
ReViNE: Reallocation of Virtual Network
Embedding to Eliminate Substrate Bottleneck

Shihabur R. Chowdhury,
Reaz Ahmed, Nashid Shahriar,
Aimal Khan, Raouf Boutaba

Jeebak Mitra,
Liu Liu

Virtual Network Embedding (VNE)

2

10

a

b c

10 10

10 12

10

d

e f

20

20 20

5 5

C

A B

D E F

G H

60

80 55

50

70 65

85

90

22

15

12

10

15

17

17

20

25

a

b

ce

d

f

Virtual Network Embedding (VNE)

3

10

a

b c

10 10

10 12

10

d

e f

20

20 20

5 5

C

A B

D E F

G H

60

100 55

50

70 85

85

110

27

15

12

10

20

22

22

20

25

a

b

c

Impact of Dynamicity: An Empirical Study

4

300+ SNodes, 900+ SLinks. (AS6461), 4 – 8 VNodes/VN (50% conn. pr.)

Poisson Arrival (10VNs/100 T.U.), Exponential Lifetime (1000 T.U.)

Optimal embedding that minimizes total bandwidth consumption

Impact of Dynamicity: An Empirical Study

5

Acceptance Ratio capped at ~50%

300+ SNodes, 900+ SLinks. (AS6461), 4 – 8 VNodes/VN (50% conn. pr.)

Poisson Arrival (10VNs/100 T.U.), Exponential Lifetime (1000 T.U.)

Optimal embedding that minimizes total bandwidth consumption

Impact of Dynamicity: An Empirical Study

6

~30% links utilized >= 70%

~40% links utilized <= 10%

Impact of Dynamicity: An Empirical Study

7

~30% links utilized >= 70%

~40% links utilized <= 10%

Skewed Substrate Link Utilization impacts Acceptance Ratio !!

Key Question:

How to cope with the dynamicity in Network

Virtualization when little or no information

about the future is available?

8

(One Possible) Answer:

Periodically adjust the embedding to eliminate

“bottlenecks” and “optimize resource usage”

9

The Problem

Reallocation of Virtual Network Embedding (ReViNE)

10

Given a Substrate Network and a set of embedded
Virtual Networks

The Problem

Reallocation of Virtual Network Embedding (ReViNE)

11

Migrate Virtual Nodes
to New Substrate

Nodes

Given a Substrate Network and a set of embedded
Virtual Networks

The Problem

Reallocation of Virtual Network Embedding (ReViNE)

12

Migrate Virtual Nodes
to New Substrate

Nodes

Migrate Virtual Links
to New Substrate

Paths

Given a Substrate Network and a set of embedded
Virtual Networks

The Problem

Reallocation of Virtual Network Embedding (ReViNE)

13

Migrate Virtual Nodes
to New Substrate

Nodes

Migrate Virtual Links
to New Substrate

Paths

Objective: Eliminate
Substrate Bottlenecks*

and Minimize
Resource Usage**

Given a Substrate Network and a set of embedded
Virtual Networks

* Links with utilization >= %

** In our case, bandwidth consumed by virtual links

Our Proposal

14

ReViNE-OPT ReViNE-FAST

ILP-based optimal solution*
(NP-Hard)

Simulated Annealing-based
heuristic

A suit of solutions to ReViNE

* Details is in the paper

Do We Need A Heuristic?

15

Computing Optimal Solution is Very Expensive

H/W Configuration: 8x10 Core Intel Xeon E5 CPU, 1TB RAM

Observed limits for ILP: 50 – 100 Node SN with < 60VNs took
several hours and several 10s of GB RAM

ILP Can Yield Impractical Solutions

 A practical solution contains a sequence of operations to reach
the re-optimized state (also satisfy make-before-break constraint)

 Not possible to model in ILP. Final state obtained from ILP can be
unreachable without violating make-before-break constraint.

Do We Need A Heuristic?

16

Computing Optimal Solution is Very Expensive

H/W Configuration: 8x10 Core Intel Xeon E5 CPU, 1TB RAM

Observed limits for ILP: 50 – 100 Node SN with < 60VNs took
several hours and several 10s of GB RAM

ILP Can Yield Impractical Solutions

 A practical solution contains a sequence of operations to reach
the re-optimized state (also satisfy make-before-break constraint)

 Not possible to model in ILP. Final state obtained from ILP can be
unreachable without violating make-before-break constraint.

Do We Need A Heuristic?

17

Computing Optimal Solution is Very Expensive

H/W Configuration: 8x10 Core Intel Xeon E5 CPU, 1TB RAM

Observed limits: 50 – 100 Node SN with < 60VNs took several
hours and several 10s of GB RAM

ILP Can Yield Impractical Solutions

 A practical solution contains a sequence of operations to reach
the re-optimized state (also satisfy make-before-break constraint)

 Hard to model in ILP. Final state obtained from ILP can be
unreachable without violating make-before-break constraint.

Heuristic Design

18

Our Objectives are Conflicting

Minimize Bottleneck Links Minimize Bandwidth Usage

Heuristic Design

19

Our Objectives are Conflicting

Minimize Bottleneck Links Minimize Bandwidth Usage

Distribute load across
substrate links

Paths can become longer

Heuristic Design

20

Our Objectives are Conflicting

Minimize Bottleneck Links Minimize Bandwidth Usage

Distribute load across
substrate links

Route Virtual Links on
Shorter Paths

Substrate links on shorter
paths can become bottlenecks

Paths can become longer

Heuristic Design

21

Our Objectives are Conflicting

Minimize Bottleneck Links Minimize Bandwidth Usage

Distribute load across
substrate links

Route Virtual Links on
Shorter Paths

Substrate links on shorter
paths can become bottlenecks

Paths can become longer

Heuristic Design

22

Our Objectives are Conflicting

Minimize Bottleneck Links Minimize Bandwidth Usage

Distribute load across
substrate links

Route Virtual Links on
Shorter Paths

Substrate links on shorter
paths can become bottlenecks

Paths can become longer

Instead of an one-shot algorithm, use a meta-heuristic (Simulated
Annealing) to explore the solution space and find a balance.

Simulated Annealing: Neighborhood Generation

23

Randomly select a VN and reroute a randomly selected virtual link.

Bottleneck Substrate Link Reconfiguration

Select a bottleneck substrate link and reroute virtual links using
that bottleneck link until it is no longer a bottleneck.

Virtual Node Migration

Randomly select a VN and re-embed a random virtual node and
incident virtual links.

Virtual Link Migration

Simulated Annealing: Neighborhood Generation

24

Randomly select a VN and reroute a randomly selected virtual link.

Bottleneck Substrate Link Reconfiguration

Select a bottleneck substrate link and reroute virtual links using
that bottleneck link until it is no longer a bottleneck.

Virtual Node Migration

Randomly select a VN and re-embed a random virtual node and
incident virtual links.

Virtual Link Migration

Simulated Annealing: Neighborhood Generation

25

Randomly select a VN and reroute a randomly selected virtual link.

Bottleneck Substrate Link Reconfiguration

Select a bottleneck substrate link and reroute virtual links using
that bottleneck link until it is no longer a bottleneck.

Virtual Node Migration

Randomly select a VN and re-embed a random virtual node and
incident virtual links.

Virtual Link Migration

Exploiting Multi-core CPU

26

Parallel Simulated Annealing Searches

Initial

State

Seed

Solution-0

Seed

Solution-1

Seed

Solution-k

Exploiting Multi-core CPU

27

Parallel Simulated Annealing Searches

Initial

State

Seed

Solution-0

Seed

Solution-1

Seed

Solution-k

Search Thread – 0 (CPU0)

Search Thread – 1 (CPU1)

Search Thread – k (CPUk)

Exploiting Multi-core CPU

28

Parallel Simulated Annealing Searches

Initial

State

Seed

Solution-0

Seed

Solution-1

Seed

Solution-k

Search Thread – 0 (CPU0)

Search Thread – 1 (CPU1)

Search Thread – k (CPUk)

Best

Solution

from All

Searches

Evaluation: Setup

 ReViNE-FAST compared with ReViNE-OPT and SA-realloc*

 Parameters
 50 – 100 node synthetic substrate network

 Larger test cases with 1000 node (heuristic only comparison)

 Mean degree between 3.6 – 4

 Mean substrate link utilization 60% - 80%

 Bottleneck substrate link threshold 70% - 90%

29
* Masti, S,. et al. “Simulated Annealing Algorithm for Virtual Network Reconfiguration“, 8th Euro-NGI Conference on Next

Generation Internet, IEEE, 2012, pp. 95-102.

ReViNE-FAST Performance Highlights

30

Within ~19% of optimal (ReViNE-OPT) on avg.

~3x less cost compared to SA-realloc on avg.

~5% more VNs accepted on avg. when combined
with optimal VN embedding algorithm

Summary

31

ReViNE is one possible way to address the
dynamicity in VN arrival/departure

ReViNE-FAST, a simulated annealing based
heuristic performs ~19% within the optimal

(empirically evaluated)

ReViNE-FAST performs ~3x better than S.O.A
Simulated Annealing-based heuristic

Questions?

32

Source Code

CPLEX: https://github.com/srcvirus/vne-reallocation-cplex

Simulated Annealing: https://github.com/srcvirus/vne-reallocation-sa

33

Backup

ReViNE-FAST vs ReViNE-OPT

34

Impact of Reallocation

35

ReViNE-FAST vs SA-Realloc (Large Cases)

36

ReViNE-FAST Convergence (Large Cases)

37

State-of-the-art

38

Proactive One-shot Approaches: Periodically
reallocate VNs [3][4]

Reactive One-shot Approaches: Reallocate
VNs when a new VN cannot be
embedded [1][2]

Meta-heuristic Approaches: Simulated Annealing [5], Particle Swarm Optimization [6]

[1] Y. Zhu et al., “Algorithms for assigning substrate network resources to virtual network components”, IEEE INFOCOM,

2006.

[2] M. Yu, et al. “Rethinking virtual network embedding: substrate support for path splitting and migration”, ACM

SIGCOMM CCR, 38(2), 2008, pp. 17–29.

[3] N. F. Butt, et al. “Topology-awareness and reoptimization mechanism for virtual network embedding”, Int. Conf. on

Research in Networking 2010.

[4] P. N.Tran, et al., “Optimal mapping of virtual networks considering reactive reconfiguration,” IEEE CloudNet, 2012.

[5] S. Masti, et al. “Simulated Annealing Algorithm for Virtual Network Reconfiguration“, 8th Euro-NGI Conf. on Next

Generation Internet, IEEE, 2012.

[6] Y. Yuan, et al. ,“Discrete particle swarm optimization algorithm for virtual network reconfiguration,” Int. Conf. in Swarm

Intelligence, 2013.

