Bounds for cops and robber pursuit

Laurent Alonsoa,*, Edward M. Reingoldb

a INRIA-Lorraine and LORIA, Université Henri Poincaré-Nancy I, BP 239, 54506 Vandoeuvre-lès-Nancy, France
b Department of Computer Science, Illinois Institute of Technology, 10 West 31st Street, Chicago, IL 60616-2987, USA

\textbf{Article info}

Article history:
Received 19 July 2009
Accepted 15 February 2010
Available online 20 June 2010
Communicated by R. Klein

\textbf{Keywords:}
Pursuit
Evasion
Cops and robber
Lion and man
Rabbit and robot
Tractrix

\textbf{Abstract}

We prove that the robber can evade (that is, stay at least unit distance from) at least \(\left\lfloor \frac{n}{5.889} \right\rfloor\) cops patrolling an \(n \times n\) continuous square region, that a robber can always evade a single cop patrolling a square with side length 4 or larger, and that a single cop on patrol can always capture the robber in a square with side length smaller than 2.189….© 2010 Elsevier B.V. All rights reserved.

\section{1. Introduction}

Under what conditions can a man escape from a pursuing lion? That question has led to the mathematical analyses of a large number of variant problems depending on details such as: Are time and/or space discrete or continuous? Is space finite or infinite? Does it have obstructions? Are the strategies of the lion and man fixed or adaptive? Are their speeds comparable? Can they move with unrestricted curvatures? Is the position of each known exactly, approximately, or not at all by the other? What does “capture” mean? Are the man’s and the lion’s moves simultaneous or in alternation? The literature of pursuit/evasion games is much too broad to be summarized here: Isaacs \cite{15} is a classic, though now dated reference; some historical information can be found in Nahin \cite{25}. We give only a smattering of references, together with details of the results particularly relevant to this paper.

Pursuit problems have been studied at least since the seventeenth century, and became especially popular during and after World War II (see, for example, [19] or [24]) but the lion-and-man style problems date from a problem posed by Tibor Radó (as given in Littlewood [22, pp. 114–117]): a lion and man move around in the interior of a circle; both move continuously in time and space and each is limited to the same speed. Littlewood used a result of Abram Samoilovitch Besicovitch to show that the man can move so as to avoid capture indefinitely. Variations have been studied by Alonso, Goldstein, and Reingold \cite{2}, Altshuler, Yanovsky, Wagner, and Bruckstein \cite{3}, Croft \cite{7}, Flynn \cite{9–11}, Gale (see Guy \cite{13}) and Sgall \cite{28}, Goldstein and Reingold \cite{12}, Isler, Kannan, and Khanna \cite{16}, Lewin \cite{21}, Merz \cite{23}, and Rote \cite{27}.

Although the problem is usually stated as a pursuit of a man by a lion (or a rabbit by a robot \cite{14}), the version we consider is more naturally described as a robber evading cops on patrol. Specifically, we imagine that cops patrol a region on fixed routes and the robber has full knowledge of the cops’ routes, but the cops know nothing of the robber’s position: this is a reasonable model of the real world. In the discrete problem the cops and the robber traverse (at most) one edge
of a graph simultaneously with each tick of the clock. (The discrete problem considered here differs from that studied by [1,26], and others because in their formulation the cops move adaptively, not on fixed routes.) In the continuous problem, the cops and the robber have the same maximum speed and move continuously in a continuous region. Dumitrescu, Suzuki, and Zylinski [8] asked, what is the maximum number of cops that a robber can evade on either an $n \times n$ discrete grid or on an $n \times n$ (continuous) square region? Among other results, they proved that $\Omega(\sqrt{n})$ cops can be evaded in either case. Berger, Grüne and Klein [4] improved this result to $\lceil n/2 \rceil$ cops in the discrete case, as well as giving a variety of results for higher dimensions. Finally, Brass, Kim, Na, and Shin [6] showed that if the cops and robber move in alternation on the $n \times n$ discrete grid, then the robber can forever evade $\lceil n/2 \rceil$ cops, but $\lceil n/2 \rceil + 1$ cops can always capture the robber; they also proved that the robber can evade $\lceil n/(9\pi + 6) \rceil = \lceil n/34.274 \ldots \rceil$ cops in the continuous case.

In this paper we improve the bounds of [6] and [8] in the continuous case by using the results of [4] with a new discretization lemma to prove that the robber can evade at least $\lceil n/5.889 \rceil$ cops in an $n \times n$ continuous square region. We also prove that a robber can always evade a single cop in a square of side length 4, and that a single cop can always capture the robber in a square of side length smaller than 2.189... Because our proofs rely on the details of the method of [4], we begin with a brief summary of their lower bound argument for the discrete case.

2. The discrete problem

In the discrete version of the cops and robber problem, we are given an undirected graph of vertices and edges. The cops and robber move simultaneously along edges from vertex to vertex with each tick of the clock; they also have the option of staying in place as the clock ticks. Cops patrol (move) non-adaptively without knowledge of the robber’s position, but the robber always knows where the cops are and where they will move—he’s done his homework! The robber wants to avoid capture by a cop, defined as occurring either when the robber and a cop arrive at the same vertex at the same time, or if the robber and a cop traverse the same edge in opposite directions at the same time. How many cops need to patrol the graph to guarantee capture of the robber on a Manhattan-like grid of city streets? The grid is the graph G_n which has n^2 vertices in an $n \times n$ array, each vertex connected by an edge to the vertices above, below, left, and right; the extremes of G_n lack the obvious edges.

We present here the discrete bound from [4] and [6], which will be extended in the next section to get results about the continuous problem. First, we study the number of neighboring vertices to a set of vertices in G_n; this will tell us that at any time in the pursuit, the robber has a generous number of possible locations that he can reach. By the neighboring vertices to a set of vertices S we mean the set of all vertices not in S that have at least one edge connecting them to a vertex in S; we denote the neighbors of S by $N(S)$.

Lemma 1. (See [4, Lem. 7], [6, Thm. 2].) Let S be a subset of vertices in G_n. If

$$\frac{n(n-1)}{2} < |S| < \frac{n(n+1)}{2},$$

then $|N(S)| \geq n$.

Lemma 1 follows from a deep and general result of Bollobás and Leader [5, Thm. 8]; [4] and [6] give direct combinatorial arguments for this special case. The lemma guarantees the existence of many safe and accessible vertices for the robber: we define S_t, the set of safe and accessible vertices at time t, recursively. At time $t = 0$, all vertices not occupied by cops are safe and accessible. For $t > 0$, a vertex v is accessible if $v \in S_{t-1}$ or if v is adjacent to a vertex in S_{t-1}. A vertex v is safe if a robber can go from a vertex of S_{t-1} to (or remain at) vertex v at time t, without being captured by any cop in the time interval $[t-1, t]$. (These definitions imply that the safe vertices are always a subset of the accessible vertices.) [4], in the simultaneous-move case, and [6], in the alternating-move case, use an isoperimetric lemma similar to Lemma 1 to prove the following theorem about G_n.

Theorem 1. (See [4, Thm. 2], [6, Thm. 1].) If there are at most $\lceil n/2 \rceil$ cops, a robber can forever evade capture on G_n in both the simultaneous and alternating move cases.

Proof. We prove that whatever paths the cops patrol, the robber can avoid capture forever. Assume there are k cops, $k \leq \lceil n/2 \rceil$ and hence $k \leq n^2/2$. Then at time $t = 0$, there are at least $n^2 - k \geq \lceil n^2/2 \rceil$ safe positions for the robber. But Lemma 1 tells us that if at time t there are $\lceil n^2/2 \rceil$ safe and accessible vertices for the robber to occupy, then there will be at least n neighboring vertices to which he cannot move, or he can stay where he is, a total of at least $n + \lceil n^2/2 \rceil$ accessible positions for the robber at time $t + 1$. Each cop “threatens” (makes unsafe) only two vertices, his location at time t and his location at time $t + 1$; thus the cops’ positions forbid at most $2k$ positions accessible to the robber at time $t + 1$. In other words, at least $n + \lceil n^2/2 \rceil - 2k$ vertices are safe and accessible for the robber at time $t + 1$. But $k \leq \lceil n/2 \rceil$, so at time $t + 1$ there are at least

1 For economy of language, and despite accusations of sexism, we use male-gender pronouns.
\[n + \left\lfloor \frac{n^2}{2} \right\rfloor - 2\left\lfloor \frac{n}{2} \right\rfloor \geq \left\lfloor \frac{n^2}{2} \right\rfloor \]

(1)

safe and accessible vertices for the robber to occupy at time \(t + 1 \). Thus for any finite time \(t \) and any set of cops’ paths of length \(t \), the robber can always find a sequence of \(t \) moves from safe position to safe position, each time having at least \(\left\lfloor \frac{n^2}{2} \right\rfloor \) outcomes at every level. We can form a decision tree of safe moves for the robber by connecting a root to the accessible positions at time 0 and use the König “infinity lemma” [18] (see [17, Sec. 2.3.4.3]) to show that such tree has an infinite path.\(^2\) \(\square \)

Note that the proof remains valid even if the cops can jump great distances!

3. The continuous problem

In the continuous version of the cops and robber problem, both the cops and the robbers move continuously, with equal maximum speed, in an \(n \times n \) continuous square region; to capture the robber, a cop must come within (strictly less than) unit distance of him. As in the discrete case, cops move non-adaptively without knowledge of the robber’s position, but the robber always knows where the cops are and where they will move forever in the future.

Clearly, if we place the \(\left\lfloor \frac{n}{2} \right\rfloor \) cops equally spaced on the border of an \((n - \epsilon) \times (n - \epsilon) \) square, \(\epsilon > 0 \), so that the distance between adjacent cops is \(2 - \epsilon / \left\lfloor \frac{n}{2} \right\rfloor \), the cops can march to the opposite border, and a robber cannot escape capture. We conjecture that this is where the truth lies, and hence

Conjecture 1. When \(n \geq 3 \), if there are at most \(\left\lfloor \frac{n}{2} \right\rfloor \) cops, the robber can forever evade capture in the continuous \(n \times n \) square.

Unfortunately, proving this conjecture seems extremely difficult. So, after proving a general “discretization lemma” similar to one in [8], we superimpose a grid on the square region, allowing unrestricted movement by the cops, but limiting the robber’s movement to the grid. Then, reasoning as in Theorem 1, we show that if there are fewer than \(\left\lceil \frac{n}{14} \right\rceil \) cops, the robber always has an infinite path of safe, accessible vertices on the grid, no matter what the cops’ paths are; this improves substantially on the \(\left\lceil \frac{n}{(9\pi + 6)} \right\rceil = \left\lceil \frac{n}{34.274\ldots} \right\rceil \) bound in [6]. We then sharpen our bound further by more careful analyses, ultimately getting the bound \(\left\lceil \frac{n}{5.889} \right\rceil \).

Lemma 2. Suppose that the robber and the cop have unrestricted motion on an \(n \times n \) square. Given an integer \(s \geq 1 \) and an integer \(t \geq 0 \), for the cop to capture the robber during the time interval \([t/s, (t + 1)/s] \), at time \(t/s \) the cop must be within distance less than \(1 + 1/s \) from the robber’s position at time \((t + 1)/s \).

Proof. Let \(R(t) \) and \(C(t) \), respectively, denote the robber’s and cop’s locations at time \(t \). To capture the robber at \(t + \delta \), the cop must be within unit distance of the robber at that time, with \(0 \leq \delta \leq 1/s \). But the cop is moving at most unit speed, so we know that \(\| R(t + \delta) - C(t) \| \leq \delta \). Using the triangle inequality, we find

\[\| R(t + \delta) - C(t) \| \leq \| R(t + \delta) - C(t + \delta) \| + \| C(t + \delta) - C(t) \| < 1 + \delta; \]

then, using the triangle inequality again,

\[\| R(t + 1/s) - C(t) \| \leq \| R(t + 1/s) - R(t + \delta) \| + \| R(t + \delta) - C(t) \| < (1/s - \delta) + (1 + \delta) < 1 + 1/s, \]

as claimed. \(\square \)

We now constrain the robber to move on a grid. Given an integer \(s \geq 1 \), we superimpose a grid \(G_{sn} \) with edge length \(1/s \) on the \(n \times n \) square region with a surrounding border of size\(^3\) \(0.5/s \), and we only consider robber paths such that for each integer \(t \), the robber ends in a vertex of \(G_{sn} \) at time \(t/s \).

Theorem 2. If there are at most \(\left\lfloor \frac{n}{14} \right\rfloor \) cops, the robber can forever evade capture in the continuous \(n \times n \) square.

Proof. We restrict the robber to the \(n^2 \) vertices and edges of \(G_n \) superimposed on the \(n \times n \) square, allowing the cops to move freely. We know from Lemma 2 with \(s = 1 \) that if the robber moves to a vertex that is 2 or more units away from any cop, he cannot be captured on that move. We will show how a robber can do this indefinitely. We track a cop’s movement as it moves from one \(0.5 \times 0.5 \) square to another.

\(^2\) Omitting the use of the infinity lemma, as in [4] and [6], leaves only the conclusion that the tree of moves is infinite and there are safe paths for the robber of length \(t \) for any finite \(t \), not that there is an infinite path—a subtle, but crucial, difference that is the essence of the infinity lemma.

\(^3\) Because \(G_{sn} \) with edge length \(1/s \) has dimensions \((sn - 1)/s \times (sn - 1)/s \).
Suppose that at the beginning of a time step, a cop is in a given 0.5×0.5 square that is not near the extremes of the grid (being near the extremes of the grid makes the numbers in the following analysis even more favorable); there are only 4 surrounding grid vertices on which the robber would be possible subject to immediate capture and another 11 which could lead to capture on the next move (see Fig. 1); Lemma 2 guarantees that any grid vertices further away are safe for the robber, both now and during the next time step. Of these 15 dangerous (to the robber) vertices, a cop cannot simultaneously threaten two that are widely separated (vertices P_1 and P_2 in Fig. 1). So each cop can threaten only 14 grid points; that is, k cops can threaten at most 14 vertices for the robber's present position or his next position.

Figure 1. If a cop is in the center gray 0.5×0.5 square, a robber at any of the four circled vertices inside the dashed rounded-square could be subject to immediate capture because they are less than 1 unit away from a possible cop's position. A robber moving to the 15 vertices shown in the solid-line rounded-square could be captured during the next unit-time interval because he would be within distance 2 of a possible cop's position, as per Lemma 2. That is, a cop “threatens” at most 15 grid vertices. However, the vertices P_1 and P_2 are so widely separated, $P_1 P_2 = \sqrt{2} > 4$, that a cop must choose which of them to threaten by being within distance 2 (the dotted circles of radius 2, centered at P_1 and P_2, do not intersect). Thus each cop threatens only 14 vertices for the robber’s present position or his next position.

Now we can argue exactly as in the proof of Theorem 1, mutatis mutandis: Assume there are k cops, $k \leq \lceil n/14 \rceil$ and hence $14k \leq n^2/2$. Then that at time $t = 0$, there are at least $\lfloor n^2/2 \rfloor$ safe grid points for the robber. But Lemma 1 tells us that if at time t there are $\lfloor n^2/2 \rfloor$ safe and accessible vertices for the robber to occupy, then there will be at least n neighboring grid points to which he can move, or he can stay where he is in one of the $\lfloor n^2/2 \rfloor$ vertices, a total of at least $n + \lfloor n^2/2 \rfloor$ possible moves for the robber for the time step t to $t + 1$. We have seen that each cop “threatens” at most 14 vertices; thus the cops’ positions forbid at most 14k positions accessible to the robber at time $t + 1$. In other words, at least $n + \lceil n^2/2 \rceil - 14k$ grid points are safe and accessible for the robber at time $t + 1$. But $k \leq \lceil n/14 \rceil$, so at time $t + 1$ there are at least

$$n + \lceil n^2/2 \rceil - 14\lfloor n/14 \rfloor \geq \lceil n^2/2 \rceil$$

safe and accessible vertices for the robber to occupy at time $t + 1$. Thus as in Theorem 1, the tree has an infinite path, so the robber can evade the cops forever. \square

Theorem 2 remains valid even if n is real, not integer, because we can place a grid $G_{(n)}$ in the $n \times n$ square; similarly, we can consider n to be real in all the theorems of this section. The bound of Theorem 2 can be sharpened slightly:

Corollary 1. If there are at most $\lceil n/11 \rceil$ cops, the robber can forever evade capture in the continuous $n \times n$ square.

Proof. We do a more careful analysis of the vertices prohibited to the robber by a cop, showing that, except for the initial positions, if at each step the robber avoids the 14 threatened positions by a cop, then in the next step this cop prohibits only 11 vertices accessible to the robber (in the new set of 14 threatened positions). Assume that there are k cops, $k \leq \lfloor n/11 \rfloor$ and, for the initial position, $14k \leq n^2/2$. Then at time $t = 0$, there are at least $\lfloor n^2/2 \rfloor$ safe grid points for the robber. The proof then continues as in Theorem 2, but with “14” changed to “11”.

To see why we can change “14” to “11” in the theorem, note that there are 24 0.5×0.5 subgrid squares to which a cop can move in unit time, or he can stay in the same subgrid square, but there are only five different spatial relations between the starting and ending subgrid squares; these spatial relations are shown in Fig. 2 with each spatial relation indicated by a letter, A–E. Fig. 3 shows relation E, a diagonal move of two subgrid squares.

Three of the vertices, which are prohibited when the cop is in the starting square and accessible in one move only from vertices prohibited by the cop, are also prohibited when the cop is in the ending square. Therefore these vertices are not accessible to a robber when the cop moves, so only 11 of the 14 vertices threatened by a cop in the subgrid square E are accessible to a robber. Cases A–D, and the case when the cop stays in the same subgrid square, are similar, each having at most 11 threatened, accessible vertices. \square

The ideas used to prove the $\lfloor n/11 \rfloor$ bound can be pushed much further by scaling the superimposed grid and the time interval.

Theorem 3. If there are at most $\lfloor 10n/69 \rfloor$ cops, the robber can forever evade capture in the continuous $n \times n$ square.
Fig. 2. The 24 possible new 0.5 × 0.5 subgrid locations after unit time by a cop in the gray center subgrid square. There are five different spatial relations between the initial and the final subgrid squares; these are labeled A–E. The cop can also remain in the gray center subgrid square.

Fig. 3. Details of case E from Fig. 2. Of the four vertices shown as triangles (which are prohibited and only accessible in one move only from vertices that were also prohibited when the cop was in the initial square), the three circled vertices are also prohibited when the cop moves to E. Therefore these vertices are not accessible to a robber when the cop moves, so only 11 of the 14 vertices threatened by a cop in the subgrid square E are accessible to a robber. Recall that P_1 and P_2 cannot be simultaneously threatened by a cop in the initial square.

Fig. 4. The left figure shows the vertices threatened by a cop in the center (gray) subgrid square when G_{10n} with edge length 0.1 is superimposed on the $n \times n$ region. The 416 vertices within distance 1.1 of the cop (that is, threatened by the cop) are black or white; the 64 white vertices (on the border) are accessible to the robber. The center figure shows what happens when the cop moves one square orthogonally (white arrow), leaving the 64 white vertices accessible to the robber and threatened by the cop. The right figure shows what happens when the cop moves one square diagonally, leaving the 69 white vertices accessible to the robber and threatened by a cop in the center (gray) subgrid square. In this last case, the triangle vertices at the lower left are no longer threatened by the cop.

Proof. Take $s = 10$ in Lemma 2. Fig. 4 shows which vertices are threatened by a cop in a subgrid square and the effect of movement orthogonally or diagonally. Thus each cop threatens at most 69 vertices accessible to the robber. Arguing as in the previous theorems, if the number of cops is at most $\left\lfloor \frac{10n}{69} \right\rfloor$, the robber has an infinite path to avoid the cops.

Fig. 4 used in Theorem 3 is instructive: Of the 416 grid vertices within distance 1.1 of a cop in the center grid square, only 69 are unavailable to the robber (in Corollary 1 it was 11 out of 14). For even better bounds we want to make s larger, but we need an analogue of Fig. 4. It is notationally simpler to consider the grid G_n with unit length edges, and ask how many vertices are at distance r of a vertex (ignoring the special cases near the boundaries). That will allow us to compute a bound on the number of vertices accessible to the robber and threatened by a cop in a grid square.

We now give three isoperimetric lemmas, proved in Appendix A, that count the numbers of grid vertices (lattice points) with certain distance properties; although there is a considerable literature on such problems (see, for example, [20]), we have found nothing useful to our context. For a point p of the plane, not necessarily a grid vertex, let D_p^r be the set of grid vertices in an open disk of radius r centered at p; that is, D_p^r consists of all grid vertices at distance less than r from p.

More generally, for any set of points S, let D^*_S be the grid vertices at distance less than r from at least one point of S. For any set of grid vertices R, we partition a set R of grid vertices into its boundary vertices and its interior vertices: Boundary vertices $B(R)$ are vertices in R that are connected to at least one vertex outside of R; interior vertices $I(R)$ are vertices in R all of whose neighbors are also in R. For example, in the left figure of Fig. 4, if c is the gray center grid square, $I(D^*_c)$ are the black vertices and $B(D^*_c)$ are the white vertices.

Lemma 3. For any grid G_n with unit edge length, any integer $r > 1$, and any grid cell c sufficiently far from the extremes of G_n,

$$|B(D^*_c)| = \begin{cases} 8|r\sqrt{2}/2| + 8 & \text{if } |r\sqrt{2}/2|^2 + (\lfloor |r\sqrt{2}/2| + 1 \rfloor)^2 < r^2, \\ 8|r\sqrt{2}/2| + 4 & \text{otherwise}. \end{cases}$$

Lemma 4. For any grid G_n with unit edge length, any integer $r > 1$, and any grid cell c sufficiently far from the extremes of G_n, let c' be a cell orthogonally adjacent to c.

$$|D^*_c \setminus I(D^*_{c'})| = \begin{cases} 8|r\sqrt{2}/2| + 8 & \text{if } |r\sqrt{2}/2|^2 + (\lfloor |r\sqrt{2}/2| + 1 \rfloor)^2 < r^2, \\ 8|r\sqrt{2}/2| + 4 & \text{otherwise}. \end{cases}$$

Lemma 5. For any grid G_n with unit edge length, any integer $r > 1$, and any grid cell c sufficiently far from the extremes of G_n, let c' be a cell diagonally adjacent to c.

$$|D^*_c \setminus I(D^*_{c'})| = \begin{cases} 6|r\sqrt{2}/2| + 2r + 5 & \text{if } |r\sqrt{2}/2|^2 + (\lfloor |r\sqrt{2}/2| + 1 \rfloor)^2 < r^2, \\ 6|r\sqrt{2}/2| + 2r + 2 & \text{otherwise}. \end{cases}$$

Lemmas 3–5 allow us to get an upper bound of the number of newly prohibited vertices as a cop moves: Lemma 3 if he moves within a cell, Lemma 4 if he moves to an orthogonally neighboring cell, and Lemma 5—the worst case, about $(3\sqrt{2} + 2)r$ vertices—if he moves to a diagonally neighboring cell. For example, if in the proof of Theorem 3 we take $s = 10$, so $r = 11$, we have 64 newly prohibited vertices when a cop stays in the same cell (Lemma 3) or moves orthogonally (Lemma 4), and 69 newly prohibited vertices when a cop moves diagonally (Lemma 5). With these three lemmas, we can prove our strongest purely analytical result (Theorem 5 gives a better bound, but relies on an exhaustive search by computer of cases much too large to be handled by other means):

Theorem 4. For each $\epsilon > 0$, if there are at most

$$\left\lfloor \frac{n}{3\sqrt{2} + 2} - \epsilon \right\rfloor$$

cops, the robber can forever evade capture in the continuous $n \times n$ square.

Proof. Let

$$\delta = 2 \frac{11 + 6\sqrt{2}}{n - (2 + 3\sqrt{2})\epsilon};$$

that is, δ is the solution to

$$\frac{n}{2 + 3\sqrt{2} + \delta} = \frac{n}{2 + 3\sqrt{2}} - \epsilon.$$

The theorem is thus equivalent to proving that $\lfloor n/(2 + 3\sqrt{2} + \delta) \rfloor$ is a lower bound. Choose

$$r = \left\lfloor \frac{3\sqrt{2} + 7}{\delta} \right\rfloor,$$

which is one solution to

$$6 \left\lfloor \frac{r\sqrt{2}}{2} \right\rfloor + 2r + 5 < (2 + 3\sqrt{2} + \delta)(r - 1),$$

and let $s = r - 1$. The same proof as in Theorem 3 gives a lower bound of

$$\left\lfloor \frac{n}{6\lfloor(s + 1)\sqrt{2}/2 \rfloor + 2(s + 1) + 5} \right\rfloor \geq \left\lfloor \frac{n}{2 + 3\sqrt{2} + \delta} \right\rfloor.$$
proving the theorem because Lemmas 3–5 guarantee that if we superimpose a grid \(G_{n,s} \) with edge length \(1/s = 1/(r-1) \), then each cop can forbid at most \(6[(s+1)\sqrt{2}/2] + 2(s+1)+5 \) vertices for the robber. □

Because \(2 + 3\sqrt{2} \approx 6.24 \), Theorem 4 improves somewhat on Theorem 3 and gives us an understanding of what happens when the overlaid grid size approaches 0 (that is, \(s \to \infty \)). Despite a microscopic grid for the robber, however, our method of tracking a cop’s movement allows him to move diagonally a distance of \(\sqrt{2} \) units while the robber can move only 1 unit—a decided advantage for the cop! To correct this inequity we use a finer subgrid for the cops than for the robber and get our best result:

Theorem 5. If there are at most \(\lfloor 1000n/5889 \rfloor \) cops, the robber can forever evade capture in the continuous \(n \times n \) square.

Proof. We use the same proof as before, but with a grid of side length \(1/1000 \) for the robber, dividing each grid cell into \(20 \times 20 \) sub-grid cells to track the cops’ movement. We find, by exhaustive computer search,\(^4\) that the maximum number of new prohibited accessible vertices for the robber is 5889. □

Of course, we could let the sub-grid cells on which we track the cops’ movement become microscopically small compared to the already microscopically small grid on which we track the robber’s movement. To do this, we generalize Theorems 3 and 4. For a disk of radius \(r \) on a grid of unit length, define the boundary size

\[
\rho_r = \max_{\text{points } p, p'} \left| D_{p'} \setminus I(D_p) \right|
\]

Then, as in the proofs of Theorems 3 and 4, but with a cop moving from point to point instead of from cell to cell, we find that for each \(\epsilon > 0 \), if there are at most \((r-1)n/\rho_r - \epsilon \) cops, the robber can forever evade capture in the continuous \(n \times n \) square. We conjecture that \(\rho_r = r(3+2\sqrt{2})+O(1) \approx 5.828r \). If so, it would improve the bound of Theorem 4 to

Conjecture 2. For each \(\epsilon > 0 \), if there are at most \(n/(3+2\sqrt{2}) - \epsilon \) cops, the robber can forever evade capture in the continuous \(n \times n \) square.

This would beat Theorem 5 slightly. Alas, we believe that our theorems, and even this conjecture, are weak and that the truth lies in Conjecture 1.

4. How powerful is one cop?

What are the limitations of a single cop? In the discrete case, a single cop is woefully impotent: On \(G_n \), we can have \(n^2-1 \) robbers move without colliding, forever evading capture; this is clearly true for \(n = 1 \), so suppose that \(n \geq 2 \). At time \(t = 0 \), we place a robber on each of the \(n^2-1 \) vertices of \(G_n \) not occupied by the cop. Then, at each time step \(t > 0 \), if the cop remains still, all the robbers remain still. If the cop moves, all the robbers remain still except the 3 on a square (cycle of length 4) containing the source and the destination of the cop; those 3 robbers move around the square synchronously with the cop.

The question of what a single cop can do is much more interesting in an \(n \times n \) continuous region—how large such a region can one cop patrol and be certain to catch the robber? Dumitrescu, Suzuki, and Zylinski [8, Thm. 5] proved that the robber can forever evade a single cop for \(n \geq 12 \) (this also follows from our Theorem 5). It is trivial to observe, as per the concluding discussion of the previous section, that for \(n < 2 \) a single cop need only march across the midline of the square to capture the robber. Both of these bounds can be strengthened.

To improve the lower bound for the size of a square on which the robber can evade a single cop, we can use a computer-aided exhaustive search: Using Lemma 2 to define the accessible and safe positions for the robber, exhaustive search can give results for small \(n \) and \(s \) on a grid \(G_{n,s} \) with edge length \(1/s \). Let \(F_{n,s} \) denote the minimum number of accessible and safe positions for the robber on the grid \(G_{n,s} \) for a single cop. For a given \(s \), if \(n \) is too small, there will be no safe locations for the robber, so we can ask for the smallest \(n \) for which the robber has safe and accessible positions no matter where the cop is; call this value \(n(s) \). Exhaustive search gives us the values shown in Table 1; \(^5\) this gives us

Theorem 6. If there is only a single cop, the robber can forever evade capture in the continuous \(4 \times 4 \) square.

\(^4\) On a large enough grid, for each possible pair \((c, c')\) of sub-grid cells, such that the minimum distance between two points is strictly less than 1, we compute \(|D_{c'}, I(D_{c'})| \), using symmetry to reduce the computations. The program is available at http://www.loria.fr/~alonso/rAndCCheck/robAndCops.html.

\(^5\) We use the grid cells \(c \) of \(G_n \) to define the cop’s positions and \(\rho_{n+1/3}^2 \) to define the prohibited positions for the robber. The source code and data to check the values in Table 1 are available at http://www.loria.fr/~alonso/rAndCCheck/robAndCops.html.
<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of safe and accessible positions always available to the robber as per Lemma 2 with a single cop.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s = 1</th>
<th>s = 2</th>
<th>s = 3</th>
<th>s = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>n(s)</td>
<td>8</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>F_{n(s)}</td>
<td>34</td>
<td>73</td>
<td>84</td>
</tr>
</tbody>
</table>

Fig. 5. On a square of size 14×14, we can place 3×3 squares with side length 4 separated by strips of width 1. We can then place a robber in each 3×3 square; that robber can avoid the cop by moving as though the cop were moving on the orthogonal projection (see [8], for example) of its actual path on the robber's square. For instance, the robber R in the central square moves as if the cop C were moving on the path defined by the two horizontal dotted lines and the part of the cop's curved path that is in his square. The 9 robbers will thus avoid each other and the cop.

Proof. From Lemma 2, a robber can forever evade a single cop in a square of size $(n(s) - 1)/s$ for all of the values given in Table 1. We have $n(4) = 17$, proving the theorem. \(\square \)

Dumitrescu, Suzuki, and Zylinski [8, Sec. 4.1] give a $\Theta(n^2)$ upper bound and an $n^2/144$ lower bound are given for the number of robbers that can co-exist (not come closer than unit distance to one another) in an $n \times n$ square, all avoiding capture by a single cop. The lower bound is based on their result [8, Thm. 5], mentioned above, that the robber can forever evade a single cop 12×12 square. Hence Theorem 6 gives us a better lower bound for this problem by superimposing the $n \times n$ square with a $\lfloor n/5 \rfloor \times \lfloor n/5 \rfloor$ grid with sub-squares of size 4×4 and the center to center distance between neighboring sub-squares is 5 (see Fig. 5):

Corollary 2. On an $n \times n$ continuous region, at least $n^2/25 - O(n)$ robbers can co-exist and forever avoid capture by a single cop.

This lower bound seems very weak. We can envision robbers moving on an overlaid grid structure, swapping positions as the cop moves between the cells of the grid, generalizing the argument at the beginning of this section: Put the robbers on a grid with side length $\sqrt{2}$ which allows them to move around a cycle of length four yet remain at least unit distance from each other; they will always be greater than unit distance apart except at the midpoints of the edges where they can be exactly unit distance apart. Such an overlaid grid will be $(\lfloor n/\sqrt{2} \rfloor + 1) \times (\lfloor n/\sqrt{2} \rfloor + 1)$, containing about $n^2/2$ vertices.

We place robbers on all but $O(1)$ of them in the neighborhood of the cop; as the cop moves, the robbers near him move around some large cycle of vertices to avoid him. There will be difficulties to define these cycles, in particular near the edges of the grid, but this argument suggests

Conjecture 3. On an $n \times n$ continuous region, $n^2/2 - O(1)$ robbers can co-exist and forever avoid capture by a cop.

We now turn to the upper bound for the size of a square in which a single cop can always capture the robber, we examine patrol strategies for the cop.

Theorem 7. In the continuous case, a single cop can capture a robber in a square with side length less than $3\sqrt{2}/2 = 2.121 \ldots$.

Proof. In a square of side length $\ell < 3\sqrt{2}/2$ (see Fig. 6), the cop patrols at full speed counterclockwise around a circle of diameter $1 - \epsilon = \ell \sqrt{2}/3$ centered at the center of the square. The robber cannot go into this circle without being captured; the robber must also avoid a splinter (shown in gray in Fig. 6) that sweeps, like a lighthouse beam, counterclockwise around the center of the square, because that splinter is part of the circle of unit radius around the cop. This means that when the cop does a complete circuit, the robber must also make a complete circuit, circumscribing an area larger than that of the circle circumscribed by the cop. Because a circle is the curve of least perimeter enclosing a given area, the robber must be on a longer curve than the cop, longer by at least $2\pi \epsilon$ than the cop's curve. But the cop is traveling at top speed, so the cop's "lighthouse beam" splinter must overtake the robber, capturing him. \(\square \)
Fig. 6. Square with side length $\ell < 3\sqrt{2}/2$. The cop C patrols at full speed counterclockwise around the dashed circle of diameter $1 - \epsilon = \ell\sqrt{2}/3$ centered at the center of the square. The robber cannot be in this circle; the robber also cannot be in the gray splinter that sweeps counterclockwise around the center of the square, because that splinter is part of the circle of unit radius around the cop.

Fig. 7. Square with side length $\ell < \sqrt{2} + 2\sin \theta = 2.189194376 \ldots$, where $\theta = 0.397507756 \ldots$ is the root of $4\sin \theta = \pi - 4\theta$. The cop moves counterclockwise on the axis-aligned centered, internal dashed square with side length $\alpha \ell = 2\sin \theta = 0.77498084 \ldots$, $\alpha = 0.35400274 \ldots$. The robber must remain outside a region defined by the four gray arcs, one of which is shown in darker gray; the length of each gray arc is $(\pi/2 - 2\theta)$.

The proof of Theorem 7 actually proves a stronger result, namely,

Corollary 3. In the continuous case, a single cop can capture a robber in a circle with diameter less than 3.

We conjecture that this is the strongest possible such result; that is,

Conjecture 4. In the continuous case, a robber can forever evade a single cop in a circle with diameter 3.

More generally, what is the minimum diameter circle within which a robber can forever evade k cops?

If Conjecture 4 is correct, Corollary 3 gives a strong bound for a circular region of pursuit; but it does not for a square. The primary aspect of the cop’s path in the proof of Theorem 7 is that it goes within unit distance of all points in the square, including the four corners—if it did not, the robber could simply sit on one of the corners to evade capture. In other words, we expect the optimum cop path to be symmetrical, going through some four points, each at slightly less than unit distance from the corner, on the corner bissector. Once these four points are chosen, we expect the path to be a curve of minimum perimeter; this suggests a square trajectory, not a circle, so we now explore what happens when the cop patrols on an axis-aligned square path, centered in the square region.

Let ℓ be the side length of the square and let $\alpha \ell$ be the side length of the cop’s square trajectory, axis-aligned and centered in the $\ell \times \ell$ square, as shown in Fig. 7. For the cop’s path to capture the robber at a corner, we must have the corner of the cop’s path less than unit distance from the closest corner of the square region; in other words,

\[
\left(\frac{1 - \alpha}{2}\ell\right)\sqrt{2} < 1,
\]

or

\[
\ell < \sqrt{2} + \alpha \ell.
\]
As in the proof of Theorem 7, we want to force the robber to travel some fixed distance further than the cop. Thus we want the arc of the sector of radius 1 (shown in dark gray in Fig. 7), centered at the opposite corner of the cop’s path and connecting the perpendicular bisectors of the sides of the cop’s path opposite the cop’s corner position, to be longer than the side of the cop’s path. Thus we need
\[
\frac{\pi}{2} - 2\theta > \alpha \ell = 2 \sin \theta,
\]
where \(\theta \) is the angle between the side of the cop’s path and the lower radius of the sector, defined by \(\sin \theta = \alpha \ell / 2 \). If we choose \(\theta \) so that
\[
4 \sin \theta = \pi - 4\theta,
\]
that is, \(\theta = 0.397907756 \ldots \) and \(\alpha \ell / 2 \sin \theta = 0.77498084 \ldots \), then
\[
\ell < \sqrt{2} + 2 \sin \theta = 2.189194376 \ldots
\]
and \(\alpha = 0.35400274 \ldots \) We have proved:

Theorem 8. In the continuous case, a single cop can capture a robber in a square with side length \(\ell < \sqrt{2} + 2 \sin \theta = 2.189194376 \ldots \), where \(\theta \) is the root of \(4 \sin \theta = \pi - 4\theta \), \(\theta = 0.397907756 \ldots \).

We do not believe that Theorem 8 is the strongest possible result, but we believe it is pretty close. We conjecture that

Conjecture 5. In the continuous case, a cop can capture the robber if and only if the side length \(\ell \) of the square region satisfies
\[
\ell < \sqrt{2} + (2 - \sqrt{2})^{3/2} + \ln(\sqrt{2} - 1 + \sqrt{4 - 2\sqrt{2}}) = 2.265754810702 \ldots
\]

This conjecture corresponds to the side length of a square region, in which a complex trajectory allows a robber to evade a cop which patrols on a square path—see Appendix B.

5. **Conclusions**

In our main result, Theorem 5, we showed that in the continuous problem a robber can forever evade \(\lfloor n/5.889 \rfloor \) cops on an \(n \times n \) square. Unfortunately, this lower bound is far from our conjectured bound of \(\lfloor n/2 \rfloor \) cops (Conjecture 1). There are at least three contributing causes for this gap:

1. Our proof of Theorem 5 is based on Lemma 1—but we know that this lemma leads only to a weak lower bound for the discrete problem: extensive computation shows that Conjecture 6, given below, is true for \(n \leq 6 \) and is better than Theorem 1 (based on Lemma 1) by almost a factor of 2. Moreover, inequality (4) suggests that when \(n \) is big enough, Lemma 1 cannot yield an optimal bound.

 Similarly, the exhaustive search summarized in Table 1 tells us (with \(s = 4 \)) that a robber can avoid one cop on \(G_{17} \). But using Lemma 1 in conjunction with Lemmas 3–5 (with \(r = 5 \)) we find only that a robber can avoid a cop on \(G_{30} \); again, the weakness lies in Lemma 1. All this suggests that using Lemma 1 is insufficient and a more powerful lemma will be necessary to obtain optimal bounds.

2. Our analysis lets cops move freely in the sub-square cells, while the robber is restricted to the grid; this has the effect of allowing the cops to move faster than the robber, even if we were to decrease this effect by increasing the number of sub-square cells in Theorem 5.

3. In forcing the robber to move on a grid, we eliminate any possibility of him following general curves—but the results of Appendix B suggest that general curves may be needed for optimal results. Restricting the robber to a grid is a serious shortcoming of our analysis.

When there is only one cop, the results of Section 4 show that Conjecture 1 no longer applies and the cops’ (and the robber’s) strategies seem to be very different than for \(k > 1 \). In Theorem 6, exhaustive computation shows that a robber can forever evade a cop in a square with side length \(\ell = 4 \), while Theorem 8 shows that a cop can always capture a robber on a square with side length \(\ell < 2.189 \ldots \) by moving on an axis-aligned, centered square path. We do not believe that this bound is optimal; but we believe that it is close to optimal and that a cop can capture the robber on a square region if and only if the side length satisfies \(\ell < 2.265 \ldots \) (Conjecture 5).

We saw in Corollary 2 that Theorem 6 gives a better bound on the number of robbers that can co-exist in an \(n \times n \) square, all avoiding capture by a single cop. Even proving Conjecture 5 and using it in place of Theorem 6 in Corollary 2 would only improve the bound to \((n/1 + 2.265754810702 \ldots)^2 \approx n^2/10.665 \), much weaker than our conjectured \(n^2/2 - O(1) \) bound. Different tools are needed to settle Conjecture 3.
Table 2
Values of F_n^k, the minimum of safe and accessible positions for the robber when k cops patrol G_n. Except for F_7^5, all values were found by exhaustive search; inequality (4) gives $F_n^k \leq 19$.

<table>
<thead>
<tr>
<th>n</th>
<th>$k = 1$</th>
<th>$k = 2$</th>
<th>$k = 3$</th>
<th>$k = 4$</th>
<th>$k = 5$</th>
<th>$k = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>22</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>35</td>
<td>33</td>
<td>30</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>48</td>
<td>46</td>
<td>43</td>
<td>39</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

For a circular region, we show in Corollary 3 that one cop can always capture a robber on a disk with diameter less than three; we conjecture that this is the best possible result. We have found no strategies that show that two cops can always capture one robber on a disk with diameter greater or equal to four. Is that possible? Berger et al. [4] prove that in the discrete problem with d dimensions, a robber cannot avoid $\Theta(n^{d-1}/\sqrt{d})$ cops; how can this bound be improved? What happens for the continuous problem? Brass et al. [6] prove that if the robber and cops move at different speeds with the cops moving at speed v, a robber cannot avoid $\lceil n/(v+1) \rceil$ cops; how can this bound be improved? What happens if the robber knows the cops’ paths only in the near future—at time t the robber knows only the positions of the cops from time t to $t + h(n)$ for some horizon function $h(n)$? For the $n \times n$ square region, does there exist a finite value $h(n)$ such that there is no difference between our problem of unbounded robber knowledge of the cops’ movement and the problem in which the robber at time t only knows the cops’ paths only until time $t + h(n)$? In cases in which capture is inevitable, how long can the robber postpone it or how quickly can the cops effect it?

We conclude with a discussion of Theorem 1: [6] shows that this bound is tight in the alternating-move model—that is, $\lceil n/2 \rceil + 1$ cops can always capture the robber, but there is a large gap between the lower bound of Theorem 1 and the obvious upper bound of n cops on G_n, in the simultaneous-move model: by marching in a line from one edge to the other, n cops will always capture a robber. We believe

Conjecture 6. If the cops and the robber move simultaneously, the robber can forever evade fewer than n cops on G_n.

We have accumulated some evidence for this conjecture. Generalizing inequality (1), we see that for k cops, if we have a set of S safe and accessible points at time t, and if

$$|N(S)| + |S| - 2k \geq |S|,$$

we will have at least $|S|$ safe and accessible points at all times after t; this is the gist of the proof of Theorem 1. Define F_n^k to be the minimum number of safe and accessible positions possible for the robber when k cops patrol G_n. Exhaustive computer search gives the values for $n \leq 7$ in Table 2.\(^6\) Together with Lemma 1 and inequality (2), these values prove Conjecture 6 for $n \leq 6$.

Moreover, it is easy to show that

$$F_n^k \leq n^2 - k(k + 1)/2.$$ \(^3\)

Have k cops sweep from left to right as shown in Fig. 8; when the cops reach the right edge, all but $1 + 2 + \cdots + k = k(k + 1)/2$ positions are safe and accessible for the robber. For small k and n values, this bound is pretty good, as can be seen in the values of $n^2 - k(k + 1)/2 - F_n^k$ shown in Table 3: Below the diagonal we have almost all zeroes, meaning perfect agreement between F_n^k and $n^2 - k(k + 1)/2$. On the main diagonal, the values are so low that Lemma 1 is no longer applicable for the value given in Table 2 for $n = 6$, $k = 5$. But we can improve the bound of (3) on the diagonal: Have the $n - 1$ cops sweep from the left edge of G_n to the right (as in Fig. 8). At the right edge they move up one position and sweep back to the left edge (see Fig. 9). For odd n, when the cops reach the left edge there are

$$n + 2 \times \left(1 + 2 + \cdots + \frac{n - 1}{2}\right) = n + \frac{n - 1}{2} \times \frac{n + 1}{2} = n + \left\lfloor \frac{n}{2} \right\rfloor \times \left\lceil \frac{n}{2} \right\rceil.$$

Have the $n - 1$ cops sweep from the left edge of G_n to the right (as in Fig. 8). At the right edge they move up one position and sweep back to the left edge (see Fig. 9). For odd n, when the cops reach the left edge there are

$$n + 2 \times \left(1 + 2 + \cdots + \frac{n - 2}{2}\right) + \frac{n}{2} = n + \frac{n}{2} \times \frac{n - 2}{2} = n + \left\lfloor \frac{n}{2} \right\rfloor \times \left\lceil \frac{n}{2} \right\rceil.$$

\(^6\) The program and data to check these values are available in http://www.loria.fr/~alonso/robAndCops.html.
Fig. 8. Safe and accessible vertices for the robber as \(k = 4 \) cops sweep across \(G_7 \). Cops are shown as solid dots, safe and accessible positions for the robber are shown as circles. At the end, the remaining \(k(k + 1)/2 \) vertices (at the lower right corner) are either occupied by cops or inaccessible to the robber from a safe and accessible vertex on the previous step.

Table 3
Values of \(n^2 - k(k + 1)/2 - F_n^k \), based on Table 2 and inequality (4).

<table>
<thead>
<tr>
<th>(k)</th>
<th>(k = 1)</th>
<th>(k = 2)</th>
<th>(k = 3)</th>
<th>(k = 4)</th>
<th>(k = 5)</th>
<th>(k = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>(\geq 9)</td>
</tr>
</tbody>
</table>

Thus,

\[
F_n^{k-1} \leq n + \left\lfloor \frac{n}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil.
\]

(4)

The right-hand side of (4) gives the correct value for \(F_n^{k-1} \) when \(n \leq 6 \); does it always? The bound given in inequality (4) is so low that Lemma 1 is not applicable. However, even if \(F_n^{k-1} \approx n^2/4 \), the border size remains big (which is why we needed Lemma 1 in the first place), giving some small hope for a proof of Conjecture 6 based on inequality (2).

Acknowledgements

We are grateful to the referees doing an unusually close reading of the paper and offering important suggestions for its improvement.

Appendix A. Isoperimetric lemmas

We now prove Lemmas 3–5 from Section 3. For each of these three lemmas we need a preliminary result based on grid points rather than grid cells.

Lemma 6. For any grid \(G_n \) with unit edge length, any integer \(r > 1 \), and any grid vertex \(p \) sufficiently far from the extremes of \(G_n \),

\[
|B(D_p^r)| = \begin{cases}
8|\lfloor r\sqrt{2}/2 \rfloor + 4 & \text{if } |r\sqrt{2}/2|^2 + (\lfloor r\sqrt{2}/2 \rfloor + 1)^2 < r^2, \\
8|\lceil r\sqrt{2}/2 \rceil| & \text{otherwise}.
\end{cases}
\]

Proof. With \(p \) sufficiently far the extremes of \(G_n \), we can count the boundary points per octant (45° sector); if \(p \) is close to the edge of \(G_n \), it will have fewer vertices in \(|B(D_p^r)| \). Each octant has \(\lfloor r\sqrt{2}/2 \rfloor + 1 \) boundary vertices (see Fig. 10) and all octants are equivalent through rotation and/or reflection. Summing over all eight octants gives us the total number of boundary vertices, but it double-counts the vertices shared by adjacent octants: The vertices at the four cardinal compass points \((\pm(r - 1), 0), (0, \pm(r - 1)) \) are counted twice. The four diagonal compass points \((\pm|\lfloor r\sqrt{2}/2 \rfloor|, \pm|\lfloor r\sqrt{2}/2 \rfloor|) \) may or may not be in \(B(D_p^r) \) because if

\[
|\lfloor r\sqrt{2}/2 \rfloor|^2 + (\lfloor r\sqrt{2}/2 \rfloor + 1)^2 < r^2
\]

(for example, \(r = 11 \)), then the last point on the positive main diagonal, \((\lfloor r\sqrt{2}/2 \rfloor, \lfloor r\sqrt{2}/2 \rfloor) \), has all four neighbors within distance \(r \) of \(p \), so it is not a boundary point and hence is not double-counted. On the other hand, if inequality (5) does
Fig. 9. Safe and accessible vertices for the robber as \(n - 1 \) cops sweep from the left edge of to the right edge of \(G_n \), as shown in Fig. 8, here continuing: at
the right edge they each move up one step and then sweep back from the right edge to the left edge. The upper sequence \((n = 7)\) shows the case when \(n \) is odd; the lower sequence \((n = 6)\) shows the case when \(n \) is even.

Fig. 10. \(G_{26} \) with a point \(p \) shown in black, a circle of radius \(r = 10 \), and vertices in \(B(D_p^r) \) in white. Note that in the first octant \([0°, 45°]\) (shaded gray)
there is exactly one boundary vertex per row, for a total of \([10\sqrt{2}/2] + 1 = 8\) boundary vertices.

It is our (necessarily) idiosyncratic definition of boundary points that makes the available literature on lattice points unhelpful. The sequence of numbers of boundary points for a circle of radius at most \(r = 1, 2, 3, \ldots \), is 4, 8, 16, 20, 28, 32, 36, 44, 48, 56, 60, 64, 72, 76, 84, 88, 96, 100, 104, 112, 116, 124, 128, 132, 140, 144, 152, 156, 164, 168, 172, 180, 184, 192, 196, 200, \ldots. This sequence (divided by 4) is not in The On-Line Encyclopedia of Integer Sequences (http://www.research.att.com/~njas/sequences/); neither is the sequence of boundary points for a circle of radius less than \(r = 1, 2, 16, 20, 24, 32, 36, 44, 48, 56, 60, 64, 72, 76, 84, 88, 96, 100, 104, 112, 116, 124, 128, 132, 140, 144, 152, 156, 160, 168, \ldots.\)
We now extend Lemma 6 to the boundary vertices at distance \(r \) from a cell in the grid. Suppose the cell \(c \) is defined by the four corner vertices \((0,0),(1,0),(1,1),\) and \((0,1)\). Then \(B(D_p^r) \) is comprised of the boundary vertices of the southwest quadrant of \((0,0)\), the southeast quadrant of \((1,0)\), the northeast quadrant of \((1,1)\), and the northwest quadrant of \((0,1)\). Counting these boundary vertices is the same as in the proof of Lemma 6, except the boundary vertices at the four cardinal compass points \((\pm(r-1),0),(0,\pm(r-1))\) are not counted twice. Thus \(|B(D_p^r)| \) is 4 more than in Lemma 6 proving Lemma 3.

If a cop moves orthogonally, say to the right from vertex \(p = (i, j) \) to vertex \(p' = (i+1, j) \), the grid vertices that are less than distance \(r \) from \((i+1, j)\) and accessible by the robber are the vertices in \(D_p^r \setminus I(D_p^r) \). The next lemma counts these vertices.

Lemma 7. For any grid \(G_n \) with unit edge length, any integer \(r \), and any grid vertices \(p = (i, j), p' = (i+1, j) \) sufficiently far from the extremes of \(G_n \),

\[
|D_p^r \setminus I(D_p^r)| = \begin{cases}
8[r\sqrt{2}/2] + 4 & \text{if } |r\sqrt{2}/2| + (|r\sqrt{2}/2| + 1)^2 < r^2, \\
8[r\sqrt{2}/2] & \text{otherwise}.
\end{cases}
\]

Proof. Note that \(I(D_p^r) \subset D_p^r \) and \(|D_p^r| = |D_p^r| \), so by elementary set theory,

\[
|D_p^r \setminus I(D_p^r)| = |D_p^r| - |I(D_p^r)| = |D_p^r| - |I(D_p^r)| = |D_p^r \setminus I(D_p^r)| = B(D_p^r),
\]

and the result follows from Lemma 6. □

Lemma 7 tells us what happens when a cop moves orthogonally from a grid cell to its neighbor on the north, east, south, or west. Summing quadrant by quadrant gives Lemma 4.

If a cop moves diagonally, say from vertex \(p = (i, j) \) to vertex \(p' = (i+1, j+1) \), the grid vertices that are less than distance \(r \) from \((i+1, j+1)\) and accessible by the robber are the vertices in \(D_p^r \setminus I(D_p^r) \). Counting them is similar to, but more intricate than, the case of orthogonal movement by a cop.

Lemma 8. For any grid \(G_n \) with unit edge length, any integer \(r \), and any grid vertices \(p = (i, j), p' = (i+1, j+1) \) sufficiently far from the extremes of \(G_n \),

\[
|D_p^r \setminus I(D_p^r)| = \begin{cases}
6(r\sqrt{2}/2) + 2r + 1 & \text{if } |r\sqrt{2}/2| + (|r\sqrt{2}/2| + 1)^2 < r^2, \\
6(r\sqrt{2}/2) + 2r & \text{otherwise}.
\end{cases}
\]

Proof. The vertices \(I(D_p^r) \setminus D_p^r \) are not accessible to the robber when the cop is at \(p \), but become accessible to the robber (not threatened) when the cop moves to \(p' \). Call this set of vertices \(T \). By elementary set theory,

\[
|D_p^r \setminus I(D_p^r)| = |D_p^r| - |I(D_p^r)| = |I(D_p^r)| + |T| = |D_p^r| - |I(D_p^r)| + |T| = B(D_p^r) + |T|.
\]

We compute \(|B(D_p^r)| + |T| \) quadrant by quadrant. Because the cop moves to the northeast, the vertices of \(T \) can only be to the southwest of \(p \) (we prove this formally below).

Thus in the three quadrants that contain no vertices of \(T \) (southeast, northeast, and northwest), we can use the same method as in Lemma 6, giving the number of vertices in \(|B(D_p^r)| + |T| \) in each of these quadrants as \(2(|r\sqrt{2}/2| + 1) \) (if the last point on the diagonal is not in \(B(D_p^r) \)) or \(2(|r\sqrt{2}/2| + 1) - 1 \) (if it is). Two vertices are double-counted, \((r-1,0)\) and \((0,r-1)\), so compensating for these we obtain a total of

\[
|B(D_p^r)| + |T| = \begin{cases}
6[r\sqrt{2}/2] + 4 & \text{if } |r\sqrt{2}/2| + (|r\sqrt{2}/2| + 1)^2 < r^2, \\
6[r\sqrt{2}/2] + 1 & \text{otherwise}
\end{cases}
\]

in the southeast, northeast, and northwest quadrants.

To compute \(|B(D_p^r)| + |T| \) for the southwest quadrant we must understand where the vertices of \(T \) are. We claim that \((x,y) \in T \) if and only if \((x-1,y),(x,y-1) \in B(D_p^r) \) and \((x-1,y-1) \notin D_p^r \). This claim implies that \((x-1,y) \) and \((x,y-1) \) are boundary vertices in the southwest quadrant of \(D_p^r \), proving that the vertices of \(T \) occur only in the southwest quadrant relative to \(p \). Suppose \((x,y) \in T \). This vertex is in \(I(D_p^r) \), so \((x-1,y) \) and \((x,y-1) \) are in \(D_p^r \). But \((x,y) \) is not in \(D_p^r \), hence \((x-1,y-1) \) is not in \(D_p^r \). This vertex, \((x-1,y-1) \), is a neighbor of \((x-1,y) \) and \((x,y-1) \), so these vertices must be on the boundary of \(D_p^r \), that is, they must be in \(B(D_p^r) \). Conversely, suppose that we have two vertices \((x-1,y),(x,y-1) \in B(D_p^r) \) such that \((x-1,y-1) \notin D_p^r \). Then \((x,y) \in I(D_p^r) \) and \((x,y) \notin D_p^r \); this means \((x,y) \in T \).

The claim tells us that in the southwest quadrant the set of vertices of \(B(D_p^r) \cup T \) forms a path of steps south and east starting at \((-r+1,0)\) and ending at \((0,-r+1)\). All such paths contain exactly \(2(r-1)+1 \) grid vertices, so \(|B(D_p^r)| + |T| = 2r - 1 \) in the southwest quadrant. Adding this number to the number of vertices \(|B(D_p^r)| + |T| \) in the other quadrants, and subtracting 2 for the two double-counted vertices, \((-r+1,0)\) and \((0,-r+1)\), proves the lemma. □
In the continuous case, if a cop moves on an axis-aligned, centered square path in a square region with side length \(\ell \geq \sqrt{2} + 2\beta = 2.2955 \ldots \), the robber can forever evade the cop.
Fig. 12. In a square region with side length \(\ell = \sqrt{2} + 2\beta \), if the cop moves clockwise on the dashed axis-aligned, centered, square path with side length \(d = 2\beta \), the robber can remain at unit distance from the cop by moving clockwise, following the gray pseudo-tractrix arcs on the side opposite the cop. At its widest point the robber’s path is \(2(1 - \beta) \) units wide.

Fig. 13. If the cop \(C \) moves clockwise on an axis-aligned, centered, square path with side length \(d > 2\beta \) (the dashed black line), the robber \(R \) moves clockwise, following the gray pseudo-tractrix arcs, as though the cop were at \(C' \), the closest point to it on the axis-aligned, centered square with side length \(2\beta \) (the dashed gray line). In this case, the robber moves more slowly than the cop.

Proof. Let \(d \) be the side length of the cop’s axis-aligned, centered square path. If \(d < 2\beta \), then \((\ell - d)/2 > \sqrt{2}/2 \) and hence each of the corners of the square region are unit distance or more from the closest point on the cop’s path; thus the robber can sit unmoving on a corner without ever being captured. Now suppose that \(d = 2\beta \); the robber can move on the “cap” pieces of the pseudo-tractrix as shown in Fig. 12, matching the speed of the cop and always staying unit distance from the cop. Finally, if \(d > 2\beta \), the robber moves on the pseudo-tractrix arcs as though the cop were moving on the axis-aligned, centered square path with side length \(d = 2\beta \), at the position defined by the closest point of this path to the cop’s true position (see Fig. 13); the robber is always greater than unit distance from the cop and is moving more slowly than the cop.

Theorem 9 is easily strengthened to any square path for the cop:

Corollary 4. In the continuous case, if a cop moves on any square path in a square region with side length \(\ell \geq \sqrt{2} + 2\beta = 2.2955 \ldots \), the robber can forever evade the cop.

Proof. Let \(d \) be the side length of the cop’s square path. If \(d < 2\beta \) then, as in the theorem, the furthest corner of the square region from the cop’s path must be more than unit distance from the closest point of the cop’s path and the robber can sit unmoving at that corner and never be captured. If \(d \geq 2\beta \), we propose a possible robber’s path, as in the proof of the theorem, based on an imaginary cop’s path on a square with side length \(2\beta \), centered at the center of the cop’s true path and aligned with it. The proposed path is \(2(1 - \beta) \) units wide at its widest point—that is, it is circumscribed by a circle of radius \(1 - \beta \) centered at the center of the cop’s path. If the proposed path for the robber stays within the square region, the robber can move on this path and avoid the cop. But, if the proposed robber’s path goes outside the border of the square
Because $C_0 = (0, g)$, $C_2 = (g, 0)$, $C_3 = (g + 2y, 0)$, $R_0 = (\gamma(\gamma), g + \gamma + x(\gamma))$, $R_1 = (R_0 + R_2)/2$, $R_2 = (g + \gamma + x(\gamma), y(\gamma))$, and $R_3 = (g + \gamma - x(\gamma), y(\gamma))$. At its widest point, the robber’s path is $2(1 - \gamma - g) = 1.14845875167\ldots$ units wide.

The path that we have defined for the robber based on the pseudo-tractrix is not convex, so we can do better if we use a convex path instead: A convex path allows the robber to stay at least at unit distance from a smaller cop’s path in a smaller region. To determine the convex path, let

$$\gamma = \frac{\sinh^{-1}(\sqrt{2} - 1)/2}{2} = \frac{\ln(\sqrt{2} - 1 + \sqrt{4 - 2\sqrt{2}})}{2} = 0.20159985958\ldots$$

We have

$$\gamma - x(\gamma) = x(-\gamma) + \gamma = \frac{\sqrt{2} - \sqrt{2}}{2} = 0.3826834323\ldots,$$

$$y(\gamma) = y(-\gamma) = \frac{1 + \sqrt{2}}{2} \sqrt{2 - \sqrt{2}} = 0.923879532\ldots,$$

$$x'(\gamma) = x'(-\gamma) = y'(\gamma) = -y'(-\gamma) = -\frac{\sqrt{2}}{2},$$

so that the angle formed by the horizontal line and the tangent of robber’s curve at $\pm \gamma$ is $\pm 135^\circ$. Thus we can use the portion of the pseudo-tractrix between $t = -\gamma$ and $t = \gamma$ to form the top of the robber’s path, continuing on the tangent lines on both sides to similar pieces of pseudo-tractrix arc at the sides, and again at the bottom. The resulting path for the robber is shown in Fig. 14.

The connecting tangent lines, for example R_0R_2 in Fig. 14, are of length $2g$ with g chosen so that the length of the cop’s path as he goes around the corner equals the length of the tangent. In other words, we want g such that

$$g = R_0R_1 = R_1R_2 = C_0C_1 = C_1C_2.$$

Taking C_1 as the origin in Fig. 14, the coordinates of R_2 are

$$R_2 = (g + \gamma + x(-\gamma), y(-\gamma))$$

and by symmetry the coordinates of R_0 are

$$R_0 = (y(-\gamma), g + \gamma + x(-\gamma)).$$

Because $C_0 = (0, g)$ and $C_2 = (g, 0)$, we want $R_0R_2 = 2g$, or

$$2(y(-\gamma) - x(-\gamma) - \gamma - g)^2 = 4g^2.$$
This gives

\[g = \frac{(2 - \sqrt{2})^{3/2}}{2} = 0.2241707645839 \ldots. \]

Detailed computations show that all cop–robber distances (the light gray lines in Fig. 14) are at least unit length. Thus arguments that parallel Theorem 9 and Corollary 4, but using the path in Fig. 14, proves

Theorem 10. In the continuous case, if a cop moves on any square path in a square region with side length \(\ell \geq \sqrt{2} + 2g + 2\gamma = 2.265754810702 \ldots \), the robber can forever evade the cop.

References

