
Sponge: A Searchable P2P Mobile App Store using
DHTs

Md. Khaledur Rahman
khaled.cse.07@gmail.com

Md Yusuf Sarwar Uddin
yusufsarwar@cse.buet.ac.bd

Mostafizur Rahman
topucse06@gmail.com

Nashid Shahriar
nshahriar@cse.buet.ac.bd

Abstract—In this paper we propose a novel searchable P2P
content storage for storing mobile apps. In the growing need
of storing and distributing huge number mobile apps across
large number of users, it has been deemed necessary to think
of a storage that leverages enormous amount of content space
that common people can share these days. In our proposal, we
leverage popular P2P stores, such as standard DHTs, for storing
apps. One problem with DTHs is that they support flat names
(denoted as keys) for content objects, which do not make content
objects searchable by their different attributes. When users look
for a certain app in an app store, they do not necessarily look
by their unique names, instead by a set of attribute-value pairs
(multi-attribute queries). We devise a technique, called predicate
hashing, by which we hash these attribute-value pairs into hashed
keys that are in turn used to locate corresponding apps from
the underlying DHT. By doing this we effectively instrument
flat named DHTs into reverse ifndexable content store. To this
end, we build Sponge, a Kademlia based P2P app store, and do
simulation based experiments to show that Sponge can retrieve
content against multi-attribute queries.

I. INTRODUCTION

In this paper we propose a searchable P2P content store for
storing software applications (a.k.a, apps), particularly mobile
apps. Over the past half a decade, mobile apps have become
significantly popular because of a reasonable revolution in
smart phones. And the demand is increasing day by day.
Usually applications are served to the users from a common
centralized storage, which are known as an App Store. An
app store is generally a form of an online store, where users
browse through different categories and genres of applications,
view information and reviews related to apps, purchase the
apps (if necessary and required so), and then automatically
download and install the application on their devices. There are
many online stores which serve mono platform based app such
as Google play [1] for Android platform, iTunes [3] or App
Store [4] for iPhone platform and so on. There are also some
cross-platform based stores which serve application software
for various platforms such as Handmark [5], Opera store [6],
etc. But these cross-platform based stores do not have a large
number of application software. While cross-platform stores
may not have a large number of apps, popular app store has
gigantic number of apps (Google Play has nearly 1.3 million
apps [2]) requiring a huge amount storage.

In the growing need of storing and distributing huge
number apps, particularly mobile apps, across a large number

of users, it has been deemed necessary to think of a storage that
can leverage enormous amount of content space that common
people can share these days. Peer to peer (P2P) systems allow
such leverages. In that, participant nodes dedicate some of
disk space to form a P2P app store. A P2P app store can be
motivated in several folds. Firstly, due to distributed in nature
a P2P app store would be highly scalable and available that are
fundamental requirements for app store, where a large number
of developers put their content into it and a larger number of
users download those apps. Secondly, developers who produce
and push apps in the store can easily dedicate their disk space
for this system to be built and they have direct incentives for
doing so. Unlike single platform popular app stores (such as
Google Play for Android), a P2P app store can host apps
for all possible platforms (such as Android, iOS, Windows
and Blackberry). For higher dissemination, developers indeed
create the same app for different platforms so the developer
can publish them to the same store and maintain them easily.
Finally, a large number of apps are usually free so shared
nature of a P2P store matches the economic mode1.

Large scale P2P storages are usually implemented as DHTs
(distributed hash tables). So DHTs could be a natural choice
for the app store. One problem with using DHTs is that
they support only at names (denoted as keys) for content
objects, which do not make content objects searchable by their
different attributes. When users look for a certain app in an
app store, they do not necessarily look by their unique names,
instead by a set of attribute-value pairs usually given as a
high level description, e.g., “talking tom for Android tablet”.
Unlike other P2P based file and content sharing system, such
as web cache [8], P2P citeseer [9], where contents are retrieved
by application generated unique names, an app store must
have in situ search capabilities to find applications satisfying
certain criteria, specified by a search query. These search
queries, although are usually obtained as high level strings
from users, are translated into a set of attribute-value pairs
for an appropriately defined set of attributes. For example, a
user query for “talking tom” originated on an Android tablet
can be translated into {name=“talking tom”, category=“game”,
platform=“android”, device=“tablet” }. We hence assume that
search queries are expressed mainly as a set of attribute-value
pairs, called as predicates.

1Even though apps are not free, arrangement can be made for the corre-
sponding developer to earn the fee. Sharing the platform cost could be tricky
though.978-1-4799-8126-7/15$31.00 c©2015 IEEE

Acer
Typewriter

Acer
Typewriter

In our proposal, we leverage popular P2P stores, such as
standard DHTs, for storing apps. The core technique we use
is called predicate hashing in which everything, that is data
objects (i.e., apps) as well as query strings, is converted into
hash keys that are later inserted and looked up in the DHT
overlay formed by the participant nodes. The system only relies
on the very fundamental service available in all DHTs, namely
lookup(key), that locates the node labeled by an identifier,
‘key’ (or the node responsible for representing this ‘key’).
Once the node is obtained, appropriate RPC methods can be
invoked in order to perform specific operations on that node,
namely insert and search operations. While hashing data
objects are rather easy (done by their unique UUIDs or keys),
query predicates need special attention: attribute-value pairs
in the predicate are hashed to generate keys that are in turn
used to locate corresponding apps from the underlying DHT.
By doing this, we effectively instrument the at named DHTs to
become a reverse indexable content store. One of the strengths
of the scheme is that we do not assume any specific DHT
in place, rather any DHT, such as Chord [13], Pastry [14]
and Kademlia [18], works alike. In our implementation, we
however use Kademlia.

To this end, we propose Sponge, a distributed P2P app
store. In this system, peer nodes arrange themselves in a DHT.
Apps are stored at a location hashed by their keys (key is an
opaque bit string that uniquely identifies each individual app).
Meta information about an app, which is constructed as a list
of attribute-value pairs, is also stored at certain locations (again
hashed by the attribute-value pairs in a certain fashion). Query
strings are also routed to specific nodes (obtained through
hashing over the string) so that objects satisfying the query
strings can be retrieved from those nodes. In our scheme, we
consider apps as bundle of binary data payloads described by a
set of attribute-values that are signed and ready to be installed
on devices once downloaded from the content store. In that,
we use the terms apps, objects, and content interchangeably.

The rest of the paper is organized as follows. In Section II,
we will describe the model and architecture of our system.
We will describe query engine in Section III followed by
the experimental setup and results in Section IV. Then we
conclude briefly in Section V.

II. MODEL AND ARCHITECTURE

Our system provides a multi-attribute based query solution
for hierarchically clustered environments. In this section,
we describe the basic working of Sponge followed by a
description of attributes and meta data model.

A. Basic Working of Proposed System

Sponge constitutes a DHT of participating nodes, called
peer nodes. There are two kind of users in Sponge, namely
those who “put” content into the app sotre (called clients),
and those who “get” apps (called users). When a developer
(client) wants to deploy an app to the store, he needs to provide
some information about the app. We use these information
as attributes of the data object (app). The provided list of
attributes are then used to find a list of suitable locations
(nodes) in the DHT in order to store that object (app content)

onto them. An user may search for an app to download and
install on his/her device. A high level description of the query
provided by user is transformed to a list of attribute-value
pairs. This transformation is, however, beyond our scope; we
only assume such transformation exists. A distributed search
is then initiated across the overlay. The primary objective of
the query is to locate those peers that hold the requested
objects. Sometimes this query is mapped to exactly one app or
sometimes to a list of apps. So, our system responds providing
a list of apps (by their names or unique Ids), but not the original
content themselves. When a user chooses an app to download
and install, only then the original app content will be served to
the user (i.e., retrieved from the DHT). A measurable amount
of messages will be passed in the process while inserting
objects to the store and also while searching and downloading
apps from the store.

B. Types of Attributes

When a developer wants to deploy an app to the store,
s/he will need to provide some information about the app.
Sponge transforms the provided information as attributes of
the app. An app can be uniquely identified by using a certain
combination of these attributes. In our system, there are four
types of attributes namely Searchable, Hashable, Displayable
and Mutable. Searchable attributes are those which are used
to search an app or a collection of apps from the store. These
attributes are defined during uploading the app content only
once and are not changed later such as name, platform, cate-
gory etc. Searchable attributes are visible to users. Hashable
attributes are those attributes which are used to locate nodes
in the DHT (by hashing on them). All hashable attributes are
searchable, but the converse is not true. For example, for a
query “games released after 2012”, attribute, category, is
hashable, but releaseyear is not. Later we shall show
attributes to take a certain exact value (rather than a range)
is hashable. Comparable or Displayable attributes are those
attributes based of whose values result set of a query is or-
dered, for example rating, popularity, version,
etc. Mutable attributes are those which can be changed with
time, such as popularity, rating, downloadcount, etc. These
attributes are mostly updated through on the user’s feedback.
We can argue that searchable attributes are not mutable.

C. (Meta) Data Model

An object is defined {id, (a1, v1), (a2, v2), . . . , (an, vn),
payload}, where vi is the value of attribute ai and key is
the preprocessed value of attribute list, and payload is the
actually binary content of the app. Except the payload, rests
are assumed as meta data of the object.

The meta data modeling is an important part of the system.
Efficiently serving to a query depends much on it. Such as size
cannot be stored as meta information. Because, users don’t try
to make a search giving the size of the app. App description,
normally the attribute list provided by developers and some
preprocessing values of it are treated as meta information about
the object. Our system stores meta information for each app as
a set of (attribute, value) pairs. A popular app named ‘DX Ball’
can be expressed as: {(category, Games), (subcategory, Ar-
cade), (releaseyear, 2014), (platform, Android), (version,
1.1.1), (language, English), (country, Bangladesh), (device,

DHT

(Kademlia)

Insert (Object)

put (key, Object)

Search (query)

get (key)

{key}

Object

Insertion by clientSearching by user

N1

N2
N3

N4

N5

N6
N7

Nn .
.
.

Sponge

Fig. 1: Sponge architecture. Ni denotes a node for different
value of i.

Mobile)} along with {(downloadcount, 0), (rating, 4.0),
(size, 2MB)}. Here, downloadcount and rating are Mutable
attributes and can be used to order the popular apps or display
the search results in some particular order as discussed in II-B.
In any presentation of the list of attributes (whether in objects
and in query strings) we always assume that attributes are
ordered alphabetically.

D. Overlay Construction

At the very beginning of execution, we have fixed the total
number of nodes participated in the system. No new node will
be connected to the system. But some nodes may go down and
later they can also join the network. In the network topology,
we consider that every node is connected to the Internet and
forms a standard kademlia network as in Figure 1. They can
communicate with each other through the Internet. It will be
easy to maintain query engine of our system in such network
topology. An object can be stored via any node of the system.
During the insertion, system automatically makes some copies
of it’s meta information to store it in specific number of peer
nodes. But the original content is stored in one location which
is retrieved only when user tends to install the app. Similarly a
search query can be made at any node. Sponge automatically
initiate a distributed search and does the rest of the post
processing works to retrieve results.

III. QUERY ENGINE

Sponge has been designed to provide multi-attribute based
query solution. Once the system is initiated, it becomes ready
to store objects and serve queries. Original object is stored
in the content node and meta information about that object is
fused in the peer nodes in the form of query overlay. In the
next two subsections, we describe how data items are stored
in Sponge and queries are served to the users.

A. Insertion of Object

When someone wants to insert (upload) an object
(data item, d) to the sytem, s/he will provide a list
of attributes (a1, a2, a3, . . . , an). Algorithm 1 describes the
insertion operation of an object to the system. Here,
clients invoke insertObject(object) procedure. On the
other hand, Sponge node invokes insert(key, object)
and insertMetadata(key, object.metadata) pro-
cedures. These procedures are called through RPC.

Algorithm 1 Insertion of an Object

object = {key, (a1, v1), (a2, v2), . . . , (an, vn), payload}

insert(key, object){
contentstore[key] = object
}

insertMetadata(key, object.metadata){
// mstore is a metadate storage
mstore[key].Add(object.metadata)
}

insertObject(object){
id = DHT.hash(key)
node = DHT.lookup(id)
node.insert(key, object)
for binary representation of i from 0 to 2n − 1 do

list = ∅
if number of ‘1’ in i <= k then
mask = 2n−1

for k in 1 to n do
if i & mask! = 0 then

list = list ∪ (ai, vi)
end if
mask = mask >> 1

end for
id = DHT.hash(list)
node = DHT.lookup(id)
node.insertMetadata(key, object.metadata)

end if
end for
}

First of all, the system performs a consistent hash function
on key provided in object description and generates a node
id to store the object. Sponge initiates a standard Kademlia
DHT lookup(id) to locate the peer node responsible for
this ‘id’. This is location where the app is stored. Sponge
then tries to fuse meta information of this object across a
set of peer nodes based in its attribute-value pairs. In this,
Sponge actually attempts to pseudo-produce a set of query
predicates (each being a list of attribute-value pairs) that this
particular object can satisfy. These queries are nothing but
several combination of various attribute value pairs of this very
object, because a search with these attribute-value pairs should
return this object. Since generating all combinations can be
expensive (exponential in size), the system uses combinations
upto a certain size, k. In that, predicates with 1 attribute (out of
total of n), combinations with any 2 attributes, combinations
with any 3 attributes, thus upto k attributes are generated. So
a total of

(
n
1

)
+
(
n
2

)
+ . . . +

(
n
k

)
=
∑k

i=1

(
n
i

)
predicates are

generated.

Each of the generated predicate is then hashed (described)
to find the corresponding DHT nodes where the object’s meta
information is stored. Note that at this stage, only the meta
information, not the original binary payload, is stored at those
nodes. When any of these query predicates is made by users
later on, one of these nodes would be in turn reached, thus
retrieving the corresponding objects satisfying the query. Note

that metadata of a single object is stored at several different
nodes, which gives high robustness in retrieving objects amid
of network dynamics, such as node failures.

Algorithm 2 Searching Object

Require: search string: S
search query:s1, s2, s3, ..., sn ∈ S

query = {P, limit}
P = {lav, lar, lad}
lav = (attribute, value) pairs (hashable attributes)
lar = (attribute, range) pairs (searchable attributes)
lad = list of displayable attributes
limit =number of items to be returned

search(query){
// items having exact match with attributes
items = mstore.LookupItems(query.listav)
result = ∅
for item in items do

if (satisfy(item, listar)) then
result.add(item)

end if
end for
//sort items in results based on attributes in listad
return keys of result[0:limit]
}

retrieveObject(key){
return contentstore[key]
}

searchObjects(query)
query = (a1, v1), (a2, v2), . . . , (am, vm)
if m <= k then
node = DHT.lookup(DHT.hash(query))
result = node.search(query)

else
// Take first k attribute value pairs from query
// let this be qk
node = DHT.lookup(DHT.hash(qk))
result = node.search(query)

end if
return result

B. Serving Queries

Once the data items are inserted, our system is ready to
serve queries. The system is designed to serve for both single
attribute and multi attribute queries. When an user searches for
app(s) in the store, he provides a query predicate a distributed
search is initiated in the system. Algorithm 2 describes the
searching of object(s) in the system.

Every query is expressed as a predicate, P , over an attribute
set of the requested objects. In that, each query would specify
specific requirements over a set of attributes that the requested
content objects should satisfy. These specification can be in
form of an attribute-value pair which asks a certain attribute
to be of a certain value (i.e., using “equal to” operator), or it
can be using any other operators, say relational operators. In

general a query predicate, P , can be expressed as a boolean
AND of multiple boolean clauses as follows:

P = q1 ∧ q2 ∧ q3 . . . ∧ ql, where, clause qi = (ai, vi) is
an attribute-value pair for an attribute ai, which is true, for
an object x, if the value of ai attribute of object x compares
equal to vi. If the object does not have attribute ai, it is false.
Object x is said to satisfy P if and only if P(x) is true for
object x. That is, q1(x) ∧ q2(x) ∧ . . . ∧ ql(x) is true.

In Sponge, queries are rather general, in that, we can
pass not only (a, v) pairs but also other forms of predicate
clauses. In that, qi’s can be of the forms like (ai, ri) where
attribute can take a value from a range ri = (low, high) and
(aiopvi), where op can be any arbitrary binary operator (e.g.,
≥). Sponge explicitly considers only equal clauses, that is,
attribute-value (ai, vi) pair clauses in the predicates. These
attributes are treated as hashable. Attributes that appear in
range clauses or in operator clauses will not be hashed, but
the resultant objects against the predicate (satisfying the (a, v)
part) would be checked whether returned objects satisfy all
clauses whatsoever. One assumption is that each query will
contain at least one hashable attribute with (a, v) pair.

In Algorithm 2, we see that a user invokes
searchObject(query) procedure whereas Sponge
invokes search(query) and retrieveObject(key)
procedures. Upon receiving a query, Sponge uses hash
functions on each (a, v) pairs in the query predicate to
generate a hash key for this query. This key designated
the location of the node who might store objects satisfying
this query. A standard DHT lookup is initiated that finds
the location of the requested node and meta information
stored at that node is searched to find objects that satisfy
the query. Note that the same hashing process is used while
fusing objects’ meta information across nodes (while inserting
objects) and while serving a query. If two cases (insertion
and search) are constituent of the same set of attribute-value
pairs, they are bound to meet at the same node (unless some
nodes failed in between or some joins, which are handled
separately).

Sponge can handle network dynamics. In that, if the system
does not find any suitable results, i. e., query returns empty,
it might indicate that the target node for query might be
different from the node where metadata was stored. This can
be happened due to some node joining or some node failing.
Sponge then initiates a search discarding one of the attributes at
random from the original one. This now might map to another
node that might contain correct results. This process continues
until a threshold amount of time is elapsed or no result is
found for current combination of attributes. From this scenario,
service to the query can be divided to two parts. Part one serves
when the number of attributes traced from query string is less
than or equal to the number of attributes that has been used to
store an object to a peer node and the other part serves when
the number of attributes traced from query string is higher. We
have discussed these two types of query as follows.

Let, |q| denotes the attribute list traced from query string
and k denotes the maximum combination of attributes that has
been used to store meta information to a peer node. Then we
find two cases to serve response to any query.

When |q| ≤ k : In this case, our system can answer exactly
provided that the list of attributes is valid.

When |q| > k : In this case, our system cannot provide
exact answer rather than serve search results taking first k
attributes under consideration only.

Search procedure provides a list of keys which is the
result of provided query string. If user wants to download
and install an app in his/her device, any of those keys will
be used to fetch the original app content respectively invoking
retrieveObject(key) procedure.

C. Overhead Allowance

Due to various combination of attributes, a reasonable
amount of overhead is introduced throughout the system. We
have made this possible in our system to keep it tunable.
A system administrator may allow a percentage of original
storage as overhead. In this subsection, we present a road map
estimation for overhead allowance in the proposed system.

Let the number of objects be N , the number of attributes
for each object be n, average size of each object is denoted by
s, size of meta data for each object be m and k denotes the
allowed combination of attributes in the system. Then meta
information of each object will be inserted to

(
n
k

)
peers. The

total size of meta data for N objects will be N
(
n
k

)
m. As each

object has an average size of s, total storage for N objects
will be Ns+N

(
n
k

)
m. So, system overhead can be calculated

as,

Overhead =
N
(
n
k

)
m

Ns

=

(
n

k

)
m

s

Here, m
s is termed as meta ratio. If we would like to

allow 10% overhead in the system having 100 nodes with the
parameters value n = 10, m = 100 byte, s = 100 KB, then
we will to find a suitable value for k as follows:(

n

k

)
m

s
≤ 0.1

or,

(
10

k

)
100

100000
≤ 0.1

or,

(
10

k

)
≤ 100

here, for k = 1, 2, 3, the value of
(
10
k

)
will be 10, 45 and

120 respectively. In this case, a wise choice for k is 2. So we
can say that for the give parameters value above, if we would
like to allow 10% in the system we must restrict the value
of as k ≤ 2. To this end, it must be ensured that the total
number of nodes in the system will be enough to promote

(
n
2

)
peer nodes. A network administrator can allow any required
overhead to the system using the equation,

(
n
k

)
≤ overhead

meta ratio .

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40 45 50

L
o
a
d

original content
meta data

Fig. 2: Load distribution among 50 peer nodes showing meta
data and original content distribution to different peers.

1

1.5

2

2.5

3

3.5

4

4.5

0.5 1 1.5 2 2.5 3 3.5 4

q
u
e
ry

 t
im

e
 (

m
s
)

value of k

q=1
q=2
q=3

Fig. 3: Average query time for various values of k with
standard deviation where query string contains q Hashable
attributes.

IV. EXPERIMENTAL RESULTS

We have implemented the Sponge system using Python
v. 2.7.6 language with standard kademlia package. The ex-
perimental PC is configured as Windows 8, Intel Core2 duo
2.2GHz, 2GB RAM. We have conducted the experiments for
both multi-attribute insertion and retrieval operation.

We run several type of experiments on our implemented
system for different experimental set ups. In our system, all
nodes are peer nodes. A peer node may contain both the
original objects (data items) and the meta data information
about the objects. In Figure 2, we show load distribution to
different nodes. For this experimental set up, we use 50 nodes
and 105 objects. We see that different peer nodes contain
different volume of load distribution. However, some peers
have no load distribution. This is because of no id generation
of that peers after performing hash function on different
combination of attributes. We also see that peers who contain
the original content follows a power distribution law.

A measurable amount of messages are passed throughout
the system during insertion, searching and retrieval of objects.
During this message passing, a significant amount of network
bandwidth is consumed. So, we keep here the number of
message passing as small as possible. In our system, it needs∑k

i=1

(
n
i

)
+ 1 messages while inserting an object into the

system. While searching and retrieval of object from the
system, it needs a constant amount of messages except node
failure. As it needs some network latency to send messages,
in the simulated environment, we have assumed 200 ms delay
as round trip.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

re
s
u
lt
s
 (

in
 n

u
m

b
e

r)

ith number query

q=2
q=3

q=1

Fig. 4: Result-set size for ith query where query string contains
q Hashable attributes.

In Figure 3 we show average query time for different values
of k (k = 1, 2, 3) (excluding network latency). In this Figure,
value of q denotes the number of attributes extracted from
query string. For this experimental set up, we use 102 nodes,
10 types of attributes and 103−104 objects. Here, we also show
the standard deviation for query processing for various values
of k. We see that time variation for several query processing is
very small. Obviously, our system responds for a single query
within fraction of a second.

In Figure 4, we show another experimental results which
about the results size of a query. Results contain the number
of keys for corresponding objects. In this Figure, we see that
when query string contains one attribute (q = 1) then our
system responds with higher volume of result set rather than
other two. Notably, we see that there are some inflations in
the results for q = 2, 3. This is because of not getting exact
answer for the provided attributes. Then system initiates a
search discarding an attribute randomly which results in larger
volume of output.

We analyze the facilities of storing objects using combi-
nations of different attributes. When objects are stored using
single attribute only then a query having more than one
attribute is served as an intersection of results for a sequence
of queries containing each of those attributes. Simply, this
type of service takes long time to respond. In this case, a
single query takes 202.3 ms (including network latency) on
an average to serve. But when combination of attributes is
used to store objects to peer nodes then it takes 201.37 ms
(including network latency) on an average to serve. So, it
definitely facilitates to serving queries in low latency but this
will introduce higher system overhead.

V. CONCLUSION

In this paper, we have presented a P2P system to show
the underlying structure of a distributed app store which gives
results for both single attribute and multiple attributes i.e.,
search string can contain multiple words. Our performance
results shows that it performs well to process distributed
searching of object(s) from the system in low latency. We have
also shown that our system facilitates a network administrator
to allow any required overhead. Any system that needs multi

attribute queries in time-sensitive, light-weight and efficient
manner, will get benefits from our system.

REFERENCES

[1] https://play.google.com/store
[2] http://en.wikipedia.org/wiki/Google Play
[3] https://www.apple.com/itunes/
[4] http://store.apple.com/
[5] http://store.handmark.com/
[6] http://apps.opera.com/
[7] http://www.handango.com
[8] http://en.wikipedia.org/wiki/Web cache
[9] C. L. Giles, K. D. Bollacker and S. Lawrence, CiteSeer: an automatic

citation indexing system, In Proc. of DL, third ACM conference on
Digital libraries, Pages 89-98, New York, 1998.

[10] R. Escriva, B. Wong, and E. G. Sirer, HyperDex: A Distributed,
Searchable Key-Value Store, In Proc. of ACM SIGCOMM, Helsinki,
Finland, August, 2012.

[11] Md Ahsan Arefin, Md Yusuf S Uddin, Indranil Gupta, Klara Nahrstedt.
Q-Tree: a Multi-attribute Based Range Query Solution for Tele-immersive
Framework, ICDCS 2009, Montreal, Canada, June 2009.

[12] A. T. Clements, Dan R. K. Ports, D. R. Karger, Arpeggio: Metadata
Searching and Content Sharing with Chord, In Proc. of IPTPS, Ithaca,
NY, USA, February 2005.

[13] I. Stocia, R. Morris, D. Karger, M. F. Kaashoek, and S. Shenker, Chord:
A scalable peer-to-peer lookup service for internet application, In Proc.
of ACM SIGCOMM, San Deigo, CA, August 2001.

[14] A. Rowstron and P. Druschel, Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems, In Proc. of
IFIP/ACM ICDSP, 2001.

[15] A. Chrainiceanu, P. Linga, A. Machanavajjhala, J. Gehrke, and J.
Shanmugasundaram, P-ring: An efficient and robust p2p range index
structure, In Proc. of SIGMOD, 2007.

[16] Fay Chang et al. BigTable: A distributed storage system for structure
data, ACM TOCS 26.2 (June 2008), 4:1-4:26.

[17] G. DeCandia et al. Dynamo: Amazon’s highly available key-value store,
In Proc. of SOSP, Stevenson, Washington, USA, October, 2007.

[18] P. Maymounkov, D. Mazires, Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric, In Proc. of IPTPS, London, UK, 2001.

[19] R. Renesse and K.Binnan, Astrolabe: A robust and scalable technology
for distributed system monitoring, management and data mining, vol. 21,
no. 2, pp. 164-206, May 2003.

[20] P. Yalangandula and M. Dahlin, A scalable distributed information
management system, In Proc. of ACM SIGCOMM, 2004, pp. 379-390.

[21] J. Liang, S. Ko, I. Gupta and K. Nahrstedt, Mon: On-demand overlays
for distributed system management, In Proc. of USENIX WORLDS,
2005.

[22] S. Ko, S. Yalagandula, I. Gupta, V. Talwar, D. Milojicic, and S. Iyer,
Moara: Flexible and scalable group-based querying system, In Proc. of
ACM/IFIP/USENIX Middleware, 2008.

[23] O. Gnawali, A keyword set search system for peer-to-peer networks,
Master’s thesis, Massachusetts Institute of Technology, June 2002.

[24] Y. Mao, E. Kohler, and R. T. Morris, Cache Craftiness for Fast
Multicore Key-Value Storage, In Proc. of EuroSys, Bern, Switzerland,
April 2012.

[25] H. Lim, D. Han, D. G. Andersen and M. Kaminsky, MICA: A Holistic
Approach to Fast In-Memory Key-Value Storage, In Proc. of NSDI,
Seattle, WA, USA, April, 2014.

[26] C. Mitchell,Y. Geng and J. Li, Using one-sided RDMA reads to build
a fast, CPU-efficient key-value store, In Proc. of the 2013 conference on
USENIX Annual technical conference June, 2013.

[27] A. Kejriwal, A. Gopalan, A. Gupta, Z. Jia and J. Ousterhout, SLIK:
Scalable Low-Latency Indexes for a Key-Value Store, Under Review,
July, 2014. Accessible at https://ramcloud.stanford.edu/wiki/download/
attachments/11960661/slik.pdf

