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Impact of Dynamicity: An Empirical Study
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300+ SNodes, 900+ SLinks. (AS6461), 4 – 8 VNodes/VN (50% conn. pr.)

Poisson Arrival (10VNs/100 T.U.), Exponential Lifetime (1000 T.U.)

Optimal embedding that minimizes total bandwidth consumption
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Acceptance Ratio capped at ~50%

300+ SNodes, 900+ SLinks. (AS6461), 4 – 8 VNodes/VN (50% conn. pr.)

Poisson Arrival (10VNs/100 T.U.), Exponential Lifetime (1000 T.U.)

Optimal embedding that minimizes total bandwidth consumption
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Impact of Dynamicity: An Empirical Study
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~30% links utilized >= 70%

~40% links utilized <= 10%

Skewed Substrate Link Utilization impacts Acceptance Ratio !!



Key Question:

How to cope with the dynamicity in Network 

Virtualization when little or no information 

about the future is available?
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(One Possible) Answer:

Periodically adjust the embedding to eliminate 

“bottlenecks” and “optimize resource usage”
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The Problem

Reallocation of Virtual Network Embedding (ReViNE)
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Given a Substrate Network and a set of embedded 
Virtual Networks
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The Problem

Reallocation of Virtual Network Embedding (ReViNE)
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Migrate Virtual Nodes 
to New Substrate 

Nodes

Migrate Virtual Links 
to New Substrate 

Paths

Objective: Eliminate 
Substrate Bottlenecks* 

and Minimize 
Resource Usage**

Given a Substrate Network and a set of embedded 
Virtual Networks

* Links with utilization >= %

** In our case, bandwidth consumed by virtual links



Our Proposal
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ReViNE-OPT ReViNE-FAST

ILP-based optimal solution*
(NP-Hard)

Simulated Annealing-based 
heuristic

A suit of solutions to ReViNE

* Details is in the paper



Do We Need A Heuristic?
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Computing Optimal Solution is Very Expensive

H/W Configuration: 8x10 Core Intel Xeon E5 CPU, 1TB RAM

Observed limits for ILP: 50 – 100 Node SN with < 60VNs took 
several hours and several 10s of GB RAM

ILP Can Yield Impractical Solutions

 A practical solution contains a sequence of operations to reach 
the re-optimized state (also satisfy make-before-break constraint)

 Not possible to model in ILP. Final state obtained from ILP can be 
unreachable without violating make-before-break constraint.
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Computing Optimal Solution is Very Expensive

H/W Configuration: 8x10 Core Intel Xeon E5 CPU, 1TB RAM

Observed limits: 50 – 100 Node SN with < 60VNs took several 
hours and several 10s of GB RAM

ILP Can Yield Impractical Solutions

 A practical solution contains a sequence of operations to reach 
the re-optimized state (also satisfy make-before-break constraint)

 Hard to model in ILP. Final state obtained from ILP can be 
unreachable without violating make-before-break constraint.
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Heuristic Design
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Our Objectives are Conflicting

Minimize Bottleneck Links Minimize Bandwidth Usage

Distribute load across 
substrate links

Route Virtual Links on 
Shorter Paths

Substrate links on shorter 
paths can become bottlenecks

Paths can become longer

Instead of an one-shot algorithm, use a meta-heuristic (Simulated 
Annealing) to explore the solution space and find a balance.



Simulated Annealing: Neighborhood Generation
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Randomly select a VN and reroute a randomly selected virtual link.

Bottleneck Substrate Link Reconfiguration

Select a bottleneck substrate link and reroute virtual links using 
that bottleneck link until it is no longer a bottleneck.

Virtual Node Migration

Randomly select a VN and re-embed a random virtual node and 
incident virtual links.

Virtual Link Migration



Simulated Annealing: Neighborhood Generation

24

Randomly select a VN and reroute a randomly selected virtual link.

Bottleneck Substrate Link Reconfiguration

Select a bottleneck substrate link and reroute virtual links using 
that bottleneck link until it is no longer a bottleneck.

Virtual Node Migration

Randomly select a VN and re-embed a random virtual node and 
incident virtual links.

Virtual Link Migration



Simulated Annealing: Neighborhood Generation

25

Randomly select a VN and reroute a randomly selected virtual link.

Bottleneck Substrate Link Reconfiguration

Select a bottleneck substrate link and reroute virtual links using 
that bottleneck link until it is no longer a bottleneck.

Virtual Node Migration

Randomly select a VN and re-embed a random virtual node and 
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Parallel Simulated Annealing Searches
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Evaluation: Setup

 ReViNE-FAST compared with ReViNE-OPT and SA-realloc*

 Parameters
 50 – 100 node synthetic substrate network

 Larger test cases with 1000 node (heuristic only comparison)

 Mean degree between 3.6 – 4

 Mean substrate link utilization 60% - 80%

 Bottleneck substrate link threshold 70% - 90%

29
* Masti, S,. et al. “Simulated Annealing Algorithm for Virtual Network Reconfiguration“, 8th Euro-NGI Conference on Next 

Generation Internet, IEEE, 2012, pp. 95-102.



ReViNE-FAST Performance Highlights
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Within ~19% of optimal (ReViNE-OPT) on avg.

~3x less cost compared to SA-realloc on avg.

~5% more VNs accepted on avg. when combined 
with optimal VN embedding algorithm



Summary
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ReViNE is one possible way to address the 
dynamicity in VN arrival/departure

ReViNE-FAST, a simulated annealing based 
heuristic performs ~19% within the optimal

(empirically evaluated)

ReViNE-FAST performs ~3x better than S.O.A 
Simulated Annealing-based heuristic



Questions?
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Source Code

CPLEX: https://github.com/srcvirus/vne-reallocation-cplex

Simulated Annealing: https://github.com/srcvirus/vne-reallocation-sa
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Backup



ReViNE-FAST vs ReViNE-OPT
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Impact of Reallocation
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ReViNE-FAST vs SA-Realloc (Large Cases)
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ReViNE-FAST Convergence (Large Cases)
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State-of-the-art
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Proactive One-shot Approaches: Periodically 
reallocate VNs [3][4]

Reactive One-shot Approaches: Reallocate 
VNs when a new VN cannot be 
embedded [1][2]

Meta-heuristic Approaches: Simulated Annealing [5], Particle Swarm Optimization [6]
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