xn+1 |Fn) = Xn, n ≥ 1.

In this case, the sequence {Yn,Fn, n ≥ 1} where Yn = Xn − Xn−1, n ≥ 1,X0 = 0 is said
to be amartingale difference sequence.
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Let p ∈ [1, 2]. Then B is said to be of martingale type p if there exists a con-
stant Cp ∈ (0,∞) such that for any pth order integrable martingale difference sequence
{Xn,Fn, n ≥ 1},

sup
n≥1

E

∥∥∥∥∥
n∑

k=1

Xk

∥∥∥∥∥
p

≤ Cp

∞∑
k=1

E‖Xk‖p.

It can be shown (see [16,17]) that B being of martingale type p is indeed equivalent to the
apparently stronger condition that for all q ∈ [1,∞), there exists a constant Cp,q ∈ (0,∞)

such that for any pth order integrable martingale sequence {Xn,Fn, n ≥ 1},

E

(
sup
n≥1

∥∥∥∥∥
n∑

k=1

Xk

∥∥∥∥∥
)q

≤ Cp,qE

( ∞∑
k=1

‖Xk‖p
)q/p

. (1)

It follows from (1) that if B is of martingale type p for some p ∈ (1, 2], then B is of
martingale type q for all q ∈ [1, p].

Clearly every real separable Banach space is of martingale type (at least) 1. For p ∈
[1,∞), the Lp-spaces and �p-spaces are of martingale type p ∧ 2. We refer the reader to
[16,17,21,26,27] for detailed discussion ofmartingale type pBanach spaces includingmany
interesting examples.

It follows from the Hoffmann-Jørgensen and Pisier [7] characterization of Rademacher
type p Banach spaces discussed above that if a Banach space is of martingale type p, then
it is of Rademacher type p. The real line R is of martingale type 2 and hence R is of
Rademacher type 2. The notion of martingale type p spaces is only superficially similar
to that of Rademacher type p spaces. Indeed, a Banach space can be of Rademacher type 2
(and hence be of Rademacher type p for all p ∈ [1, 2]) yet be of martingale type p only for
p = 1; for details see [9,17].

We note that the real line, as well as any Hilbert space, has much more geometry than
only being of Rademacher type p ≤ 2. It is also of cotype q ≥ 2. Hence it is not surprising
that our assumptions are stronger than the assumptions of the same results that pertain to
real-valued random variables (see, for example, Theorem 1.1 in [5]).

The following two concepts were introduced by [12,13], respectively.

Definition 1.1: Let p>0 and let {ank, n ≥ 1, k ≥ 1} be an array of real constants with

sup
n≥1

∞∑
k=1

|ank| < ∞.

A sequence {Xn, n ≥ 1} of random elements is said to be {ank}-uniformly pth order
integrable if

lim
x→∞ sup

n≥1

∞∑
k=1

|ank|E‖Xk‖pI(‖Xk‖ > x) = 0.

If p = 1, then {Xn, n ≥ 1} is said to be {ank}-uniformly integrable.
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Definition 1.2: Let p>0 and let {ank, n ≥ 1, k ≥ 1} be an array of real constants with

sup
n≥1

∞∑
k=1

|ank| < ∞.

A sequence {Xn, n ≥ 1} of random elements is said to be {ank}-compactly uniformly pth
order integrable if for any ε > 0, there exists a compact subset K in B such that

sup
n≥1

∞∑
k=1

|ank|E‖Xk‖pI(Xk /∈ K) < ε.

If p = 1, {Xn, n ≥ 1} is said to be {ank}-compactly uniformly integrable.

Ordóñez Cabrera and Volodin [14] showed that a sequence of random elements
{Xn, n ≥ 1} is {ank}-compactly uniformly pth order integrable if and only if it is {ank}-
uniformly pth order integrable and {ank}-tight; that is, for every ε > 0, there exists a
compact subset K of B such that

sup
n≥1

∞∑
k=1

|ank|P{Xk /∈ K} < ε.

It is worthwhile to point out that the notions of {ank}-uniformly pth order integrable and
{ank}-compactly uniformly pth order integrable are equivalent in the case when {Xn, n ≥
1} is a sequence of real-valued random variables. To see this, let the sequence of real-valued
random variables {Xn, n ≥ 1} be {ank}-uniformly pth order integrable; that is,

lim
x→∞ sup

n≥1

∞∑
k=1

|ank|E|Xk|pI(|Xk| > x) = 0.

This expression can be rewritten in the equivalent form: For any ε > 0 there exists A>0
such that

sup
n≥1

∞∑
k=1

|ank|E|Xk|pI(|Xk| > A) < ε.

Let K = [−A,A]. Then K is a compact set and the expression above can be rewritten as

sup
n≥1

∞∑
k=1

|ank|E|Xk|pI(|Xk| /∈ K) < ε.

Hence {Xn, n ≥ 1} is {ank}-compactly uniformly pth order integrable.
With the preliminaries accounted for, we can now state the main results. Their proofs

are given in the next section. We assume that the random series in Theorems 1.1–1.6
and Lemma 2.4 are almost surely convergent for each n ≥ 1. Of course, almost sure
convergence is automatic for any n ≥ 1 in which ank = 0 for all large k.



STOCHASTICS 5

Theorem 1.1: Let {ank, n ≥ 1, k ≥ 1} be an array of real constants with

sup
n≥1

∞∑
k=1

|ank| < ∞,

let {Xn, n ≥ 1} be a sequence of random elements, and let p ≥ 1. Suppose that {Xn, n ≥ 1}
is {ank}-uniformly pth order integrable. Then

∑∞
k=1 ankXk → 0 in probability if and only if

E

∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥
p

→ 0. (2)

Remark 1.1: Theorem 1.1 extends the equivalence of (v) and (vi) of Theorem 2.3 of [23].
Also, under the conditions of Theorem 1.1, (i)–(iv) of Theorem 2.3 of [23] are equiva-
lent. Moreover, replacing the assumption that {Xn, n ≥ 1} is {ank}-uniformly pth order
integrable by the assumption that {Xn, n ≥ 1} is {ank}-compactly uniformly pth order
integrable, it is easy to show that (i)–(vi) of Theorem 2.3 of [23] are all equivalent.

Theorem 1.2: Let {ank, n ≥ 1, k ≥ 1} be an array of real constants with

sup
n≥1

∞∑
k=1

|ank| < ∞ and sup
k≥1

|ank| → 0,

let {Xn, n ≥ 1} be a sequence of pairwise independent random elements, and let p ≥ 1.
Suppose that {Xn, n ≥ 1} is {ank}-compactly uniformly pth order integrable. Then

E

∥∥∥∥∥
∞∑
k=1

ank(Xk − EXk)

∥∥∥∥∥
p

→ 0. (3)

Remark 1.2: Theorem 1.2 extends Theorem 4.2 of [13] and Theorem 2.4 of [23].

Theorem 1.3: Let {ank, n ≥ 1, k ≥ 1} be an array of real constants with

sup
n≥1

∞∑
k=1

|ank| < ∞ and sup
k≥1

|ank| → 0,

let {Xn,Fn, n ≥ 1} be a B-valued martingale difference sequence, and let p ≥ 1. Suppose
that {Xn, n ≥ 1} is {ank}-compactly uniformly pth order integrable. Then (2) holds.

Theorem 1.4: Let {ank, n ≥ 1, k ≥ 1} be an array of real constants with

sup
n≥1

∞∑
k=1

|ank|p < ∞ and sup
k≥1

|ank| → 0,

let {Xn, n ≥ 1} a sequence of independent random elements, and let 1 ≤ p < 2. Suppose that
{Xn, n ≥ 1} is {|ank|p}-uniformly pth order integrable. Then

∑∞
k=1 ankXk → 0 in probability

if and only if (2) holds.
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Theorem 1.5: Let 1<p<2. Then the following two statements are equivalent:

(1) B is of Rademacher type p;
(2) (3) holds for any array of real constants {ank, n ≥ 1, k ≥ 1} with

sup
n≥1

∞∑
k=1

|ank|p < ∞ and sup
k≥1

|ank| → 0

and for any sequence of independent {|ank|p}-compactly uniformly pth order integrable
random elements {Xn, n ≥ 1}.

Remark 1.3: (1) If B is of Rademacher type p, 1<p<2 and {Xn, n ≥ 1} is a sequence of
i.i.d. random elements, then it is shown in [3] that the following two statements are
equivalent:

EX1 = 0, E‖X1‖p < ∞;

E

∥∥∥∥∥n−1/p
n∑

k=1

Xk

∥∥∥∥∥
p

→ 0.

It is clear that Theorem 1.5 extends the above mentioned result to the non-identically
distributed case andweighted sums.Note that [2,6,8,15,19,25] also discussed themean
convergence for random elements, but their results do not generalize the result of [3]
mentioned above.

(2) Theorem 1.5 gives a characterization of a Rademacher type p Banach space by mean
convergence of weighted sums when 1<p<2. However, the case when p = 2 (the
real line, or more generally, any Hilbert space falls into this situation) is not covered
by this theorem. The following example shows that Theorem 1.5 is not true for p = 2.
Let {X,Xn, n ≥ 1} be a sequence of i.i.d. real-valued random variables with EX = 0
and EX2 = 1. Then {Xn, n ≥ 1} is uniformly 2-nd integrable, and hence compactly
uniformly 2-nd integrable, but E|∑n

k=1 Xk/n1/2|2 = 1 
→ 0.

Theorem 1.6: Let {ank, n ≥ 1, k ≥ 1} be an array of real constants with

sup
n≥1

∞∑
k=1

|ank|p < ∞ and sup
k≥1

|ank| → 0,

let {Xn,Fn, n ≥ 1} be a martingale difference sequence, and let 1<p<2. Suppose that B is
of martingale type p and {Xn, n ≥ 1} is {|ank|p}-compactly uniformly pth order integrable.
Then (2) holds.

In the rest of this paper, we denote by c a generic positive number whichmay be different
at different places.

2. Proofs of themain results

The following lemmas play a very important role in the proofs of the main results.
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Lemma 2.1: Let K be a compact subset of B and let {Xn, n ≥ 1} be a sequence of B-valued
random elements taking values in K. Then for any ε > 0, there exist m ≥ 1, {xj, 1 ≤ j ≤
m} ⊂ B, and {Aj, 1 ≤ j ≤ m} ⊂ B such that for any n ≥ 1,

‖Xn − Yn‖ < ε,

where Yn = ∑m
j=1 xjI(Xn ∈ Aj) is Xn-measurable.

Proof: Since K is a compact subset of B, we can get for any ε > 0 that there exists {xj, 1 ≤
j ≤ m} ⊂ B, such thatK ⊂ ⋃m

j=1 B(xj, ε), where B(xj, ε) = {x : ‖x − xj‖ < ε}, 1 ≤ j ≤ m.
Set

A1 = K ∩ B(x1, ε), Aj = K ∩
⎛
⎝B(xj, ε)

∖ j−1⋃
i=1

B(xi, ε)

⎞
⎠ , 2 ≤ j ≤ m.

It is easy to verify that for any n ≥ 1, ‖Xn − Yn‖ < ε and Yn is Xn-measurable. �

In the proofs of Lemmas 2.2 and 2.3 and Theorems 1.2 and 1.5, we apply the following
well-known inequality which is referred to as the cp-inequality (see, e.g. Loève [11], p. 157):

For any p>0 and any two random variables X and Y,

E|X + Y|p ≤ cp
(
E|X|p + E|Y|p)

where

cp =
{

1 if p ≤ 1
2p−1 if p > 1.

Lemma 2.2: Assume that r>0, {Zn, n ≥ 1} is a sequence of B-valued random elements,
{Z′

n, n ≥ 1} is an independent copy of {Zn, n ≥ 1}, and Zn → 0 in probability. Then
E‖Zn‖r → 0 if and only if E‖Zn − Z′

n‖r → 0.

Proof: It is obvious thatE‖Zn‖r → 0 implies thatE‖Zn − Z′
n‖r → 0 by the cp-inequality.

Now suppose that E‖Zn − Z′
n‖r → 0. For any ε > 0

E‖Zn‖r =
∫ ∞

0
P{‖Zn‖ > t1/r} dt ≤ ε +

∫ ∞

ε

P{‖Zn‖ > t1/r} dt.

Note that supt≥ε P{‖Zn‖ > t1/r/2} = P{‖Zn‖ > ε1/r/2} → 0. Hence, by (6.1) of [10] we
get that for n large enough,

E‖Zn‖r ≤ ε + 2
∫ ∞

ε

P{‖Zn − Z′
n‖ > t1/r/2} dt ≤ ε + 2r+1

E‖Zn − Z′
n‖r,

which leads to the desired result by the arbitrariness of ε > 0. �

Lemma 2.3: Let p>0, let {ank, n ≥ 1, k ≥ 1} be an array of real constants with
supn≥1

∑∞
k=1 |ank|p < ∞, and let {Xn, n ≥ 1} be a sequence of random elements. Suppose
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that {X′
n, n ≥ 1} is an independent copy of {Xn, n ≥ 1}. If {Xn, n ≥ 1} is {|ank|p}-uniformly

pth order integrable, then {Xn − X′
n, n ≥ 1} is also {|ank|p}-uniformly pth order integrable.

Proof: By the cp-inequality and Markov’s inequality, for any k ≥ 1 and x>0

E‖Xk − X′
k‖pI(‖Xk − X′

k‖ > x) ≤ cE‖Xk‖pI(‖Xk − X′
k‖ > x)

= cE{‖Xk‖pI(‖Xk − X′
k‖ > x, ‖Xk‖ > x)

+ ‖Xk‖pI(‖Xk − X′
k‖ > x, ‖Xk‖ ≤ x)}

≤ c{E‖Xk‖pI(‖Xk‖ > x) + xpP{‖Xk − X′
k‖ > x}}

≤ cE‖Xk‖pI(‖Xk‖ > x) + cxpP{‖Xk‖ > x/2}
≤ cE‖Xk‖pI(‖Xk‖ > x) + cE‖Xk‖pI(‖Xk‖ > x/2)

≤ cE‖Xk‖pI(‖Xk‖ > x/2).

Hence we complete the proof. �

Lemma 2.4: Let {Xn, n ≥ 1} be a sequence of independent and symmetric random elements
and p>0, r>0. If

∑∞
k=1 ankXk → 0 in probability, then

lim
n→∞ sup

t≥1
E

∥∥∥∥∥t−1/r
∞∑
k=1

ankXkI
(‖ankXk‖ ≤ t1/r

)∥∥∥∥∥
p

= 0.

Proof: Using the contraction principle in the form of Lemma 6.5 of [10] we can derive that
for any ε > 0, there exists a positive integer n0 = n0(ε) such that for all n ≥ n0,

sup
t≥1

P

{∥∥∥∥∥
∞∑
k=1

ankXkI(‖ankXk‖ ≤ t1/r)

∥∥∥∥∥ > t1/rε

}
≤ sup

t≥1
P

{∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥ > t1/rε

}

≤ P

{∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥ > ε

}
≤ 1

8 · 3p . (4)

Clearly supk≥1 ‖ankXkI(‖ankXk‖ ≤ t1/r)‖ ≤ t1/r. When n ≥ n0, for all t ≥ 1, by (6.7)
of [10], (4), Lévy’s inequality, and the contraction principle (see Proposition 2.3 and
Lemma 6.5 of [10], respectively) we have for A>0 that

∫ A

0
P

{∥∥∥∥∥
∞∑
k=1

ankXkI(‖ankXk‖ ≤ t1/r)

∥∥∥∥∥ > t1/ry1/p
}
dy

= 3p
∫ A/3p

0
P

{∥∥∥∥∥
∞∑
k=1

ankXkI(‖ankXk‖ ≤ t1/r)

∥∥∥∥∥ > 3t1/ry1/p
}
dy

≤ 3p
⎛
⎝4

∫ A/3p

0

[
P

{∥∥∥∥∥
∞∑
k=1

ankXkI(‖ankXk‖ ≤ t1/r)

∥∥∥∥∥ > t1/ry1/p
}]2

dy



STOCHASTICS 9

+
∫ A/3p

0
P

{
sup
k≥1

‖ankXkI(‖ankXk‖ ≤ t1/r)‖ > t1/ry1/p
}
dy

)

≡ 3p(4J1 + J2), say.

Note that

J1 =
∫ A/3p

0

[
P

{∥∥∥∥∥
∞∑
k=1

ankXkI(‖ankXk‖ ≤ t1/r)

∥∥∥∥∥ > t1/ry1/p
}]2

dy

=
{∫ ε

0
+
∫ A/3p

ε

}[
P

{∥∥∥∥∥
∞∑
k=1

ankXkI(‖ankXk‖ ≤ t1/r)

∥∥∥∥∥ > t1/ry1/p
}]2

dy

≤ ε + 1
8 · 3p

∫ A/3p

ε

P

{∥∥∥∥∥
∞∑
k=1

ankXkI(‖ankXk‖ ≤ t1/r)

∥∥∥∥∥ > t1/ry1/p
}
dy (by (4))

≤ ε + 1
8 · 3p

∫ A/3p

0
P

{∥∥∥∥∥
∞∑
k=1

ankXkI(‖ankXk‖ ≤ t1/r)

∥∥∥∥∥ > t1/ry1/p
}
dy.

Also, since supk≥1 ‖ankXkI(‖ankXk‖ ≤ t1/r)‖ ≤ t1/r

J2 =
∫ A/3p

0
P

{
sup
k≥1

‖ankXkI(‖ankXk‖ ≤ t1/r)‖ > t1/ry1/p
}
dy

=
{∫ 1

0
+
∫ A/3p

1

}
P

{
sup
k≥1

‖ankXkI(‖ankXk‖ ≤ t1/r)‖ > t1/ry1/p
}
dy

=
∫ 1

0
P

{
sup
k≥1

‖ankXkI(‖ankXk‖ ≤ t1/r)‖ > t1/ry1/p
}
dy.

Therefore,
∫ A

0
P

{∥∥∥∥∥
∞∑
k=1

ankXkI(‖ankXk‖ ≤ t1/r)

∥∥∥∥∥ > t1/ry1/p
}
dy

≤ 3p
(
4ε + 4

8 · 3p
∫ A

0
P

{∥∥∥∥∥
∞∑
k=1

ankXkI(‖ankXk‖ ≤ t1/r)

∥∥∥∥∥ > t1/ry1/p
}
dy

+
∫ 1

0
P

{
sup
k≥1

‖ankXkI(‖ankXk‖ ≤ t1/r)‖ > t1/ry1/p
}
dy

)

≤ 3p
(
4ε + 4

8 · 3p
∫ A

0
P

{∥∥∥∥∥
∞∑
k=1

ankXkI(‖ankXk‖ ≤ t1/r)

∥∥∥∥∥ > t1/ry1/p
}
dy

+2
∫ 1

0
P

{∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥ > y1/p
}
dy

)
.
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Hence

sup
t≥1

∫ A

0
P

{∥∥∥∥∥
∞∑
k=1

ankXkI(‖ankXk‖ ≤ t1/r)

∥∥∥∥∥ > t1/ry1/p
}
dy

≤ 8 · 3pε + 4 · 3p
∫ 1

0
P

{∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥ > y1/p
}
dy.

Letting first A → ∞ and then n → ∞ we obtain the desired result by the Lebesgue
dominated convergence theorem and the arbitrariness of ε > 0. �

Proof of Theorem 1.1.: The sufficiency half is obvious. We only prove the necessity half.
By the Mean Convergence Criterion (see, e.g. Theorem 3(i), Section 4.2 of [4]), it suffices
to show that {‖∑∞

k=1 ankXk‖p, n ≥ 1} is uniformly integrable. According to the definition
of uniform integrability given in [4] on pages 93–94, we need to prove that

(i) supn≥1 E‖∑∞
k=1 ankXk‖p < ∞

and
(ii) For any ε > 0 there exists δ > 0 such that for any A ∈ F such that P(A) < δ, we

have that

sup
n≥1

∫
A

∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥
p

dP < ε.

First suppose that p>1. Note that∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥ ≤
∞∑
k=1

|ank|‖Xk‖

=
∞∑
k=1

|ank|1/p‖Xk‖|ank|
p−1
p

≤
( ∞∑
k=1

|ank|‖Xk‖p
)1/p ( ∞∑

k=1

|ank|
) p−1

p

(by Hölder’s inequality).

Thus ∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥
p

≤
( ∞∑
k=1

|ank|
)p−1 ( ∞∑

k=1

|ank|‖Xk‖p
)

and so for any A ∈ F ,

sup
n≥1

∫
A

∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥
p

dP ≤ sup
n≥1

( ∞∑
k=1

|ank|
)p−1 ∞∑

k=1

|ank|
∫
A

‖Xk‖p dP. (5)

Note that (5) holds trivially when p = 1. Let

M = sup
n≥1

∞∑
k=1

|ank|.
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Thus for all p ≥ 1,

sup
n≥1

∫
A

∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥
p

dP ≤ Mp−1 sup
n≥1

∞∑
k=1

|ank|
∫
A

‖Xk‖p dP. (6)

We first prove (i). Since {Xn} is {ank}-uniformly pth order integrable, there exists x0 > 0
such that

sup
n≥1

∞∑
k=1

|ank|E‖Xk‖pI(‖Xk‖ > x0) ≤ 1.

Then taking A = � in (6),

sup
n≥1

E

∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥
p

≤ Mp−1 sup
n≥1

( ∞∑
k=1

|ank|E‖Xk‖pI(‖Xk‖ ≤ x0)

+
∞∑
k=1

|ank|E‖Xk‖pI(‖Xk‖ > x0)

)

≤ Mpxp0 + 1 < ∞
thereby proving (i).

We now prove (ii). According to Theorem 2 of [12], the assumption that {Xn, n ≥ 1} is
{ank}-uniformly pth order integrable is equivalent to the pair of conditions

(a) supn≥1
∑∞

k=1 |ank|E‖Xk‖p < ∞
and
(b) For any ε > 0, there exists δ0 > 0 such that if {Ak, k ≥ 1} is any sequence in F

satisfying

sup
n≥1

∞∑
k=1

|ank|P(Ak) < δ0,

then

sup
n≥1

∞∑
k=1

|ank|
∫
Ak

‖Xk‖p dP <
ε

Mp−1 .

Let ε > 0 and let δ0 > 0 be as in (b). Let δ = δ0
M , let A ∈ F be such that P(A) < δ, and let

Ak = A, k ≥ 1. Then

sup
n≥1

∞∑
k=1

|ank|P(A) < M
δ0

M
= δ0

and so by (6) and (b),

sup
n≥1

∫
A

∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥
p

dP < Mp−1 ε

Mp−1 = ε

thereby proving (ii). Hence {‖∑∞
k=1 ankXk‖p, n ≥ 1} is uniformly integrable and the proof

is completed. �
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Remark 2.1: Part (ii) of Theorem 1.1 can also be proved without referring to Theorem 2
of [12]. In fact, since {Xn, n ≥ 1} is {ank}-uniformly pth order integrable, there exists B>0
such that

sup
n≥1

∞∑
k=1

|ank|E‖Xk‖pI(‖Xk‖ > B) <
ε

2Mp−1 .

Let δ = ε/(2MpBp). Then for any A ∈ F with P(A) < δ, it follows from (6) that

sup
n≥1

∫
A

∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥
p

dP

≤ Mp−1 sup
n≥1

( ∞∑
k=1

|ank|
∫
A[‖Xk‖≤B]

‖Xk‖p dP +
∞∑
k=1

|ank|
∫
A[‖Xk‖>B]

‖Xk‖p dP

)

≤ Mp−1 sup
n≥1

∞∑
k=1

|ank|
∫
A[‖Xk‖≤B]

‖Xk‖p dP

+ Mp−1 sup
n≥1

∞∑
k=1

|ank|
∫
A[‖Xk‖>B]

‖Xk‖p dP

≤ MpBpP(A) + Mp−1 sup
n≥1

∞∑
k=1

|ank|E‖Xk‖pI(‖Xk‖ > B)

< MpBp
ε

2MpBp
+ Mp−1 ε

2Mp−1 = ε

thereby proving (ii).

Proof of Theorem 1.2.: For any ε > 0, since {Xn, n ≥ 1} is {ank}-compactly uniformly pth
order integrable, there exists a compact subset K of B such that

sup
n≥1

∞∑
k=1

|ank|E‖Xk‖pI(Xk /∈ K) < ε.

It is obvious that XnI(Xn ∈ K) takes values in K ∪ {0} for all n ≥ 1. Hence by Lemma 2.1
there exists a sequence of pairwise independent B-valued random elements {Yn =∑m

j=1 xjI(Xn ∈ Aj), n ≥ 1} such that

sup
n≥1

‖XnI(Xn ∈ K) − Yn‖ ≤ ε,

where {xj, 1 ≤ j ≤ m} is a finite subset of B.
Set � = supn≥1

∑∞
k=1 |ank|, �1 = max1≤j≤m ‖xj‖. Note that∥∥∥∥∥

∞∑
k=1

ank(Xk − EXk)

∥∥∥∥∥ =
∥∥∥∥∥

∞∑
k=1

ank(XkI(Xk /∈ K) − EXkI(Xk /∈ K))

+
∞∑
k=1

ank(XkI(Xk ∈ K) − EXkI(Xk ∈ K))
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−
∞∑
k=1

ank(Yk − EYk)] +
∞∑
k=1

ank(Yk − EYk)

∥∥∥∥∥
≤
∥∥∥∥∥

∞∑
k=1

ank(XkI(Xk /∈ K) − EXkI(Xk /∈ K))

∥∥∥∥∥
+ 2�ε +

∥∥∥∥∥
∞∑
k=1

ank(Yk − EYk)

∥∥∥∥∥ .
Hence, by Hölder’s inequality, Jensen’s inequality, and the cp-inequality, for all n ≥ 1

E

∥∥∥∥∥
∞∑
k=1

ank(XkI(Xk /∈ K) − EXkI(Xk /∈ K))

∥∥∥∥∥
p

≤ �p−1
∞∑
k=1

|ank|E‖XkI(Xk /∈ K) − EXkI(Xk /∈ K)‖p

≤ 2p−1�p−1
∞∑
k=1

|ank|E‖Xk‖pI(Xk /∈ K)

< 2p−1�p−1ε.

By employing Jensen’s inequality and the cp-inequality again we obtain

E

∥∥∥∥∥
∞∑
k=1

ank(Yk − EYk)

∥∥∥∥∥
p

= E

∥∥∥∥∥∥
m∑
j=1

∞∑
k=1

ankxj(I(Xk ∈ Aj) − EI(Xk ∈ Aj))

∥∥∥∥∥∥
p

≤ (2m��1)
p−1

m∑
j=1

‖xj‖E

∣∣∣∣∣
∞∑
k=1

ank(I(Xk ∈ Aj) − EI(Xk ∈ Aj))

∣∣∣∣∣
≤ (2m��1)

p−1
m∑
j=1

‖xj‖
⎛
⎝E

∣∣∣∣∣
∞∑
k=1

ank(I(Xk ∈ Aj) − EI(Xk ∈ Aj))

∣∣∣∣∣
2
⎞
⎠

1/2

.

By the pairwise independence of the random elements {Xk, k ≥ 1}, we obtain that for
any 1 ≤ j ≤ m, the random variables {I(Xk ∈ Aj) − EI(Xk ∈ Aj), k ≥ 1} are also pairwise
independent and hence

(2m��1)
p−1

m∑
j=1

‖xj‖
⎛
⎝E

∣∣∣∣∣
∞∑
k=1

ank(I(Xk ∈ Aj) − EI(Xk ∈ Aj))

∣∣∣∣∣
2
⎞
⎠

1/2

≤ (2m��1)
p−1

m∑
j=1

‖xj‖
∞∑
k=1

|ank|2
(
E
∣∣(I(Xk ∈ Aj) − EI(Xk ∈ Aj))

∣∣2)1/2
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≤ (2m��1)
p−1

m∑
j=1

‖xj‖
( ∞∑
k=1

|ank|2
)1/2

≤ 2p−1(m�1)
p�p−1/2

(
sup
k≥1

|ank|
)1/2

→ 0 as n → ∞.

By the arbitrariness of ε > 0, we get that (3) holds. �

Remark 2.2: Note that we cannot remove the assumption of the pairwise independence
from the formulation of Theorem 1.2. In order to see this, consider the following simple
example. Take p = 1, ank = 1

n , if 1 ≤ k ≤ n and ank = 0, if k>n. LetX1 = X2 = . . . where
X1 has the uniform distribution on [0, 1]. Then

E

∣∣∣∣∣1n
n∑

k=1

(Xk − EXk)

∣∣∣∣∣ = E|X1 − EX1| = 1
4


→ 0.

Proof of Theorem 1.3.: For any ε > 0, since {Xn, n ≥ 1} is {ank}-compactly uniformly pth
order integrable, there exists a compact subset K of B such that

sup
n≥1

∞∑
k=1

|ank|E‖Xk‖pI(Xk /∈ K) < ε.

It is obvious that XnI(Xn ∈ K) takes values in K ∪ {0} for all n ≥ 1. Hence we get
from Lemma 2.1 that there exists a sequence of B-valued random elements {Yn =∑m

j=1 xjI(Xn ∈ Aj), n ≥ 1} such that

sup
n≥1

‖XnI(Xn ∈ K) − Yn‖ ≤ ε,

where {xj, 1 ≤ j ≤ m} is finite subset of B.
Set � = supn≥1

∑∞
k=1 |ank|. We split

∑∞
k=1 ankXk by∥∥∥∥∥

∞∑
k=1

ankXk

∥∥∥∥∥ =
∥∥∥∥∥

∞∑
k=1

ank(XkI(Xk /∈ K) − E(XkI(Xk /∈ K) |Fn−1))

+
∞∑
k=1

ank(XkI(Xk ∈ K) − E(XkI(Xk ∈ K) |Fn−1))

−
∞∑
k=1

ank(Yk − E(Yk |Fn−1)) +
∞∑
k=1

ank(Yk − E(Yk |Fn−1))

∥∥∥∥∥
≤
∥∥∥∥∥

∞∑
k=1

ank(XkI(Xk /∈ K) − E(XkI(Xk /∈ K) |Fn−1))

∥∥∥∥∥
+ 2�ε +

∥∥∥∥∥
∞∑
k=1

ank(Yk − E(Yk |Fn−1))

∥∥∥∥∥ ,
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where F0 = {�, ∅}. The rest of the proof is similar to that of Theorem 1.2 and hence we
omit the details. �

Proof of Theorem 1.4.: We only need to show that
∑∞

k=1 ankXk → 0 in probability
implies (2). By Lemmas 2.2 and 2.3, without loss of generality, we can assume that {Xn, n ≥
1} is a sequence of symmetric random elements. Note that

E

∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥
p

=
∫ ∞

0
P

{∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥ > t1/p
}
dt

≤
∫ 1

0
P

{∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥ > t1/p
}
dt +

∫ ∞

1
P

{∥∥∥∥∥
∞∑
k=1

ankXk

∥∥∥∥∥ > t1/p
}
dt

= I1 + I2, say.

By the Lebesgue dominated convergence theorem, I1 → 0. Hence it is enough to prove that
I2 → 0. We have

I2 ≤
∫ ∞

1

∞∑
k=1

P{‖ankXk‖ > t1/p} dt +
∫ ∞

1
P

{∥∥∥∥∥
∞∑
k=1

ankXkI
(‖ankXk‖≤t1/p

)∥∥∥∥∥ > t1/p
}
dt

= I3 + I4, say.

For I3,

I3 =
∞∑
k=1

∫ ∞

1
P{‖ankXk‖ > t1/p} dt

=
∞∑
k=1

∫ ∞

1
P{‖ankXk‖I(‖ankXk‖ > 1) > t1/p} dt

≤
∞∑
k=1

∫ ∞

0
P{‖ankXk‖I(‖ankXk‖ > 1) > t1/p} dt

=
∞∑
k=1

|ank|pE‖Xk‖pI(‖ankXk‖ > 1)

≤ sup
m≥1

∞∑
k=1

|amk|pE‖Xk‖pI
⎛
⎝‖Xk‖ >

(
sup
k≥1

|ank|
)−1

⎞
⎠

→ 0.

For I4, by Lemma 2.4, there exists N ≥ 1 such that for all n ≥ N for all t ≥ 1 we have that
E‖t−1/p∑∞

k=1 ankXkI(‖ankXk‖ ≤ t1/p)‖p ≤ 1/2. Hence,

I4 =
∫ ∞

1
P

{∥∥∥∥∥
∞∑
k=1

ankXkI
(‖ankXk‖ ≤ t1/p

)∥∥∥∥∥ > t1/p
}
dt
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≤
∫ ∞

1
P

{∣∣∣∣∣
∥∥∥∥∥

∞∑
k=1

ankXkI(‖ankXk‖ ≤ t1/p)

∥∥∥∥∥
−E

∥∥∥∥∥
∞∑
k=1

ankXkI(‖ankXk‖ ≤ t1/p)

∥∥∥∥∥
∣∣∣∣∣ > t1/p/2

}
dt

≤ c
∞∑
k=1

∫ ∞

1
t−2/p

∫ t2/p

0
P{‖ankXk‖ > s1/2} ds dt (by Theorem 2.1 of [1])

= c
∞∑
k=1

∫ ∞

1
P{‖ankXk‖ > s1/2}

∫ ∞

sp/2
t−2/p dt ds

= c
∫ ∞

1
s(1−2/p)p/2

∞∑
k=1

P{‖ankXk‖ > s1/2} ds

= c
∫ ∞

1
sp/2−1

∞∑
k=1

P{‖ankXk‖ > s1/2} ds (s = t2/p)

= c
∫ ∞

1

∞∑
k=1

P{‖ankXk‖ > t1/p} dt

→ 0.

Hence we complete the proof. �

Proof of Theorem 1.5: Wefirst prove that (1) implies (2). For any ε > 0, since {Xn, n ≥ 1}
is {|ank|p}-compactly uniformly pth order integrable, we get that there exists a compact
subset K of B such that

sup
n≥1

∞∑
k=1

|ank|pE‖Xk‖pI(Xk /∈ K) < ε.

It is obvious that XnI(Xn ∈ K) takes values in K ∪ {0} for all n ≥ 1. For any ε > 0, we get
from Lemma 2.1 that there exists a sequence of independent B-valued random elements
{Yn = ∑m

j=1 xjI(Xn ∈ Aj), n ≥ 1} such that

sup
n≥1

‖XnI(Xn ∈ K) − Yn‖ ≤ ε,

where {xj, 1 ≤ j ≤ m} is a finite subset of B. Note that by the cp-inequality and the
Hoffmann-Jørgensen and Pisier [7] characterization of Rademacher type p Banach spaces
discussed above,

E

∥∥∥∥∥
∞∑
k=1

ank(Xk − EXk)

∥∥∥∥∥
p

= E

∥∥∥∥∥
∞∑
k=1

ank(XkI(Xk /∈ K) − EXkI(Xk /∈ K))
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+
[ ∞∑
k=1

ank(XkI(Xk ∈ K) − EXkI(Xk ∈ K)) −
∞∑
k=1

ank(Yk − EYk)

]

+
∞∑
k=1

ank(Yk − EYk)

∥∥∥∥∥
p

≤ c
∞∑
k=1

|ank|pE‖Xk‖pI(Xn /∈ K) + cεp
∞∑
k=1

|ank|p + cE

∥∥∥∥∥
∞∑
k=1

ank(Yk − EYk)

∥∥∥∥∥
p

.

Hence, by Jensen’s inequality and the cp-inequality we get

E

∥∥∥∥∥
∞∑
k=1

ank(Yk − EYk)

∥∥∥∥∥
p

= E

∥∥∥∥∥∥
m∑
j=1

xj
∞∑
k=1

ank(I(Xi ∈ Aj) − EI(Xi ∈ Aj))

∥∥∥∥∥∥
p

≤ c
m∑
j=1

‖xj‖p
⎛
⎝E

∣∣∣∣∣
∞∑
k=1

ank(I(Xi ∈ Aj) − EI(Xi ∈ Aj))

∣∣∣∣∣
2
⎞
⎠

p/2

≤ c

(
sup
k≥1

|ank|
)p−p2/2

→ 0 as n → ∞.

Since ε > 0 is arbitrary, we have that (2) holds.
Next we show that (2) implies (1). Set ank = n−1/p if 1 ≤ k ≤ n and ank = 0 if k>n

and {X,Xn, n ≥ 1} is a sequence of i.i.d. random elements withEX = 0 and E‖X‖p < ∞.
Note that this choice of {ank} and {Xn, n ≥ 1} satisfies the assumptions of (2) and hence (3)
holds. Then E‖n−1/p∑n

k=1 Xk‖ → 0 and thus n−1/p∑n
k=1 Xk → 0 in probability. Hence

by Theorem 3.1 of [1], n−1/p∑n
k=1 Xk → 0 almost surely and then by Theorem 4.1 of [1],

we get that (2) implies (1). This completes the proof of the theorem. �

Proof Theorem 1.6.: It is similar to the proofs of Theorems 1.3 and 1.5 and hence we
omit it. �
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