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In this correspondence, for an array {Xnk : un ≤ k ≤ vn, n ∈ N} of integrable 
random elements in a real separable Banach space and an array {ank : un ≤ k ≤ vn,
n ∈ N} of real numbers, a new type of compact uniform integrability is introduced 
and it is used to obtain degenerate mean convergence theorems for the weighted 
sums 

vn∑
k=un

ank(Xnk − EXnk), n ∈ N. More specifically, conditions are provided 

under which lim
n→∞

E 
∥∥∥∥∥

vn∑
k=un

ank(Xnk −EXnk)

∥∥∥∥∥ = 0.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Probability limit theorems are crucial for making advances in mathematical statistics and its applications. 
In the current work, we establish degenerate mean convergence theorems for weighted sums 

vn∑
k=un

ank(Xnk−

EXnk), n ∈ N arising from an array {Xnk : un ≤ k ≤ vn, n ∈ N} of Banach space valued random elements 
and an array {ank : un ≤ k ≤ vn, n ∈ N} of real numbers where N is the set of positive integers.

The concept of uniform integrability plays an important role in the area of probability limit theorems. 
For example, it is important for relaxing the condition of identical distribution in the case of weak laws of 
large numbers. In such area, this condition operates as an additional condition to yield the most important 
modes of convergence. Thus, it is well known that convergence almost surely (a.s.) (strong convergence) or 
convergence in probability (weak convergence) do not imply mean convergence; but convergence in proba-
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bility with the additional condition of uniform integrability implies mean convergence. Thus, convergence 
a.s. when combined with uniform integrability implies mean convergence. Moreover, in summability theory 
there are various applications of uniform integrability [7,14].

A sequence {Xk : k ∈ N} of random variables is said to be uniformly integrable (see, e.g., [4]) if

lim
c→∞

sup
k∈N

E|Xk|I{|Xk|>c} = 0

where E is the expectation operator and I is the indicator function. In [10], this concept was generalized to 
the concept of {ank}-uniform integrability: Let {ank : n, k ∈ N} be an array of real constants such that

sup
n∈N

∑
k∈N

|ank| < ∞. (1.1)

A sequence of random variables {Xk : k ∈ N} is said to be {ank}-uniformly integrable if

lim
c→∞

sup
n∈N

∑
k∈N

|ank|E|Xk|I{|Xk|>c} = 0.

In the particular case of the Cesàro array

ank =
{ 1

n , k ≤ n

0 , otherwise

{ank}-uniform integrability reduces to Cesàro uniform integrability [2].

2. Preliminaries

Throughout this paper, all random elements are defined on a fixed but otherwise arbitrary probability 
space (Ω, G, P ) and take values in a real separable Banach space (Y, ‖·‖). We consider that Y is equipped 
with the Borel sigma algebra σ(Y) of the norm topology. A random element X in Y is a G-measurable 
function from Ω to the measurable space (Y, σ(Y)). The expected value or mean of a random element X, 
denoted by EX, is defined to be the Pettis integral provided it exists.

A sequence {Xk : k ∈ N} of random elements is said to be compactly uniformly integrable [5,6] if for any 
ε > 0 there exists a compact subset K of Y such that

sup
k∈N

E ‖Xk‖ I{Xk /∈K} < ε.

Similar to the extension of uniform integrability to {ank}-uniform integrability, the concept of compact 
uniform integrability has been generalized to {ank}-compact uniform integrability: Let {ank : n, k ∈ N} be 
an array of real constants such that (1.1) holds. A sequence {Xk : k ∈ N} of random elements is said to be 
{ank}-compactly uniformly integrable [11] if for any ε > 0 there exists a compact subset K of Y such that

sup
n∈N

∑
k∈N

|ank|E ‖Xk‖ I{Xk /∈K} < ε.

All of the above definitions can be extended to an array of random variables or random elements 
{Xnk : un ≤ k ≤ vn, n ∈ N} where un, vn are integers with vn > un for any n and vn − un → ∞ as n → ∞
(see, [13], [12]). A new type of uniform integrability which generalizes {ank}-compact uniform integrabil-
ity and which is weaker than Cesàro uniform integrability was defined as follows: Let {h(n) : n ∈ N}
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be an increasing sequence of positive constants with lim
n→∞

h(n) = ∞. The array of random variables 
{Xnk : un ≤ k ≤ vn, n ∈ N} is said to be h-integrable with respect to the array {ank} [13] if

(i) sup
n∈N

vn∑
k=un

|ank|E |Xnk| < ∞

(ii) lim
n→∞

vn∑
k=un

|ank|E |Xnk| I{|Xnk|>h(n)} = 0.

Note that, in a metric space any compact set is totally bounded. Therefore, if K is a compact subset in 
a metric space, then for any ε > 0, K can be covered with finite number of open balls with radius of ε. 
Throughout this study, without loss of generality we assume that the center of each open ball belongs to 
the compact set itself and we denote by N(K, ε) the minimal number of open balls with radius of ε with 
centers from K needed to cover K. In the literature, this number is called the ε-covering number (see, e.g., 
[8]).

In this paper, we introduce a new type of uniform integrability for arrays of random elements taking 
values in real separable Banach spaces which is a generalization of the notion of the concept of h-uniform 
integrability. We give some degenerate mean convergence results via this new type of uniform integrability 
in real separable Banach spaces. Moreover, we study some degenerate mean convergence results in real 
separable Hilbert spaces. Let Z denote the set of integers (not necessarily positive). Throughout this study, 
we assume un, vn ∈ Z ∪{−∞,∞} with vn > un for any n ∈ N and vn−un → ∞ as n → ∞. In Theorems 1-3, 

if un = −∞ or vn = ∞, for any n ∈ N, we assume that the series 
vn∑

k=un

ank(Xnk − EXnk) converges a.s.

We will point out how our results relate to various uniform integrability results in the literature and how 
some of them (or special cases of some of them) follow from our results.

Definition 1. Let {Kn : n ∈ N} be a sequence of compact subsets of Y and let {ank : un ≤ k ≤ vn, n ∈ N}
be an array of real numbers such that

sup
n∈N

vn∑
k=un

|ank| = M < ∞. (2.1)

Then an array {Xnk : un ≤ k ≤ vn, n ∈ N} of random elements taking values in Y is said to be {Kn}-
compactly uniformly integrable with respect to {ank} if

(i) sup
n∈N

vn∑
k=un

|ank|E ‖Xnk‖ < ∞

(ii) lim
n→∞

vn∑
k=un

|ank|E ‖Xnk‖ I{Xnk /∈Kn} = 0.

Remark 1. In Definition 1, the sequence of compact sets {Kn : n ∈ N} can be considered as non-decreasing, 
because the finite union of compact sets is compact. Hence, in this paper, we assume that {Kn : n ∈ N} is 
a non-decreasing sequence of compact subsets of Y.

The following remark shows that h-integrability with respect to {ank} is a particular case of {Kn}-
compact uniform integrability with respect to {ank}.

Remark 2. If an array of random variables {Xnk : un ≤ k ≤ vn, n ∈ N} is h-integrable with respect to the ar-
ray {ank}, then it is {Kn}-compactly uniformly integrable with respect to {ank} where Kn = {t : |t| ≤ h(n)}
for any n ∈ N. Therefore, h-integrability is a special case of {Kn}-compact uniform integrability with re-
spect to {ank}.
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Note here that, since h(n) ↗ ∞ we have that δ(Kn) ↗ ∞ as n → ∞ where δ denotes the diameter of a set 
in the Banach space (Y, ‖·‖). However, we do not need this condition in general in the current study.

The following lemma is used in the proofs of our theorems.

Lemma 1. Let {Kn} be a sequence of compact subsets of Y and let {Xnk : un ≤ k ≤ vn, n ∈ N} be an ar-
ray of random elements such that Xnk takes values in Kn for each n ∈ N and for each un ≤ k ≤ vn. 
Then for any ε > 0 and n ∈ N there exist 

{
x

(n)
j : 1 ≤ j ≤ N(Kn, ε)

}
⊂ Kn and a disjoint family {

A
(n)
j : 1 ≤ j ≤ N(Kn, ε)

}
of Borel subsets of Y such that for any n ∈ N and any un ≤ k ≤ vn,

‖Xnk(ω) − Znk(ω)‖ < ε, for any ω ∈ Ω

where for any n ∈ N and any un ≤ k ≤ vn,

Znk =
N(Kn,ε)∑

j=1
x

(n)
j I{

Xnk∈A
(n)
j

}.

Proof. Let ε > 0 and n ∈ N. As Kn is totally bounded there exists 
{
x

(n)
j : 1 ≤ j ≤ N(Kn, ε)

}
⊂ Kn such 

that

Kn ⊂
N(Kn,ε)⋃

j=1
B(x(n)

j , ε).

If we set

A
(n)
1 := Kn ∩B(x(n)

j , ε)

A
(n)
j := Kn ∩

{
B(x(n)

j , ε)\
j−1⋃
i=1

B(x(n)
i , ε)

}
, 2 ≤ j ≤ N(Kn, ε)

then it is easy to see for any n ∈ N and any un ≤ k ≤ vn that

‖Xnk(ω) − Znk(ω)‖ < ε, for any ω ∈ Ω. �
3. Degenerate mean convergence in Banach spaces

In this section, we establish some degenerate mean convergence theorems for weighted sums from arrays 
of random elements with the help of {Kn}-compact uniform integrability with respect to {ank}. In the 
following degenerate mean convergence theorem, the array is comprised of rowwise pairwise independent 
random elements; that is, the random elements from the same row are pairwise independent but there are 
no independence or dependence conditions imposed on the random elements from different rows.

Theorem 1. Let {ank : un ≤ k ≤ vn, n ∈ N} be an array of real numbers such that (2.1) holds and let 
{Xnk : un ≤ k ≤ vn, n ∈ N} be an array of rowwise pairwise independent integrable random elements. If
(i) {Xnk} is {Kn}-compactly uniformly integrable with respect to {ank},
(ii) for any ε > 0

lim
n→∞

N2(Kn, ε)h2(n)
vn∑

a2
nk = 0,
k=un
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then

lim
n→∞

E

∥∥∥∥∥
vn∑

k=un

ank(Xnk − EXnk)

∥∥∥∥∥ = 0

and, a fortiori,

vn∑
k=un

ank(Xnk − EXnk)
P→ 0

where h(n) := sup
x∈Kn

‖x‖ for any n ∈ N.

Proof. Let ε > 0. By (i) there exists n1 ∈ N such that

vn∑
k=un

|ank|E ‖Xnk‖ I{Xnk /∈Kn} < ε/6 (3.1)

whenever n ≥ n1. On the other hand as XnkI{Xnk∈Kn} takes values in Kn ∪ {0}, by Lemma 1 there exists 
an array of pairwise independent Y-valued random elements

⎧⎨
⎩Znk =

N(Kn,ε)∑
j=1

x
(n)
j I{

Xnk∈A
(n)
j

}
⎫⎬
⎭

such that

sup
n∈N

sup
un≤k≤vn

∥∥XnkI{Xnk∈Kn} − Znk

∥∥ ≤ ε/6M. (3.2)

Now, by (3.1) we have for any n ≥ n1 that

E

∥∥∥∥∥
vn∑

k=un

ank
(
XnkI{Xnk /∈Kn} − EXnkI{Xnk /∈Kn}

)∥∥∥∥∥
≤

vn∑
k=un

|ank|E
∥∥XnkI{Xnk /∈Kn} − EXnkI{Xnk /∈Kn}

∥∥

≤ 2
vn∑

k=un

|ank|E ‖Xnk‖ I{Xnk /∈Kn}

< ε/3. (3.3)

By (ii) there exists n2 ∈ N such that

N(Kn, ε)h(n)
(

vn∑
k=un

a2
nk

)1/2

< ε/3 (3.4)

whenever n ≥ n2. Thus, we have for any n ≥ n2 that
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E

∥∥∥∥∥
vn∑

k=un

ank(Znk − EZnk)

∥∥∥∥∥
= E

∥∥∥∥∥∥
N(Kn,ε)∑

j=1

vn∑
k=un

ankx
(n)
j

(
I{

Xnk∈A
(n)
j

} −EI{
Xnk∈A

(n)
j

}
)∥∥∥∥

≤
N(Kn,ε)∑

j=1

∥∥∥x(n)
j

∥∥∥E
∥∥∥∥∥

vn∑
k=un

ank

(
I{

Xnk∈A
(n)
j

} −EI{
Xnk∈A

(n)
j

}
)∥∥∥∥

(by the Cauchy-Schwarz inequality)

≤
N(Kn,ε)∑

j=1

∥∥∥x(n)
j

∥∥∥
(
E

(
vn∑

k=un

ank

(
I{

Xnk∈A
(n)
j

} −EI{
Xnk∈A

(n)
j

}
))2

)1/2

(by pairwise independence)

≤
N(Kn,ε)∑

j=1

∥∥∥x(n)
j

∥∥∥
(

vn∑
k=un

a2
nkE

(
I{

Xnk∈A
(n)
j

} −EI{
Xnk∈A

(n)
j

}
)2
)1/2

≤
N(Kn,ε)∑

j=1

∥∥∥x(n)
j

∥∥∥
(

vn∑
k=un

a2
nk

)1/2

≤ N(Kn, ε)h(n)
(

vn∑
k=un

a2
nk

)1/2

(by 3.4)

< ε/3. (3.5)

Finally, using (3.2), (3.3), and (3.5) we obtain for any n ≥ max{n1, n2} that

E

∥∥∥∥∥
vn∑

k=un

ank(Xnk − EXnk)

∥∥∥∥∥ = E

∥∥∥∥∥
vn∑

k=un

ank
(
XnkI{Xnk /∈Kn} − EXnkI{Xnk /∈Kn}

)

+
vn∑

k=un

ank
(
XnkI{Xnk∈Kn} − EXnkI{Xnk∈Kn}

)

−
vn∑

k=un

ank(Znk − EZnk) +
vn∑

k=un

ank(Znk − EZnk)

∥∥∥∥∥
≤ E

∥∥∥∥∥
vn∑

k=un

ank
(
XnkI{Xnk /∈Kn} − EXnkI{Xnk /∈Kn}

)∥∥∥∥∥
+ E

∥∥∥∥∥
vn∑

k=un

ank
(
XnkI{Xnk∈Kn} − Znk

)∥∥∥∥∥
+ E

∥∥∥∥∥
vn∑

k=un

ank(EXnkI{Xnk∈Kn} − EZnk)

∥∥∥∥∥
+ E

∥∥∥∥∥
vn∑

ank(Znk − EZnk)

∥∥∥∥∥

k=un
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<
ε

3 + 2M ε

6M + ε

3
= ε

completing the proof. �
Remark 3. Let α ∈ (0,∞). A sequence {Xk} of random variables is said to be Cesàro α-integrable [3] if

(i) sup
n∈N

1
n

n∑
k=1

E |Xk| < ∞

(ii) lim
n→∞

1
n

n∑
k=1

E |Xk| I{|Xk|>kα} = 0.

Now, let {Xk} be a sequence of pairwise independent random variables that is Cesàro α-integrable for 
α ∈ (0, 1/4). If we define

Xnk :=
{

Xk , k ≤ n

0 , otherwise
(3.6)

and Kn = [−nα, nα] for any n ∈ N, then we have

1
n

n∑
k=1

E |Xnk| I{Xnk /∈Kn} = 1
n

n∑
k=1

E |Xk| I{|Xk|≥nα}

≤ 1
n

n∑
k=1

E |Xk| I{|Xk|≥kα}

for any n ∈ N. Thus, {Xnk} is {Kn}-compactly uniformly integrable with respect to the Cesàro array. So, 
(i) of Theorem 1 holds. Moreover, we get for any ε > 0 and sufficiently large n ∈ N that

0 ≤ N2(Kn, ε)h2(n)
n∑

k=1

1
n2 ≤ 5n4α

ε2n

which yields

lim
n→∞

N2(Kn, ε)h2(n)
n∑

k=1

1
n2 = 0.

So, (ii) of Theorem 1 holds. Hence, we have

lim
n→∞

E
1
n

∣∣∣∣∣
n∑

k=1

(Xk − EXk)

∣∣∣∣∣ = lim
n→∞

E
1
n

∣∣∣∣∣
n∑

k=1

(Xnk − EXnk)

∣∣∣∣∣
= 0.

Thus, for α ∈ (0, 1/4), Theorem 2.2 (a) of [3] is a consequence of Theorem 1. Note here that Theorem 2.2 
(a) of [3] holds for α ∈ (0, 1/2).

The following example, which was inspired by Example 6 of [1], shows that in Theorem 1 the condition

lim
n→∞

vn∑
|ank|E ‖Xnk‖ I{Xnk /∈Kn} = 0
k=un
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cannot be replaced by the condition: for arbitrary ε > 0, there exists a sequence of compact sets {Kn : n ∈ N}
such that

lim sup
n→∞

vn∑
k=un

|ank|P (Xnk /∈ Kn) ≤ ε.

Example 1. Consider the real separable Banach space l1 of absolutely summable real sequences v = {vi : i ∈
N} with the norm ‖v‖ =

∞∑
i=1

|vi|. Let v(k) denote the member of l1 having 1 in its kth position and 0 elsewhere, 

k ∈ N. Let un = 1, vn = n, n ∈ N and let ank = 1
n , 1 ≤ k ≤ n, n ∈ N. Define a sequence {Xk : k ∈ N} of 

random elements in l1 by requiring the {Xk : k ∈ N} to be independent with P (Xk =
√
kv(k)) = P (Xk =

−
√
kv(k)) = 1

2
√
k
, P (Xk = 0) = 1 − 1√

k
, k ∈ N. Consider the array {Xnk : 1 ≤ k ≤ n, n ∈ N} of random 

elements defined by Xnk = Xk, 1 ≤ k ≤ n, n ∈ N. Note that

sup
n∈N

n∑
k=1

|ank| = 1

and so (2.1) holds. Next, note that

sup
n∈N

n∑
k=1

|ank|E ‖Xnk‖ = 1

since E ‖Xnk‖ = 1, 1 ≤ k ≤ n, n ∈ N.
Let ε > 0 be arbitrary. Let Jε ∈ N be such that 1√

Jε
≤ ε and set

Kε =
{

0, v(1),−v(1),
√

2v(2),−
√

2v(2), ...,
√

Jεv
(Jε),−

√
Jεv

(Jε)
}
.

Let Kn = Kε, n ∈ N. Then {Kn : n ∈ N} is a sequence of compact subsets of l1. Since

P (‖Xnk‖ =
√
k) = 1√

k
, P (‖Xnk‖ = 0) = 1 − 1√

k
, 1 ≤ k ≤ n, n ∈ N,

it follows that whenever n ≥ k > Jε,

E ‖Xnk‖ I{Xnk /∈Kn} = E ‖Xnk‖ I{Xnk /∈Kε} = E ‖Xnk‖ = 1.

Thus for n > Jε,

n∑
k=1

|ank|E ‖Xnk‖ I{Xnk /∈Kn} ≥
n∑

k=Jε+1

1
n

= n− Jε
n

→ 1

and so

lim
n→∞

n∑
k=1

|ank|E ‖Xnk‖ I{Xnk /∈Kn} = 0

fails.
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Now for n > Jε,

P (Xnk /∈ Kε) =
{

0 < ε , 1 ≤ k ≤ Jε
1√
k
< 1√

Jε
≤ ε , k > Jε

and so the sequence of compact sets {Kn : n ∈ N} satisfies

lim sup
n→∞

n∑
k=1

|ank|P (Xnk /∈ Kn) = lim sup
n→∞

n∑
k=1

|ank|P (Xnk /∈ Kε)

≤ lim sup
n→∞

n∑
k=1

1
n
ε

= ε.

Next, note that

h(n) = sup
x∈Kn

‖x‖ = sup
x∈Kε

‖x‖ =
√

Jε < ∞

and for arbitrary ε0 > 0,

N2(Kn, ε0) = N2(Kε, ε0) ≤ (2Jε + 1)2.

Thus

lim
n→∞

N2(Kε, ε0)h2(n)
n∑

k=1

a2
nk ≤ lim

n→∞
(2Jε + 1)2Jε

n∑
k=1

1
n2

= lim
n→∞

(2Jε + 1)2Jε
1
n

= 0.

All of the conditions of Theorem 1 are satisfied except for condition (ii) of Definition 1.
We now verify that the conclusion of Theorem 1 fails. By the structure of the l1 norm and Kolmogorov’s 

theorem (see [9], p. 250) applied to the sequence of random variables 
{√

kI{‖Xk‖=
√
k
} : k ∈ N

}
, it follows 

that

∥∥∥∥∥
n∑

k=1

ank(Xnk − EXnk)

∥∥∥∥∥ =

∥∥∥∥ n∑
k=1

Xnk

∥∥∥∥
n

=

∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
n

=

n∑
k=1

√
kI{‖Xk‖=

√
k
}

n
→ 1 a.s.

and so the conclusion of Theorem 1 cannot hold.
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The following result establishes degenerate mean convergence for weighted sums from a {Kn}-compactly 
uniformly integrable array with respect to {ank} of conditionally mean zero random elements. Note that 
condition (ii) of Theorem 2 is stronger than condition (ii) of Theorem 1.

Theorem 2. Let {Kn} be a non-decreasing sequence of compact subsets of Y, let {ank : un ≤ k ≤ vn, n ∈ N}
be an array of real numbers such that (2.1) holds, let {Fnk : un ≤ k ≤ vn, n ∈ N} be an array of non-
decreasing subsigma algebras and let {Xnk : un ≤ k ≤ vn, n ∈ N} be an array of integrable random elements 
such that E (Xnk | Fn,k−1) = 0 for any n ∈ N and k. If
(i) {Xnk} is {Kn}-compactly uniformly integrable with respect to {ank},
(ii) for any ε > 0

lim
n→∞

N(Kn, ε)h(n)
vn∑

k=un

|ank| = 0,

then

lim
n→∞

E

∥∥∥∥∥
vn∑

k=un

ankXnk

∥∥∥∥∥ = 0

and, a fortiori,

vn∑
k=un

ankXnk
P→ 0

where h(n) := sup
x∈Kn

‖x‖ for any n ∈ N.

Proof. Let ε > 0. By (i) there exists n1 ∈ N such that

vn∑
k=un

|ank|E ‖Xnk‖ I{Xnk /∈Kn} < ε/6 (3.7)

whenever n ≥ n1. As in the proof of Theorem 1, by Lemma 1, there exists an array of Y-valued random 
elements

⎧⎨
⎩Znk =

N(Kn,ε)∑
j=1

x
(n)
j I{

Xnk∈A
(n)
j

}
⎫⎬
⎭

such that (3.2) holds. Now, from (3.7) and the tower rule we can write for any n ≥ n1 that

E

∥∥∥∥∥
vn∑

k=un

ank
(
XnkI{Xnk /∈Kn} − E

(
XnkI{Xnk /∈Kn} | Fn,k−1

))∥∥∥∥∥
≤

vn∑
k=un

|ank|E
∥∥(XnkI{Xnk /∈Kn} − E

(
XnkI{Xnk /∈Kn} | Fn,k−1

))∥∥

≤
vn∑

|ank|
(
E
∥∥XnkI{Xnk /∈Kn}

∥∥+ E
(
E
(∥∥XnkI{Xnk /∈Kn}

∥∥ | Fn,k−1
)))
k=un
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= 2
vn∑

k=un

|ank|E
∥∥XnkI{Xnk /∈Kn}

∥∥
≤ ε/3. (3.8)

Moreover, using the tower rule and (3.2) we have that for any n ∈ N

E

∥∥∥∥∥
vn∑

k=un

ankE
(
XnkI{Xnk∈Kn} − Znk | Fn,k−1

)∥∥∥∥∥
≤

vn∑
k=un

|ank|E
(
E
(∥∥XnkI{Xnk∈Kn} − Znk

∥∥ | Fn,k−1
))

=
vn∑

k=un

|ank|E
∥∥XnkI{Xnk∈Kn} − Znk

∥∥
≤ ε/6. (3.9)

On the other hand, by (ii) there exists n2 ∈ N such that

N(Kn, ε)h(n)
vn∑

k=un

|ank| < ε/6

whenever n ≥ n2. Thus, using the tower rule we have for n ≥ n2 that

E

∥∥∥∥∥
vn∑

k=un

ank(Znk − E (Znk | Fn,k−1))

∥∥∥∥∥
≤ 2

vn∑
k=un

|ank|E ‖Znk‖

≤ 2
N(Kn,ε)∑

j=1

∥∥∥x(n)
j

∥∥∥ vn∑
k=un

|ank|EI{Xnk∈A
(n)
j

}

= 2N(Kn, ε)h(n)
vn∑

k=un

|ank|

≤ ε/3. (3.10)

Finally, using (3.2), (3.8), (3.9), (3.10), and the fact that E (Xk | Fn,k−1) = 0 we have for every positive 
integer n ≥ max{n1, n2} that

∥∥∥∥∥
vn∑

k=un

ankXnk

∥∥∥∥∥ =

∥∥∥∥∥
vn∑

k=un

ank (Xnk − E (Xnk | Fn,k−1))

∥∥∥∥∥
≤
∥∥∥∥∥

vn∑
k=un

ank
(
XnkI{Xnk /∈Kn} − E

(
XnkI{Xnk /∈Kn} | Fn,k−1

))∥∥∥∥∥
+

∥∥∥∥∥
vn∑

ank
(
XnkI{Xnk∈Kn} − E

(
XnkI{Xnk∈Kn} | Fn,k−1

))

k=un
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−
vn∑

k=un

ank(Znk − E (Znk | Fn,k−1))

+
vn∑

k=un

ank(Znk − E (Znk | Fn,k−1))

∥∥∥∥∥
which implies ∥∥∥∥∥

vn∑
k=un

ankXnk

∥∥∥∥∥
≤
∥∥∥∥∥

vn∑
k=un

ank
(
XnkI{Xnk /∈Kn} − E

(
XnkI{Xnk /∈Kn} | Fn,k−1

))∥∥∥∥∥
+

∥∥∥∥∥
vn∑

k=un

ank
(
XnkI{Xnk∈Kn} − Znk

)∥∥∥∥∥
+

∥∥∥∥∥
vn∑

k=un

ankE
(
XnkI{Xnk∈Kn} − Znk | Fn,k−1

)∥∥∥∥∥
+

∥∥∥∥∥
vn∑

k=un

ank(Znk − E (Znk | Fn,k−1))

∥∥∥∥∥
= ε

3 + ε

6 + ε

6 + ε

3
= ε

whenever n ≥ max{n1, n2}. Hence the proof is completed. �
Remark 4. Let {Xk} be a sequence of pairwise independent random variables which is Cesàro α-integrable 
for α ∈ (0, 1/2). If we consider the array {Xnk} in (3.6), then by taking Kn = [−nα, nα] for any n ∈ N we 
have {Xnk} is {Kn}-compactly uniformly integrable with respect to the Cesàro array. So, (i) of Theorem 2
holds. Furthermore, we get for any ε > 0 and sufficiently large n ∈ N that

0 ≤ N(Kn, ε)h(n)
n∑

k=1

1
n2 ≤ 3n2α

εn

which implies

lim
n→∞

N(Kn, ε)h(n)
n∑

k=1

1
n2 = 0.

So, (ii) of Theorem 2 holds. Hence, Theorem 3.1 of [3] is a consequence of Theorem 2. Note here that in 
Theorem 3.1 of [3], α ∈ (0, 1/2) as well.

4. Degenerate mean convergence in Hilbert spaces

In this section, we provide a result on degenerate mean convergence in real separable Hilbert spaces. 
Throughout this section H denotes a real separable Hilbert space.

By considering the Riesz representation theorem, we obtain the following equivalent definition of the 
expected value or mean in Hilbert spaces:
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Definition 2. Let X be a random element taking values in H. If there exists z ∈ H such that

〈z, h〉 = E 〈X,h〉

for each h ∈ H then X is said to be integrable and the vector z is said to be the expected value or mean of 
X. In this case we write EX := z.

Definition 3. Let {Kn} be a sequence of compact subsets of H. An array {Xnj : un ≤ j ≤ vn, n ∈ N} of 
integrable random elements in H is said to be {Kn}-non-negative if for any j, k, n

E 〈Xnj , Xnk〉 ≥ E
〈
XnjI{Xnj∈Kn}, XnkI{Xnk∈Kn}

〉
.

Remark 5. Note that in the case of where H is the space of all real numbers, we have that if Xnj ≥ 0 for 
all j, n ∈ N, then

〈Xnj , Xnk〉 ≥
〈
XnjI{Xnj∈Kn}, XnkI{Xnk∈Kn}

〉
.

Thus, the condition of Definition 3 holds. This explains the terminology “non-negative”.

Definition 4. An array {Xnj : un ≤ j ≤ vn, n ∈ N} of integrable random elements in H is said to be nega-
tively correlated if for any j �= k, and n ∈ N,

E 〈Xnj , Xnk〉 − 〈EXnj ,EXnk〉 ≤ 0.

Theorem 3. Let {ank : un ≤ k ≤ vn, n ∈ N} be an array of non-negative real numbers such that (2.1) holds 
and let {Xnk : un ≤ k ≤ vn, n ∈ N} be an array of {Kn}-non-negative and negatively correlated integrable 
random elements in H. If
(i) {Xnk} is {Kn}-compactly uniformly integrable with respect to {ank},
(ii) lim

n→∞
h(n) 

(
sup

un≤k≤vn

ank

)
= 0,

then

lim
n→∞

E

∥∥∥∥∥
vn∑

k=un

ank(Xnk − EXnk)

∥∥∥∥∥ = 0

and, a fortiori,

vn∑
k=un

ank(Xnk − EXnk)
P→ 0

where h(n) := sup
x∈Kn

‖x‖ for any n ∈ N.

Proof. We have for any n ∈ N that

E

∥∥∥∥∥
vn∑

k=un

ank(Xnk − EXnk)

∥∥∥∥∥ = E

∥∥∥∥∥
vn∑

k=un

ank(Xnk −XnkI{Xnk∈Kn}

+
vn∑

ank
(
XnkI{Xnk∈Kn} − EXnkI{Xnk∈Kn}

)

k=un
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+
vn∑

k=un

ank
(
EXnkI{Xnk∈Kn} − EXnk

)∥∥∥∥∥
≤ 2

vn∑
k=un

ankE ‖Xnk‖ I{Xnk /∈Kn}

+ E

∥∥∥∥∥
vn∑

k=un

ank
(
XnkI{Xnk∈Kn} − EXnkI{Xnk∈Kn}

)∥∥∥∥∥ . (4.1)

Denote Ynk := XnkI{Xnk∈Kn}. For any n ∈ N we obtain

0 ≤ E

∥∥∥∥∥
vn∑

k=un

ank (Ynk − EYnk)

∥∥∥∥∥
2

= E

[
vn∑

k=un

{
a2
nk 〈Ynk − EYnk, Ynk − EYnk〉

+
∑
j 	=k

〈anj (Ynj − EYnj) , ank (Ynk − EYnk)〉}

⎤
⎦

=
vn∑

k=un

{a2
nk

(
E ‖Ynk‖2 − 2E 〈Ynk,EYnk〉 + ‖EYnk‖2

)

+
∑
j 	=k

anjank (E 〈Ynj , Ynk〉 − E 〈Ynj ,EYnk〉

−E 〈EYnj , Ynk〉 + E 〈EYnj ,EYnk〉)}

=
vn∑

k=un

{a2
nk

(
E ‖Ynk‖2 − ‖EYnk‖2

)

+
∑
j 	=k

anjank (E 〈Ynj , Ynk〉 − 〈EYnj ,EYnk〉)}

≤
vn∑

k=un

{a2
nkE ‖Ynk‖2

+
∑
j 	=k

anjank (E 〈Ynj , Ynk〉 − 〈EYnj ,EYnk〉)}. (4.2)

We have from (i) and (ii) that

0 ≤
vn∑

k=un

a2
nkE ‖Ynk‖2

≤ h(n)
(

sup
un≤k≤vn

ank

) vn∑
k=un

ankE ‖Ynk‖

≤ h(n)
(

sup
un≤k≤vn

ank

) vn∑
k=un

ankE ‖Xnk‖

≤ h(n)
(

sup
un≤k≤vn

ank

)(
sup
n∈N

vn∑
ankE ‖Xnk‖

)
→ 0. (4.3)
k=un
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Now, we have for any n ∈ N that

vn∑
k=un

∑
j 	=k

anjank (E 〈Ynj , Ynk〉 − 〈EYnj ,EYnk〉)

(by {Kn}-non-negativity)

≤
vn∑

k=un

∑
j 	=k

anjank (E 〈Xnj , Xnk〉 − 〈EYnj ,EYnk〉)

(by negative correlation)

≤
vn∑

k=un

∑
j 	=k

anjank (〈EXnj ,EXnk〉 − 〈EYnj ,EYnk〉)

≤
vn∑

j,k=un

anjank (〈EXnj ,EXnk〉 − 〈EYnj ,EYnk〉)

=
vn∑

j,k=un

anjank (〈EXnj − EYnj ,EXnk〉 + 〈EXnk − EYnk,EYnj〉)

=
vn∑

j,k=un

anjank
(〈
EXnjI{Xnj /∈Kn},EXnk

〉
+
〈
EXnkI{Xnk /∈Kn},EYnj

〉)

≤
vn∑

j,k=un

anjank
∥∥EXnjI{Xnj /∈Kn}

∥∥ ‖EXnk‖

+
vn∑

j,k=un

anjank
∥∥EXnkI{Xnk /∈Kn}

∥∥ ‖EYnj‖

=

⎛
⎝ vn∑

j=un

anj
∥∥EXnjI{Xnj /∈Kn}

∥∥
⎞
⎠(

vn∑
k=un

ank ‖EXnk‖
)

+
(

vn∑
k=un

ank
∥∥EXnkI{Xnk /∈Kn}

∥∥)
⎛
⎝ vn∑

j=un

anj ‖EYnj‖

⎞
⎠

≤ 2

⎛
⎝ vn∑

j=un

anjE ‖Xnj‖

⎞
⎠
⎛
⎝ vn∑

j=un

anjE ‖Xnj‖ I{Xnj /∈Kn}

⎞
⎠

(by (i))

= o(1). (4.4)

Hence, from (4.2), (4.3), and (4.4) we obtain

lim
n→∞

E

∥∥∥∥∥
vn∑

k=un

ank (Ynk − EYnk)

∥∥∥∥∥
2

= 0

which yields

lim
n→∞

E

∥∥∥∥∥
vn∑

ank (Ynk − EYnk)

∥∥∥∥∥ = 0, (4.5)

k=un
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since convergence in L2 implies convergence in L1. Finally, considering (i), (4.1), and (4.5) we get

lim
n→∞

E

∥∥∥∥∥
vn∑

k=un

ank(Xnk − EXnk)

∥∥∥∥∥ = 0

thereby completing the proof. �
Remark 6. Assume that conditions of Theorem 2 of [13] hold for the Cesàro array. Then, {Xnk} is h-
integrable with respect to the Cesàro array and

lim
n→∞

h2(n)
n∑

k=1

1
n2 = lim

n→∞
h2(n)
n

= 0. (4.6)

Now, let Kn = [−h(n), h(n)] for any n ∈ N. Then {Xnk} is {Kn}-compactly uniformly integrable with 
respect to the Cesàro array. Therefore, (i) of Theorem 3 holds. Moreover, as h(n) → ∞ for n → ∞ (4.6)
yields that

lim
n→∞

h(n) sup
1≤k≤n

1
n

= lim
n→∞

h(n)
n

= 0.

Thus, (ii) of Theorem 3 holds. Hence, for the Cesàro array, Theorem 2 of [13] is a consequence of Theorem 3.
Moreover, assume that {Xk} is a sequence of pairwise independent random variables which is Cesàro 

α-integrable for α ∈ (0, 1). If we consider the array {Xnk} in (3.6), then by taking Kn = [n−α, nα] for any 
n ∈ N we have that {Xnk} is {Kn}-compactly uniformly integrable with respect to the Cesàro array. So, 
(i) of Theorem 3 holds. Moreover, from Remark 5, {Kn}-non-negativity holds. Finally, we have

lim
n→∞

nα 1
n

= 0

which yields (ii) of Theorem 3. Thus, for α ∈ (0, 1), Theorem 2.1 (a) of [3] is a consequence of Theorem 3.

Declaration of competing interest

None.

Acknowledgments

The authors are grateful to the Referee for carefully reading the manuscript and for offering substantial 
comments and suggestions which enabled them to improve the paper.

The research of M. Ordóñez Cabrera has been partially supported by the Plan Andaluz de Investigación 
de la Junta de Andalucía FQM-127 Grant P08-FQM-03543, and by MEC Grant MTM2015-65242-C2-1-P.

The research of M. Ünver was done while he was visiting University of Regina, Canada and the research 
has been supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) Grant 
1059B191800534.

The research of A. Volodin has been partially supported by a Natural Sciences and Engineering Research 
Council of Canada grant, 2016-2021.



M. Ordóñez Cabrera et al. / J. Math. Anal. Appl. 487 (2020) 123975 17
References

[1] A. Adler, A. Rosalsky, R.L. Taylor, Some strong laws of large numbers for sums of random elements, Bull. Inst. Math. 
Acad. Sin. 20 (4) (1992) 335–357.

[2] T.K. Chandra, Uniform integrability in the Cesàro sense and the weak law of large numbers, Sankhya, Ser. A 51 (3) (1989) 
309–317.

[3] T.K. Chandra, A. Goswami, Cesàro α-integrability and laws of large numbers I, J. Theor. Probab. 16 (3) (2003) 655–669.
[4] K.L. Chung, A Course in Probability Theory, third ed., Academic Press, San Diego, California, 2001.
[5] P.Z. Daffer, R.L. Taylor, Tightness and strong laws of large numbers in Banach spaces, Bull. Inst. Math. Acad. Sin. 10 (3) 

(1982) 251–263.
[6] J. Hoffmann-Jørgensen, G. Pisier, The law of large numbers and the central limit theorem in Banach spaces, Ann. Probab. 

4 (4) (1976) 587–599.
[7] M.K. Khan, C. Orhan, Matrix characterization of A-statistical convergence, J. Math. Anal. Appl. 335 (1) (2007) 406–417.
[8] M. Ledoux, M. Talagrand, Probability in Banach Spaces: Isoperimetry and Processes, Springer-Verlag, Berlin, 2011.
[9] M. Loève, Probability Theory, vol. I, fourth ed., Springer-Verlag, New York, 1977.

[10] M. Ordóñez Cabrera, Convergence of weighted sums of random variables and uniform integrability concerning the weights, 
Collect. Math. 45 (2) (1994) 121–132.

[11] M. Ordóñez Cabrera, Convergence in mean of weighted sums of {an,k}-compactly uniformly integrable random elements 
in Banach spaces, Int. J. Math. Math. Sci. 20 (3) (1997) 443–450.

[12] M. Ordóñez Cabrera, A.I. Volodin, On conditional compactly uniform pth-order integrability of random elements in Banach 
spaces, Stat. Probab. Lett. 55 (3) (2001) 301–309.

[13] M. Ordóñez Cabrera, A.I. Volodin, Mean convergence theorems and weak laws of large numbers for weighted sums of 
random variables under a condition of weighted integrability, J. Math. Anal. Appl. 305 (2) (2005) 644–658.

[14] M. Ünver, C. Orhan, Statistical convergence with respect to power series methods and applications to approximation 
theory, Numer. Funct. Anal. Optim. 40 (5) (2019) 535–547.

http://refhub.elsevier.com/S0022-247X(20)30137-2/bibAE131915396ED2F27752C043E123897Es1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bibAE131915396ED2F27752C043E123897Es1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bibAD845A24A47DEECBFA8396E90DB75C6As1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bibAD845A24A47DEECBFA8396E90DB75C6As1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bibBFED48BE03A98EB65174F79434F62EF5s1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bibD1A346DF2019A0C0FD79B4808E502CEEs1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bib1AFDF031D0AAC798F24A7E7503749A9Ds1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bib1AFDF031D0AAC798F24A7E7503749A9Ds1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bib45C745C3D537DFC199932369D48801EEs1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bib45C745C3D537DFC199932369D48801EEs1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bib9E95F6D797987B7DA0FB293A760FE57Es1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bib1B7D70430DC2DCBC928FC31C07821771s1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bib6C6212A66E8D33D4D7DBBFF8F8F1151As1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bib8F76ED80FDFF526DB609976322479AFEs1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bib8F76ED80FDFF526DB609976322479AFEs1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bibCE6D370BC313A1363D4AE463D9A9FAC4s1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bibCE6D370BC313A1363D4AE463D9A9FAC4s1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bibFBC017D285320690F85810A4C9F9B0A3s1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bibFBC017D285320690F85810A4C9F9B0A3s1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bib24F11CB5A165592FC549DDAD6DF4342Ds1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bib24F11CB5A165592FC549DDAD6DF4342Ds1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bib0EFE63C916011590C2220286FE7E69F4s1
http://refhub.elsevier.com/S0022-247X(20)30137-2/bib0EFE63C916011590C2220286FE7E69F4s1

	A new type of compact uniform integrability with application to degenerate mean convergence of weighted sums of Banach spac...
	1 Introduction
	2 Preliminaries
	3 Degenerate mean convergence in Banach spaces
	4 Degenerate mean convergence in Hilbert spaces
	Acknowledgments
	References


