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Abstract. Let {Yi,−∞ < i < ∞} be a doubly infinite sequence of

identically distributed ρ−-mixing or negatively associated random vari-

ables, {ai,−∞ < i < ∞} a sequence of real numbers. In this paper, we

prove the rate of convergence and strong law of large numbers for the

partial sums of moving average processes {
∑∞

i=−∞ aiYi+n, n ≥ 1} under

some moment conditions.

1. Preliminaries

Let {Yi,−∞ < i < +∞} be a doubly infinite sequence of identically

distributed random variables and {ai,−∞ < i < +∞} be an absolutely

summable sequence of real numbers. Next, let

Xn =
∞
∑

i=−∞

aiYi+n, n ≥ 1
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be the moving average process based on the sequence {Yi,−∞ < i <

+∞}. As usual, we denote Sn =
∑n

k=1 Xk, n ≥ 1, the sequence of

partial sums.

Under the assumption that {Yi,−∞ < i < +∞} is a sequence of inde-

pendent identically distributed random variables, many limiting results

have been obtained for the moving average process {Xn, n ≥ 1}. For

example, Ibragimov (1962) established the central limit theorem, Burton

and Dehling (1990) obtained a large deviation principle, and Li, Rao, and

Wang (1992) obtained the complete convergence result for {Xn, n ≥ 1}.

Certainly, even if {Yi,−∞ < i < +∞} is the sequence of indepen-

dent identically distributed random variables, the moving average ran-

dom variables {Xn, n ≥ 1} are dependent. This kind of dependence is

called weak dependence. The partial sums of weakly dependent random

variables {Xn, n ≥ 1} have similar limiting behaviour properties in com-

parison with the limiting properties of independent identically distributed

random variables.

Very few results for a moving average process based on a dependent

sequence are known. In this paper, we provide two results on the lim-

iting behaviour of a moving average process based on a ρ−-mixing and

negatively associated sequences.

Let {Yi,−∞ < i < ∞} be a sequence of random variables defined

on a probability space (Ω,F , P ). For a set of integer numbers T denote

σ-algebra F(T ) = σ(Yi, i ∈ T ) and as usual, for a σ-algebra F we denote

by L2(F) the class of all F -measurable random variables with the finite

second moment.

For two sets S and T of real numbers we denote

dist(S, T ) = inf{|s − t|, s ∈ S, t ∈ T}.

The following definition was introduced in Zang and Wang (1999). A

sequence of random variables {Yi,−∞ < i < ∞} is called ρ−-mixing if

ρ−(s) = sup{ρ(S, T ); S, T are sets of integers , dist(S, T ) ≥ s} → 0

as s → ∞, where

ρ−(S, T ) = max {0, sup (Corr [f(Yi, i ∈ S), g(Yj, j ∈ T )])} ,

where supremum is taken over all coordinatewise increasing real functions

f on RS and g on RT and by Corr(·, ·) we denote the classical correlation

coefficient.
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Next, a sequence of random variables {Yi,−∞ < i < ∞} is called

ρ∗-mixing if for some integer s ≥ 1

ρ(s)∗ = sup sup{Corr(X, Y ) : X ∈ L2(FS), Y ∈ L2(FT )} < 1,

where the first sup is taken over all pairs of nonempty finite sets S, T of

integers, such that dist(S, T ) ≥ s. The notion of ρ∗-mixing seems to be

similar to the notion of ρ-mixing, but Bryc and Smolenski (1993) showed

that they are quite different from each other.

Recall that a finite family of random variables {Yi, 1 ≤ i ≤ n} is said

to be negatively associated, if for any disjoint finite subsets S and T of

integers and any real coordinatewise nondecreasing functions f on RS

and g on RT ,

Cov (f(Yi, i ∈ S), g(Yj, j ∈ T )) ≤ 0

whenever the covariance exists. This concept was studied in Joag-Dev

and Proschan (1983).

It is easy to see that {Yi,−∞ < i < ∞} is negatively associated if

and only if ρ−(s) = 0 for all s ≥ 1 and ρ−(s) ≤ ρ∗(s). Hence the notion

of ρ−-mixing is weaker than both notions of negative association and

ρ∗-mixing.

We also need the following simple statement (see Property P2 in Wang

and Lu (2006))

Property of ρ−-mixing random variables. Let {Yn, n ≥ 1} be a

sequence of ρ−-mixing random variables. If {fn, n ≥ 1} is a sequence of

real functions all of which are monotone nondecreasing (or all monotone

nonincreasing), then {fn(Yn), n ≥ 1} is a sequence of ρ−-mixing random

variables.

Note that Property P2 in Wang and Lu (2006) is stated only for in-

creasing functions. It is simple to see that this property remains true for

nondecreasing functions, too. The statement for nonincreasing functions

follows for the observation that if a function fn is nonincreasing, then

the function −fn is nondecreasing.

Recall that a measurable function l is said to be slowly varying if for

each λ > 0

lim
x→∞

l(λx)

l(x)
= 1.

We refer to Seneta (1976) for other equivalent definitions and for detailed

and comprehensive study of properties of such functions.

In the following, C will represent a positive constants although its

value may change from one appearance to the next.
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The following result was proved in Budsaba, Chen, and Volodin (2007).

Theorem BCV. Let l(x) be a positive slowly varying function and

1 ≤ p < 2, r ≥ 1, pr 6= 1. Suppose {Yi,−∞ < i < ∞} is a sequence of

identically distributed and ρ−-mixing random variables and {Xn, n ≥ 1}

is the moving average process based on the sequence {Yi,−∞ < i < ∞}.

Then EY1 = 0 and E|Y1|
rpl(|Y1|

p) < ∞ imply that for all ε > 0

∞
∑

n=1

nr−2l(n)P

(

max
k≤n

∣

∣

∣

∣

∣

k
∑

j=1

Xj

∣

∣

∣

∣

∣

≥ εn1/p

)

< ∞.

In particular, the assumptions EY1 = 0 and E|Y1|
p < ∞, 1 < p < 2

imply Marcinkiewicz-Zygmund strong law of large numbers

n−1/p
n
∑

k=1

Xk → 0 a.s. as n → ∞.

Next, in Concluding Remark 4, Budsaba, Chen, and Volodin (2007)

mentioned that the case p = r = 1 is not treated in Theorem BCV

and that the authors believe that the result can be proved under the

additional assumption
∑∞

i=−∞
|ai|

s < ∞ for some 0 < s < 1.

In this paper it is shown that this suggestion is true. Namely, we prove

the following result.

Theorem 1. Let l(x) be a positive slowly varying function and suppose

that {Yi,−∞ < i < ∞} is a sequence of identically distributed ρ−-mixing

random variables. Let {Xn, n ≥ 1} be the moving average process based

on the sequence {Yi,−∞ < i < ∞}. Let moreover {ai,−∞ < i < ∞} be

a sequence of real numbers with
∑∞

i=−∞
|ai|

s < ∞ for some 0 < s < 1.

Then EY1 = 0 and E|Y1|l(|Y1|) < ∞ imply that for all ε > 0

∞
∑

n=1

n−1l(n)P{ max
1≤k≤n

|
k
∑

j=1

Xj | > εn} < ∞.

In particular, EY1 = 0 implies the following Kolmogorov strong law of

large numbers

n−1
n
∑

k=1

Xk → 0 a.s. as n → ∞.

Proof. Let Y
(1)
nj = −nI(Yj < −n) + YiI(|Yj| ≤ n) + nI(Yj > n), and

Y
(2)
nj = Yj − Y

(1)
nj . Then by Property of ρ−-mixing random variables, for
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any n ≥ 1, {Y
(1)
nj ,−∞ < j < ∞} and {Y

(2)
nj ,−∞ < j < ∞} are sequences

of ρ−-mixing random variables. Note that

n
∑

k=1

Xk =

n
∑

k=1

∞
∑

i=−∞

aiYi+k =

∞
∑

i=−∞

ai

i+n
∑

j=i+1

Yj

and

n−1 max
1≤k≤n

|E
∞
∑

i=−∞

ai

i+k
∑

j=i+1

Y
(1)
nj | ≤ n−1

∞
∑

i=−∞

|ai| max
1≤k≤n

|E
i+k
∑

j=i+1

Y
(1)
nj |

≤ Cn−1n(|EY1I(|Y1| ≤ n)| + nP{|Y1| > n})

= CE|Y1|I(|Y1| > n) + CnP{|Y1| > n} → 0,

as n → ∞. Hence for n large enough

n−1 max
1≤k≤n

|
∞
∑

i=−∞

ai

i+k
∑

j=i+1

Y
(1)
nj | < ε/4.

Therefore it is enough to prove that

I1 :=
∞
∑

n=1

n−1l(n)P{ max
1≤k≤n

|
∞
∑

i=−∞

ai

i+k
∑

j=i+1

(Y
(1)
nj − EY

(1)
nj )| > εn/4} < ∞

and

I2 :=

∞
∑

n=1

n−1l(n)P ( max
1≤k≤n

|

∞
∑

i=−∞

ai

i+k
∑

j=i+1

Y
(2)
nj | > εn/2) < ∞.

For I2, by Markov inequality, we have

I2 ≤ C

∞
∑

n=1

n−1−sl(n)E max
1≤k≤n

|

∞
∑

i=−∞

ai

i+k
∑

j=i+1

Y
(2)
nj |s

≤ C
∞
∑

n=1

n−sl(n)(E|Y1|
sI(|Y1| > n) + nsP{|Y1| > n})

≤ C
∞
∑

n=1

n−sl(n)E|Y1|
sI(|Y1| > n)

=

∞
∑

n=1

n−sl(n)

∞
∑

m=n

E|Y1|
sP (m < |Y1| ≤ m + 1)
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=
∞
∑

m=1

E|Y1|
sP (m < |Y1| ≤ m + 1)

m
∑

n=1

n−sl(n)

≤ C
∞
∑

m=1

m1−sl(m)E|Y1|
sP (m < |Y1| ≤ m + 1)

≤ CE|Y1|l(|Y1|) < ∞.

For I1, by Markov and Hölder inequalities, we have

I1 ≤ C
∞
∑

n=1

n−1l(n)n−2E max
1≤k≤n

|
∞
∑

i=−∞

ai

i+k
∑

j=i+1

(Y
(1)
nj − EY

(1)
nj )|2

≤ C

∞
∑

n=1

n−1l(n)n−2E

(

∞
∑

i=−∞

|ai| max
1≤k≤n

|

i+k
∑

j=i+1

(Y
(1)
nj − EY

(1)
nj )|

)2

≤ C

∞
∑

n=1

n−3l(n)(

∞
∑

i=−∞

|ai|)

∞
∑

i=−∞

|ai|E max
1≤k≤n

|

i+k
∑

j=i+1

(Y
(1)
nj − EY

(1)
nj )|2

≤ C
∞
∑

n=1

n−2l(n)(E|Y1|
2I(|Y1| ≤ n) + n2P{|Y1| > n})

≤ C

∞
∑

n=1

n−2l(n)E|Y1|
2I(|Y1| ≤ n) + CE|Y1|l(|Y1|)

= C

∞
∑

n=1

n−2l(n)

n
∑

m=1

E|Y1|
2I(m − 1 < |Y1| ≤ m) + CE|Y1|l(|Y1|)

= C

∞
∑

m=1

E|Y1|
2I(m − 1 < |Y1| ≤ m)

∞
∑

n=m

n−2l(n) + CE|Y1|l(|Y1|)

≤ C

∞
∑

m=1

m−1l(m)E|Y1|
2I(m − 1 < |Y1| ≤ m) + CE|Y1|l(|Y1|)

≤ C

∞
∑

m=1

E|Y1|l(|Y1|)I(m − 1 < |Y1| ≤ m) + CE|Y1|l(|Y1|)

≤ CE|Y1|l(|Y1|) < ∞.

Now we show the almost sure convergence. By the first part of Theo-

rem, EY1 = 0 (and hence E|Y1| < ∞) implies

∞
∑

n=1

n−1P

{

max
1≤k≤n

|Sn| ≥ εn1/p

}

< ∞, for all ε > 0.
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Therefore

∞ >
∞
∑

n=1

n−1P{ max
1≤m≤n

|Sm| > εn}

=

∞
∑

k=1

2k

∑

n=2k−1

n−1P{ max
1≤m≤n

|Sm| > εn}

≥ 1/2

∞
∑

k=1

P{ max
1≤m≤2k−1

|Sm| > ε2k}.

By Borel-Cantelli lemma

2−k max
1≤m≤2k

|Sm| → 0 almost surely

which implies that Sn/n → 0 almost surely.�

The second theorem treats the case when the sequence {ai,−∞ < i <

+∞} is not absolutely summable.

Theorem 2. Let 1 < q ≤ 2. Assume that there exists s, 1 < s < q,

such that
+∞
∑

i=−∞

|ai|
s < ∞.

Suppose {Yi,−∞ < i < ∞} is a sequence of identically distributed neg-

atively associated random variables and {Xn, n ≥ 1} is the moving av-

erage process based on the sequence {Yi,−∞ < i < ∞}. Then for all

p, 0 < p < sq
sq−q+s

, the assumptions EY1 = 0 and E|Y1|
q < ∞ imply

Marcinkiewicz-Zygmund strong law of large numbers

n−1/p
n
∑

k=1

Xk → 0 a.s. as n → ∞.

Remark. Note that the assumption 1 < s < q ≤ 2 implies that p < 2.

Proof. Without loss of generality, we assume that ai ≥ 0 for all i. Let

{bn, n ≥ 1} be sequence of positive numbers that will be specified later.

By Theorem 2 (1.6) of Shao (2000), we have

E

∣

∣

∣

∣

∣

n
∑

k=1

bkXk

∣

∣

∣

∣

∣

q

= E

∣

∣

∣

∣

∣

+∞
∑

i=−∞

(

n
∑

k=1

bkai−k

)

Yi

∣

∣

∣

∣

∣

q

≤ C

+∞
∑

i=−∞

(

n
∑

k=1

bkai−k

)q

.
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An application of Hölder and then Jensen inequalities yields

∣

∣

∣

∣

∣

n
∑

k=1

bkai−k

∣

∣

∣

∣

∣

q

≤ nt(1−1/s)

(

n
∑

k=1

bs
ka

s
i−k

)q/s

≤ nq(1−1/s)

n
∑

k=1

as
i−kb

q
k

(

+∞
∑

i=−∞

as
i

)q/s−1

.

Hence

E

∣

∣

∣

∣

∣

n
∑

k=1

bkXk

∣

∣

∣

∣

∣

q

≤ C

(

+∞
∑

i=−∞

as
i

)q/s

nq(1−1/s)

n
∑

k=1

bq
k = Cnq(1−1/s)

n
∑

k=1

bq
k.

By Theorem 3.3 of Móricz, Serfling, and Stout (1982), we have the fol-

lowing maximal inequality

E

(

max
1≤m≤n

∣

∣

∣

∣

∣

m
∑

k=1

bkXk

∣

∣

∣

∣

∣

)q

≤ C logq
2(2n)nq(1−1/s)

n
∑

k=1

bq
k.

This maximal inequality implies the almost sure convergence of the series
∑∞

k=1 bkXk as soon as
∑∞

k=1 bq
kk

q(1−1/s) logq
2(2k) < ∞ (see for instance,

Loève (1978) Section 36.1). The application of Kronecker lemma with

bk = k−1/p concludes the proof of Theorem 2. �
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