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ABSTRACT. Let {Y;,—00 < i < oo} be a doubly infinite sequence of
identically distributed p~-mixing or negatively associated random vari-
ables, {a;, —00 < i < oo} a sequence of real numbers. In this paper, we
prove the rate of convergence and strong law of large numbers for the
0 @iYiin,n > 1} under

partial sums of moving average processes {d .~

some moment conditions.

1. PRELIMINARIES

Let {Y;,—00 < i < 400} be a doubly infinite sequence of identically
distributed random variables and {a;, —0co < i < 400} be an absolutely
summable sequence of real numbers. Next, let

o0

Xn = Z ai}/;+n7n >1

1=—00
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be the moving average process based on the sequence {Y;, —oco < i <
+o00}. As usual, we denote S, = > ,_, Xi, n > 1, the sequence of
partial sums.

Under the assumption that {Y;, —oo < i < +00} is a sequence of inde-
pendent identically distributed random variables, many limiting results
have been obtained for the moving average process {X,,n > 1}. For
example, Ibragimov (1962) established the central limit theorem, Burton
and Dehling (1990) obtained a large deviation principle, and Li, Rao, and
Wang (1992) obtained the complete convergence result for {X,,,n > 1}.

Certainly, even if {Y;,—co < i < 400} is the sequence of indepen-
dent identically distributed random variables, the moving average ran-
dom variables {X,,,n > 1} are dependent. This kind of dependence is
called weak dependence. The partial sums of weakly dependent random
variables {X,,,n > 1} have similar limiting behaviour properties in com-
parison with the limiting properties of independent identically distributed
random variables.

Very few results for a moving average process based on a dependent
sequence are known. In this paper, we provide two results on the lim-
iting behaviour of a moving average process based on a p~-mixing and
negatively associated sequences.

Let {Y;,—00 < i < oo} be a sequence of random variables defined
on a probability space (2, F, P). For a set of integer numbers 7" denote
o-algebra F(T) = o(Y;,i € T)) and as usual, for a g-algebra F we denote
by L2(F) the class of all F-measurable random variables with the finite
second moment.

For two sets S and T of real numbers we denote

dist(S,T) = inf{|s — t|,s € S,t € T'}.

The following definition was introduced in Zang and Wang (1999). A
sequence of random variables {Y;, —0o < i < 0o} is called p~-mixing if

p~(s) =sup{p(S,T); S, T are sets of integers ,dist(S,7) > s} — 0
as s — 0o, where
p~(S,T) = max{0,sup (Corr [f(Y;,i € S),9(Y;,5 € T)])},

where supremum is taken over all coordinatewise increasing real functions
fon R¥ and g on RT and by Corr(-,-) we denote the classical correlation
coefficient.
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Next, a sequence of random variables {Y;, —oo < i < oo} is called
p*-mixing if for some integer s > 1

p(s)* = supsup{Corr(X,Y) : X € L*(Fs),Y € L*(Fr)} < 1,

where the first sup is taken over all pairs of nonempty finite sets S, T" of
integers, such that dist(S,7") > s. The notion of p*-mixing seems to be
similar to the notion of p-mixing, but Bryc and Smolenski (1993) showed
that they are quite different from each other.

Recall that a finite family of random variables {Y;,1 < i < n} is said
to be negatively associated, if for any disjoint finite subsets S and T of
integers and any real coordinatewise nondecreasing functions f on R°
and g on RT,

Cov (f(¥i,i € 8),g(¥;,j € T)) <0
whenever the covariance exists. This concept was studied in Joag-Dev
and Proschan (1983).

It is easy to see that {Y;, —oo < i < oo} is negatively associated if
and only if p~(s) = 0 for all s > 1 and p~(s) < p*(s). Hence the notion
of p~-mixing is weaker than both notions of negative association and
pr-mixing.

We also need the following simple statement (see Property P2 in Wang
and Lu (2006))

Property of p -mixing random variables. Let {Y,,n > 1} be a
sequence of p~-mizing random variables. If {f,,n > 1} is a sequence of
real functions all of which are monotone nondecreasing (or all monotone
nonincreasing), then { f,(Y,),n > 1} is a sequence of p~-mizing random
variables.

Note that Property P2 in Wang and Lu (2006) is stated only for in-
creasing functions. It is simple to see that this property remains true for
nondecreasing functions, too. The statement for nonincreasing functions
follows for the observation that if a function f,, is nonincreasing, then
the function —f,, is nondecreasing.

Recall that a measurable function [ is said to be slowly varying if for
each A > 0
lim I(Ax)
a0 I(z)
We refer to Seneta (1976) for other equivalent definitions and for detailed
and comprehensive study of properties of such functions.
In the following, C' will represent a positive constants although its
value may change from one appearance to the next.

=1.
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The following result was proved in Budsaba, Chen, and Volodin (2007).

Theorem BCV. Let [(x) be a positive slowly varying function and
1<p<2,r>1pr#1. Suppose {Y;,—o0 < i < oo} is a sequence of
identically distributed and p~-mixing random variables and {X,,n > 1}
is the moving average process based on the sequence {Y;, —0o < i < co}.
Then EY; =0 and E|Y1|"™PI(|Y1|?) < oo imply that for all € > 0

Z n"2l(n)P (max
n=1 ksn

In particular, the assumptions EY; = 0 and E|Y1]P < co,1 < p < 2
imply Marcinkiewicz-Zygmund strong law of large numbers

k

>X

i=1

> enl/p> < 00.

n
n~ 4P E X, — 0 a.s asn— oo.
k=1

Next, in Concluding Remark 4, Budsaba, Chen, and Volodin (2007)
mentioned that the case p = r = 1 is not treated in Theorem BCV
and that the authors believe that the result can be proved under the
additional assumption > = _ |a;|* < oo for some 0 < s < 1.

In this paper it is shown that this suggestion is true. Namely, we prove
the following result.

Theorem 1. Let [(x) be a positive slowly varying function and suppose
that {Y;, —00 < i < o0} is a sequence of identically distributed p~-mizing
random variables. Let {X,,n > 1} be the moving average process based
on the sequence {Y;, —o0o < i < co}. Let moreover {a;, —o0o < i < 0o} be
a sequence of real numbers with Y > |a;|* < oo for some 0 < s < 1.

1=—00

Then EY; =0 and E|Y1]l(|Y1]|) < oo imply that for all € > 0

1<k<n

0o k
> nM(n)P{max | Y X;| > en} < cc.
n=1 7j=1

In particular, EY; = 0 implies the following Kolmogorov strong law of
large numbers

n
n~t E X, —0a.s asn — oco.
k=1

Proof. Let Y;;) =-—nl(Y; < —n)+YI(|Y;| <n)+nl(Y; >n), and
Yn(f) =Y, - Yn(]l ). Then by Property of p~-mixing random variables, for
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any n > 1, { i Voo < j< oo}and{ iy R o0} are sequences
of p~-mixing random variables. Note that

n n [e’¢) i+n
Y=Y Y ava=Y Wy,
k=1 k=1 i=—o00 i=—oo0  j=i+l
and
i+k i+k
_ 1) < -1 (1)
max |F a; Y.i'l<n |a, uax |E Y.’
1<k<n J
i=—o0 j=i+1 i=—00 Jj=i+1

< Cn~'n(|EYAI(|Y1] < n)| + nP{|Y1] > n})
= CEW|I(|Y1] > n) + CnP{]Y;| > n} — 0,
as n — o0o. Hence for n large enough

i+k

DS SRR

i=—o00  jJ=t+1

Therefore it is enough to prove that

o0 Z—l—k
L -1 (1) 1)
I, = E 1n l(n P{1r£1ka<xn| E a; EH Y — EY,; )| >en/4} < o0
n—= i=—00 j=t

and

i+k

I = in_ll( 1151]?2( | Z a; Z \ > en/2) < oo
n=1

i=—o0  j=t+1
For Iy, by Markov inequality, we have

i+k

I, < Cin_l_sl(n)Elrg]?g | Z a; Z

i=—o00 j=i+1
< Czn I (EMAPI(YA] > n) +nP{[Y1] > n})

< OZn‘Slm)ElYmI (1Ya] > n)

— Zn—sz Z EYi*P(m < [Yi| <m+1)

m=n
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oo

= Z EYi[*P(m < Vi| <m+1) Y n~U(n)

= n=1

Zml SI(m)E|Y1[*P(m < |Yi| <m + 1)

| /\

E\Yl\l(lYl\)

For Iy, by Markov and Holder inequalities, we have

i+k

L < CZn‘V(n)n”Egg&xJ Z a; Z EY(1 )
n=1 -

i=—o0 j=t+1

o) o) i+k 2
<CY nln)n ‘2E<Z jai] max | Sy - ey )|>
n=1

i=—00 Jj=i+1

i+k

gCin Z |a;|) Z |a2\E max | Z Y(1 )\2

i=—00 i=—00 Jj=i+1

<CZn n)(EY:PI(IY] < n) +n*P{Y)] > n})
< cZn—Ql(nwml?I(w <n) + CEY[I(|V1])
—CZn—Qz ZE|Y1| I(m —1 < |Yi] <m) + CEYi[I(|Y3])

=CZE|Y1|21( —1<|Y1|<mZn n) + CE[Y:[I(|Y1])

n=m

<CY mTUm)EY;I(m — 1 < V1] < m) + CEY1|I(]Y])

<CY EMI(IVi))I(m —1 < [Yi| < m) + CE|V1]I(|Y1])
m=1

< CEW|I(IV]) < o0

Now we show the almost sure convergence. By the first part of Theo-
rem, EY; =0 (and hence E|Y;| < 0o) implies

Zn_lP{maX |S|>5n/}<oo, for all £ > 0.

1<k<
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Therefore

[e.e]
-1
o0 > Zn P{lrgnn?%cn|5m| > en}

n=1
00 2k
_ -1
= g E n P{lrgnn?%cn|5m| > en}
k=1 n=2k-1

> I/QZP{KmaX S| > €28}
k=1

_mggk— 1
By Borel-Cantelli lemma

27% max |S,,| — 0 almost surely
1<m<2k

which implies that S,,/n — 0 almost surely.(J

The second theorem treats the case when the sequence {a;, —00 < i <
+00} is not absolutely summable.
Theorem 2. Let 1 < q < 2. Assume that there exists s, 1 < s < q,
such that

+oo
Z la;|* < oo.

Suppose {Y;, —00 < i < oo} is a sequence of identically distributed neg-

atively associated random variables and {X,,n > 1} is the moving av-

erage process based on the sequence {Y;, —oco < i < oo}. Then for all

p, 0 <p< sq_SZJrS, the assumptions EY; = 0 and E|Y1|? < oo imply

Marcinkiewicz-Zygmund strong law of large numbers

n
n- 4P E X — 0 a.s. asn — oo.
k=1

Remark. Note that the assumption 1 < s < ¢ < 2 implies that p < 2.

Proof. Without loss of generality, we assume that a; > 0 for all 7. Let
{bn,n > 1} be sequence of positive numbers that will be specified later.
By Theorem 2 (1.6) of Shao (2000), we have

n q +00 n q 400 n q
k=1 i=—o00 \ k=1 i=—00 \k=1
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An application of Holder and then Jensen inequalities yields

n q n q/s
> bpaig] <> hral
k=1 k=1
n +o0o q/s—1
<tV Ta i Y a
k=1 i=—00
Hence
n q +oo a/s n n
EDY X <C{ ) ap] ntV9Y b= Cno0 N "
k=1 i=—00 k=1 k=1

By Theorem 3.3 of Méricz, Serfling, and Stout (1982), we have the fol-
lowing maximal inequality

q n

< C'logd(2n)na1=1/%) Z by

k=1

1<m<n

E | max Zkak
k=1

This maximal inequality implies the almost sure convergence of the series
S oo b Xy as soon as Y e WK1/ ogl(2k) < oo (see for instance,
Loeve (1978) Section 36.1). The application of Kronecker lemma with
by, = k=17 concludes the proof of Theorem 2. O
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