
ReViNE: Reallocation of Virtual Network
Embedding to Eliminate Substrate Bottlenecks

Shihabur Rahman Chowdhury∗, Reaz Ahmed∗, Nashid Shahriar∗, Aimal Khan∗, Raouf Boutaba∗,
Jeebak Mitra†, and Liu Liu‡

∗David R. Cheriton School of Computer Science, University of Waterloo
{sr2chowdhury | r5ahmed | nshahria | a273khan | rboutaba}@uwaterloo.ca

†Huawei Technologies Canada Research Center
jeebak.mitra@huawei.com

‡Huawei Technologies
liuliu1@huawei.com

Abstract—Perceived as a key enabling technology for the future
Internet, Network Virtualization (NV) allows an Infrastructure
Provider (InP) to better utilize their Substrate Network (SN)
by provisioning multiple Virtual Networks (VNs) from different
Service Providers (SPs). A key challenge in NV is to efficiently
map the VN requests from SPs on an SN, known as the Virtual
Network Embedding (VNE) problem. VNE algorithms are typi-
cally online in nature. A VN embedding can become suboptimal
over time due to the arrival and departure of other VNs as well
as due to changes in SN such as failures. One way to mitigate the
impact of such dynamism is to periodically reallocate resources
for the existing VNs. VNE reallocation can increase an InP’s
revenue by decreasing bandwidth consumption and by increasing
the possibility of accepting future VNs. In this paper, we study
Reallocation of Virtual Network Embedding (ReViNE) problem
to minimize the number of over utilized substrate links and
total bandwidth cost on the SN. We propose an Integer Linear
Programming formulation for the optimal solution (ReViNE-
OPT) and a simulated annealing based heuristic (ReViNE-FAST)
to solve larger problem instances. Simulation results show that
on average our proposed heuristic performs within ∼19% of the
optimal solution. Moreover, ReViNE-FAST generates more than
2.5× better solutions compared to the state-of-the-art simulated
annealing based heuristic for VNE reallocation.

I. INTRODUCTION

Network Virtualization (NV) [1] enables Infrastructure
Providers (InPs) to provision Virtual Networks (VNs) from
multiple Service Providers (SPs) on their Substrate Network
(SN). Such sharing opens new revenue streams for the InPs
and allows them to better utilize the substrate resources.
However, the benefits from NV come at the cost of additional
resource management challenges for the InPs. A key resource
management challenge in NV is to efficiently map VN requests
from SPs on an SN, known as the Virtual Network Embed-
ding (VNE) problem [2]. Typical objectives of VNE include
maximizing the number of mapped VNs [3] and minimizing
the resource provisioning cost on the SN [4], [5].

Most of the VNE algorithms are online, i.e., little or no
future information about VN arrival is known. In contrast, NV
is a dynamic environment where VNs can arrive and depart
over time and the SN can change due to failures. Given such
dynamism, the VN embedding that was optimal at a certain
network state may become suboptimal with the progression of

time. As a consequence, SN resource utilization can become
skewed thus creating network bottlenecks. Such bottlenecks
can be hardly avoided when no or little information is known
about the future VNs. They can also lead to rejection of future
VN requests, hence, adversely affecting an InP’s revenue.

One way to mitigate the impact of such dynamic behavior in
NV is to periodically reallocate the resources assigned to VNs,
i.e., migrate already embedded virtual nodes (VNodes) and
virtual links (VLinks) to different substrate nodes (SNodes)
and substrate paths (SPaths), respectively, to optimize resource
usage in the SN. Such VN reconfiguration can be performed
offline during an off-peak period. In this paper, we study
Reallocation of Virtual Network Embedding (ReViNE) prob-
lem to improve SN resource usage. Particularly, our objective
is to reduce utilization skew by minimizing the number of
bottleneck substrate links (SLinks), i.e., SLinks with utilization
over an operator defined threshold (e.g., 80%) as well as the
total bandwidth consumption of the embedded VNs.

Minimizing the number of bottleneck SLinks may conflict
with minimizing bandwidth consumption. This is because
minimizing total bandwidth consumption requires embedding
the VLinks on shorter SPaths. As a consequence, SLinks
that are on shortest paths between most pair of SNodes have
the higher probability of becoming bottlenecks. Minimizing
the number of bottleneck SLinks thus requires embedding
the VLinks on possibly longer SPaths, resulting in increased
bandwidth consumption. Our formulation of ReViNE strikes a
balance between these two conflicting objectives. Particularly,
we have the following contributions in this paper:
• Integer Linear Programming (ILP) formulation for the

optimal solution to ReViNE (ReViNE-OPT), which strikes
a balance between minimizing the number of bottleneck
SLinks and total bandwidth consumption on the SN.

• A heuristic algorithm (ReViNE-FAST) to tackle the com-
putational complexity of ReViNE-OPT. Given the offline
nature of ReViNE, we propose a simulated annealing [6]
based heuristic.

• Performance comparison of ReViNE-FAST with that of
the state-of-the-art simulated annealing based heuristic
for VNE reallocation [7].

The rest of the paper is organized as follows. We start
with motivating ReViNE through an experimental study in Sec-
tion II. Then, we formally define ReViNE in Section III, fol-
lowed by the ILP formulation for ReViNE-OPT in Section IV.
A simulated annealing based heuristic to tackle the compu-
tational complexity of ReViNE is presented in Section V.
Our evaluation of the proposed solutions are in Section VI,
followed by a discussion on the related works from the
literature in Section VII. Finally, we conclude with future
research directions in Section VIII.

II. MOTIVATION

We first perform an experimental study to motivate the
requirement of reducing the number of bottleneck SLinks
through reallocation. The experiment demonstrates that even
with the optimal algorithm for VN embedding, substrate re-
source utilization can become skewed and can lead to rejection
of VN requests. For this experiment, an in house discrete event
simulator is used that simulates the arrival and departure of
VNs on a large ISP network (AS-6461) from Rocketfuel ISP
topology dataset [8]. Random VN topologies were generated
with 50% probability of a link being present between two
VNodes. We varied the VN size between 4 and 8. VN arrival
rate and life time were random variable following a Poisson
distribution with a mean of 10 arrivals per 100 time unit
and exponential distribution with a mean of 1000 time units,
respectively. These parameters were chosen in accordance with
the values used in other research works from the literature [9],
[10]. We modified the ILP formulation from [5] to discard the
disjointedness constraint and optimally embed a VN request
on an SN to minimize bandwidth provisioning cost.

 0.4

 0.6

 0.8

 1

 0 2500 5000 7500 10000

V
N

 A
cc

ep
ta

nc
e

Ra
tio

Time

(a) VN Acceptance Ratio

 0
 0.25
 0.5

 0.75
 1

 0 2500 5000 7500 10000

Cu
m

ul
at

iv
e

 F
ra

c.
 o

f S
Li

nk
s

Time

80% - 100%
70 - <80%

50% - <70%
30% - <50%

10% - <30%
0% - <10%

(b) SLink Utilization Distribution
Fig. 1. Results for Motivating Example

Fig. 1(a) shows VN acceptance ratio, i.e., the fraction of
accepted VNs over time. Fig. 1(b) shows the load distribution
on SN. Fig. 1(a) shows that VN acceptance ratio drops close to
50% near time 2000 and remains almost the same throughout
the simulation lifespan. One can think that such behavior is

due to resource exhaustion in the SN, leading to rejection of
VN requests. In reality, such behavior is due to the skewed
load distribution on the SN as evident from Fig. 1(b). Fig. 1(b)
shows that more than 40% of the SLinks have less than 10%
utilization throughout the simulation timespan. At the same
time, about 30% or more of the SLinks have a very high uti-
lization, i.e., more than 70%. Such skewness can be explained
as follows. Although there is sufficient capacity available in
part of the SN, subset of SLinks get more preference over the
others by the embedding algorithm based on the objective. For
example, an embedding algorithm that minimizes the cost of
bandwidth allocation will prefer SLinks that are on shortest
paths between SNodes. Thus these SLinks become saturated
very quickly. If such SLinks also belong to a cut set of the
SN, then the chances of a VN rejection is also increased by
these SLinks becoming bottlenecks. As a result, VN requests
are rejected since there are not sufficient paths in the SN that
connect a VN’s VNodes with the required capacity. A periodic
reallocation of VNs can reduce bottlenecks by redistributing
the load on the SN, leading to more accepted VNs.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we first present a mathematical representa-
tion of the inputs, i.e., the SN, the set of embedded VNs and
location constraints in Section III-A. Then we formally define
ReViNE in Section III-B.

A. System Model

1) Substrate Network: We represent the SN as an undi-
rected graph, G = (V,E), where V and E denote the set
of SNodes and SLinks, respectively. The set of neighbors of
an SNode u ∈ V is denoted by N (u). We associate the
following attributes with each SLink (u, v) ∈ E: (i) buv :
total bandwidth capacity of the link (u, v), (ii) bruv : residual
bandwidth capacity of the link (u, v), and (iii) Cuv : cost of
unit bandwidth on (u, v) for provisioning a VLink.

2) Set of Embedded VNs: We denote the set of embedded
VNs on the SN with Ḡ. Each VN Ḡi ∈ Ḡ is represented
as an undirected graph Ḡi = (V̄i, Ēi), where V̄i and Ēi

are the set of VNodes and VLinks of Ḡi, respectively. Each
VLink (ū, v̄) ∈ Ēi has a bandwidth requirement biūv̄ . We
also have a set of location constraints for each VN Ḡi,
Li = {Li(ū)|Li(ū) ⊆ V,∀ū ∈ V̄i}, such that a VNode ū ∈ V̄i
can only be provisioned on an SNode u ∈ Li(ū). We represent
this location constraint with the following binary variable:

`iūu =

{
1 iff VNode ū ∈ V̄i can be provisioned on u ∈ V,
0 otherwise.

The input VNode and VLink embedding of a VN Ḡi ∈ Ḡ
on an SN G is represented with binary variables yiūu and xiūv̄uv ,
respectively. These two variables are defined as follows:

yiūu =

{
1 iff VNode ū ∈ V̄i is mapped to SNode u ∈ V,
0 otherwise.

xiūv̄uv =

{
1 iff VLink (ū, v̄) ∈ Ēi is mapped to SLink(u, v) ∈ E,
0 otherwise.

B. ReViNE Problem Statement

Given an SN G = (V,E), a set of embedded VNs Ḡ,
reallocate the current embedding of the VNs Ḡi ∈ Ḡ by
migrating VNodes and VLinks to different SNodes and SPaths
in such a way that the re-optimized embedding achieves the
following objectives:

a) Primary Objective: The number of bottleneck links
in the SN is minimized. An SLink is considered bottleneck if
its utilization is more than an input threshold θ%.

b) Secondary Objective: The total cost of allocating
bandwidth for provisioning all the VNs are minimum. Mathe-
matically, the secondary objective is to minimize the following
cost function:

∑
∀Ḡi∈Ḡ

∑
∀(ū,v̄)∈Ēi

∑
∀(u,v)∈Pūv̄

Cuv × biūv̄ . Where,

Pūv̄ is the SPath on which the VLink (ū, v̄) ∈ Ei is embedded
after reallocation.

The reallocation is subject to the constraints that SLinks
cannot be over-provisioned to accommodate the VLinks, and
a VLink’s demand cannot be routed along multiple SPaths.

IV. ILP FORMULATION

The primary objective of ReViNE is to minimize the number
of bottleneck SLinks. However, solely minimizing the number
of SLinks can lead to re-embedding VLinks on longer SPaths,
resulting in high bandwidth usage in the SN. Therefore, we
also minimize the total bandwidth cost for provisioning the
VLinks as a secondary objective. As per the problem state-
ment, we do not consider any node mapping cost and consider
only link mapping cost. In what follows, we formulate the
optimal solution of ReViNE as an ILP. We first introduce
our decision variables in Section IV-A. Then, we present the
constraints in Section IV-B followed by the objective function
in Section IV-C.

A. Decision Variables

A VLink from a VN Ḡi ∈ Ḡ should be mapped to a non-
empty SPath. We introduce the following decision variable to
indicate the mapping between a VLink (ū, v̄) ∈ Ēi and an
SLink (u, v) ∈ E.

Xiūv̄
uv =

{
1 if VLink (ū, v̄) ∈ Ēi is mapped to (u, v) ∈ E,
0 otherwise.

The following decision variable denotes VNode mapping:

Yiūu =

{
1 if VNode ū ∈ V̄i is mapped to u ∈ V,
0 otherwise.

Note that xiūv̄uv and yiūu represent the given embedding
(input), while Xiūv̄

uv and Yiūu represent the re-optimized em-
bedding (output).

B. Constraints

1) Node Mapping Constraints: (1) ensures that VNodes
are provisioned according to the location constraint. Then, (2)
restricts a VNode to be provisioned on exactly one SNode.
Finally, (3) ensures that multiple VNodes from the same VN
are not mapped to the same SNode.

∀Ḡi ∈ Ḡ,∀ū ∈ V̄i,∀u ∈ V : Yiūu ≤ `iūu (1)

∀Ḡi ∈ Ḡ,∀ū ∈ V̄i :
∑
u∈V

Yiūu = 1 (2)

∀Ḡi ∈ Ḡ,∀u ∈ V :
∑
ū∈V̄i

Yiūu ≤ 1 (3)

Note that, VNode embedding follows from VLink embedding
since there is no cost associated with VNode embedding.

2) Link Mapping Constraints: (4) ensures that every VLink
is mapped to a non-empty set of SLinks and no VLink is
left unmapped. Then, SLink resources over-provisioning is
constrained by (5). Finally, (6) presents flow constraint that
ensures VLinks are mapped to a continuous SPath.

∀Ḡi ∈ Ḡ,∀(ū, v̄) ∈ Ēi :
∑

∀(u,v)∈E

Xiūv̄
uv ≥ 1 (4)

∀Ḡi ∈ Ḡ,∀(u, v) ∈ E :
∑

∀(ū,v̄)∈Ēi

Xiūv̄
uv × biūv̄ ≤ buv (5)

∀Ḡi ∈ Ḡ,∀ū, v̄ ∈ V̄i,∀u ∈ V :
∑

∀v∈N (u)

(Xiūv̄
uv −Xiūv̄

vu)

= Yiūu − Yiv̄u (6)

C. Objective Function
Our objective in ReViNE is to minimize the number of

bottleneck SLinks while minimizing the cost of provisioning
bandwidth on the SLinks. Therefore, we have a multi-objective
optimization with two objectives. In the following, we math-
ematically formulate each of the objectives:

1) Bottleneck SLink cost: We consider an SLink to be a
bottleneck link if its utilization is more than θ%. We use the
following derived variable (dependent on θ) to denote if an
SLink (u, v) ∈ E is a bottleneck:

Ψuv(θ) =

1 iff

∑
∀Ḡi∈Ḡ

∑
(ū,v̄)∈Ei

Xiūv̄
uv × biūv̄ >

θbuv
100

0 otherwise.
(7)

Assume that Cb
uv is the cost of having a bottleneck SLink

(u, v). The total cost incurred for having bottleneck SLinks is:

Cbottleneck =
∑

∀(u,v)∈E

Ψuv × Cb
uv (8)

2) Bandwidth cost: The total cost of allocating bandwidth
on the SLinks to accommodate the VLinks can be represented
by the following equation:

Cbw =
∑
∀Ḡi∈Ḡ

∑
∀(ū,v̄)∈Ēi

∑
∀(u,v)∈E

Xiūv̄
uv × Cuv × biūv̄ (9)

3) Final Objective Function: Our final objective function
is to minimize the following weighted sum of (9) and (8):

minimize (αCbottleneck + (1− α)Cbw) (10)

Where, 0 ≤ α ≤ 1 determines the relative weight of the cost
components. For instance, setting α to 0.5 gives equal weight
to both objectives, whereas, a value higher than 0.5 prioritizes
minimizing the number of bottleneck SLinks over minimizing
bandwidth consumption in the SN.

V. SIMULATED ANNEALING HEURISTIC

A. Motivation for a Heuristic

Theoretically, ReViNE is at least as hard as NP-hard multi-
commodity unsplittable flow problem [11], [12]. However,
unlike many other resource allocation problems in NV such
as different variants of VNE [2], [13], ReViNE is an offline
problem and is expected to be scheduled less frequently, e.g.,
once every few hours or days. Given that ReViNE is not
time critical, one can think of executing ReViNE-OPT every
time a reallocation is triggered. However, running the optimal
solution every time is not practical for the following reasons:

Expensive Computation: First, ReViNE-OPT is expensive
in terms of both computation and memory resources. We
explored the practicality of running ReViNE-OPT. We im-
plemented ReViNE-OPT from Section IV using IBM ILOG
CPLEX libraries and ran it on a machine with 80 CPU cores
and 1TB of memory. For small problem instances (50 – 100
node SNs with less than 60 VNs), the CPLEX implementation
took several hours in some cases and tens of gigabytes of
memory. The solution could not even run for large problem
instances (1000 node SNs) due to memory limitations.

Impractical Solutions: Second, although ReViNE-OPT
gives us the optimal state of the network, the optimal final
state might not be achievable in reality. The primary reason
is that ReViNE-OPT gives us the final optimal embedding,
whereas for a real life implementation we need a sequence
of VNode and VLink migrations that will not disrupt the VN
connectivity. The ILP formulation, i.e., ReViNE-OPT does not
take into account that a virtual resource has to be provisioned
first before it can be migrated from the old embedding. Such
dependency is hard to formulate in an ILP, hence, ReViNE-
OPT might yield a state that is not achievable in practice.

These reasons have motivated us to design a heuristic that
can find a near optimal and practical state from the current
embedding in a reasonable time. A number of proposals
in the literature re-optimize VN embedding using a greedy
heuristic [14]–[16]. However, given the offline nature of the
problem and the slower timescale at which it is solved, we
have more computational cycles available to solve the problem
at our disposal. Therefore, we propose to use simulated
annealing [6] instead of designing a greedy one step solution.
Simulated annealing is an effective meta-heuristic for finding
locally optimal solutions from a large search space of integral
variables.

B. Heuristic Design

Simulated annealing explores the neighborhood of an initial
solution and keeps improving the solution. It also probabilis-
tically accepts worse solutions from the search neighborhood.
Typically, a temperature parameter (T) and energy function
controls the probability of accepting a worse solution. Param-
eter T is set to a higher value during the initial iterations of
the search, resulting in a higher probability of accepting a
worse solution. A cooling schedule attenuates the temperature
and eventually decreases the probability of accepting a worse

solution towards the end of the search. By accepting worse
solutions, simulated annealing tries to avoid being stuck at a
local minima. We run multiple iterations of the neighborhood
exploration procedure for each temperature to cover a wider
search space. In order to design a simulated annealing heuris-
tic, we need to define the following:
• A suitable data structure to represent solution from the

solution space.
• A neighborhood generation function, which, generates a

new solution from a given solution.
• An energy function, which determines the fitness of a

solution. It regulates the probability of accepting or reject-
ing a solution during an iteration of simulated annealing.

• A cooling schedule, which determines how the tempera-
ture is attenuated during the search process.

In what follows, we describe how we have addressed the
aforementioned issues and also provide pseudo-codes where
necessary.

1) Solution Representation: We use the tuple
〈G, Ḡ, L, nmap, emap, α, θ, ξ〉 to represent a solution in
the solution space. G, Ḡ, and L represent the SN, set of VNs
and location constraints, respectively, as defined in Section III.
nmapi ∈ nmap and emapi ∈ emap represents the VNode
and VLink embedding of a VN Ḡi ∈ Ḡ, respectively. α is
the weight from (10). θ is the utilization threshold from (7)
that determines if an SLink is a bottleneck or not. Finally, ξ
represents the set of bottleneck SLinks.

2) Neighborhood Generation: We randomly perform one
of the following three operations on a solution to generate a
neighborhood solution:

a) Bottleneck SLink Reconfiguration:: We randomly se-
lect a bottleneck SLink and try to reduce the selected SLink’s
utilization by reallocating VLinks embedded on it. Alg. 1
presents the pseudo-code for bottleneck SLink reconfiguration
process. Alg. 1 first selects a VLink embedded on the selected
SLink with maximum number of bottleneck SLinks on the
VLink’s embedded SPath (line 4). The rationale for this
criteria is to reallocate a VLink that affects more bottleneck
SLinks. Then we compute a new embedding SPath for the
VLink while excluding the selected bottleneck SLink from
path computation (line 7 – 8). Then, we reallocate the VLink
and update the utilization of the SLinks on the old and new
SPaths. This process is continued until the selected SLink is
no longer a bottleneck or no VLink can be migrated.

b) VNode Migration:: We randomly choose a VNode
from a randomly selected VN and re-embed that VNode on
a different SNode. Pseudo-code for this process is described
in Alg. 2. Alg. 2 goes through the selected VNode’s location
constraint set and determines the cost change for migrating to
that SNode. The SNode that yields maximum cost reduction
is then chosen for migration.

c) Virtual Link Migration:: We randomly choose a
VLink from a randomly selected VN and re-embed the VLink.
In order to re-embed the VLink, we compute an SPath between
the SNodes corresponding to the node embedding of the
endpoints of the VLink.

Note that in these algorithms we have used a procedure
named MCP (Minimum Cost Path) to compute embedding
SPaths. MCP computes a path in the SN between a pair
of SNodes, which avoids a set of forbidden SLinks. MCP
assigns weight to each SLink that is proportional to the already
allocated bandwidth on that SLink. Such weight function
allows MCP to find an SPath avoiding the already highly
utilized SLinks.

Algorithm 1: Bottleneck Reconfiguration
1 function ReconfigureBottleneck(solution)
2 (u, v)← Random bottleneck SLink from solution.ξ
3 while (u, v) is a bottleneck do
4 (m,n)← VLink mapped to (u, v) with maximum

number of bottleneck SLinks on its embedded SPath
5 i← k|Ḡk ∈ solution.Ḡ and (m,n) ∈ Ēk

6 (u′, v′)← (solution.nmapmi , solution.nmapni)
7 forbidden← {(u, v)}
8 Pmn ←MCP(solution.G, u′, v′, forbidden)
9 if Pmn = φ then break

10 solution.emapmn
i ← Pmn

11 Update utilization and residual bandwidth
12 return solution

Algorithm 2: VNode Migration
1 function ReallocateVNode(solution)
2 i← Index of a randomly selected VN
3 m← A random VNode from VN, solutions.Ḡi

4 ∆max ← 0, bestu ← NIL
5 for u ∈ solution.Li(m) do
6 ∆← Cost improvement for reallocating m to u
7 if ∆ > ∆max then ∆max ← ∆, bestu ← u
8 if bestu 6= solution.nmapmi and bestu 6= NIL then
9 for ∀n ∈ N (m) do

10 Pmn ←
MCP(solution.G, bestu, solution.nmapni , φ)

11 solution.emapmn
i ← Pmn

12 Update utilization and residual bandwidth
13 solution.nmapmi ← bestu
14 return solution

3) Energy Function and Cooling Schedule: We use cost
function (10) as the energy of a solution. During iteration k
of a simulated annealing search, the probability of accepting
a solution is a function of energy and temperature. We define
this probability as follows:

P(Energy, Tk) =

{
1 if ∆Energy < 0

e−∆Energy/Tk otherwise.

Where, Tk is the temperature at the k-th iteration and
∆Energy = Energy(neighbor) − Energy(current). Here,
Energy(neighbor) is the energy of the neighbor solution
generated by randomly applying one of the above three
neighborhood generation techniques on the current solution
with energy, Energy(current). We adapt the following linear
function from [7] as our cooling schedule and determine the
temperature, T at iteration k + 1: Tk+1 = ρ ∗ Tk, where
0 < ρ < 1 is the cooling rate.

The combined algorithm is presented as pseudo-code
in Alg. 3. Alg. 3 takes as input the initial solution, i.e., initial
set of VN embedding (solution), maximum number of itera-
tions to perform (itmax), the number of iterations to perform
per temperature value (ittemp), an initial temperature (T0)
and the cooling rate (ρ). During each iteration, a neighboring
solution is generated by invoking GenerateNeighbor procedure
(line 7). Based on the energy of the neighboring solution and
the current temperature, this neighboring solution is retained
or rejected (line 11 – 14). Finally, the best solution generated
during all the iterations is returned.

C. Parallel Implementation of Heuristic

Solution space exploration can be further improved by
spawning multiple simulated annealing searches from different
starting points. We generate a number of neighbors from the
initial solution using our neighborhood generation procedure
GenerateNeighbor. These solutions are then used as a starting
point for independent simulated annealing searches. Each of
these independent searches can be performed on a separate
thread without any synchronization. When the execution of
all threads finishes, the one yielding the best solution among
all other threads is chosen as the global best.

Algorithm 3: ReViNE-FAST
1 function ReallocateVN(solution, itmax, ittemp, T0, ρ)
2 iterations← 0, T ← T0

3 current← best← solution
4 while iterations < itmax do
5 while iterationst < ittemp do
6 current energy ← Cost(current)
7 next← GenerateNeighbor(current)
8 next energy ← Cost(next)
9 ∆energy = next energy − current energy

10 p← rand(0, 1)
11 if ∆energy < 0 then current← next

12 else if p < e−∆energy/T then
13 current← next
14 if Cost(best) > Cost(current) then
15 best← current
16 Increment iterationst
17 T = ρ ∗ T , Increment iterations
18 return best

VI. EVALUATION

In this section, we first describe the simulation setup in Sec-
tion VI-A followed by a description of the evaluation metrics
in Section VI-B. Then, we present the findings focusing on
the following aspects: (i) performance comparison of ReViNE-
FAST with ReViNE-OPT in Section VI-C, (ii) the impact of
reallocation on VN acceptance ratio in Section VI-D, (iii)
performance comparison of ReViNE-FAST with the state-of-
the-art simulated annealing based heuristic for VNE reallo-
cation from the literature [7] (named as SA-realloc in this
section) in Section VI-E, and (iv) the convergence behavior of
ReViNE-FAST compared to [7] for larger problem instances
in Section VI-F.

A. Simulation Setup

1) Testbed: We have implemented ReViNE-OPT using IBM
ILOG CPLEX 12.5 C++ libraries. We have also implemented
ReViNE-FAST in C++. Our implementation of simulated an-
nealing leverages multiple CPU cores and performs multiple
searches in parallel. The CPLEX implementation was run on
a machine with 8×10 core Intel Xeon E7-8879 CPU and 1TB
of memory. The heuristic was run on a 4×8 core Intel E5-
4640 CPU and 512GB of memory. If not specified, ReViNE-
FAST performed 32 parallel searches, each search running on
a separate thread pinned on a dedicated CPU. We set the initial
temperature to 0.95 and the cooling rate to 0.99. We set the
unit costs Cb

uv and Cuv from (8) and (9), respectively, in a
way such that the cost components in (10) are comparable.
The weight factor α was set to prioritize bottleneck link cost
over bandwidth cost for reducing utilization skew in the SN.

2) Small Test Cases: We have used two randomly generated
SNs for the small test cases. The first SN contains 50 nodes
and 100 links, and the second SN contains 100 nodes and 187
links. SLink capacity of these SNs was set to 40000 units.
We used randomly generated graphs with different sizes and
bandwidth requirements for the VNs. We varied the mean
SLink utilization between 60% to 80% by varying the per
VLink bandwidth requirement and the number of VNs. The
number of VNs was varied between 20 and 75 depending on
the SN. We set a random value between 70% and 90% as the
utilization threshold for determining bottleneck SLinks.

3) Large Test Cases: For the larger test cases, much like the
smaller test cases, the SN and VNs are randomly generated.
The SN consists of 1000 nodes and 2000 links. In each
test case, there are about 300 VNs, each with 7 VNodes
on average. We set the utilization threshold for determining
bottleneck SLinks at a random value between 70% and 80%.
The number of bottleneck SLinks in these cases have been
varied from 25% to 65% of the number of SLinks. The
CPLEX solver was unable to solve the large test cases with
the available compute resources, hence, the large cases were
tested with ReViNE-FAST and SA-Realloc only.

B. Evaluation Metrics

a) Cost Ratio: Cost ratio is the ratio of costs obtained
by two different solution approaches, e.g., between ReViNE-
FAST and ReViNE-OPT.

b) Reduction Ratio: Reduction ratio is the percentage of
reduction of a given metric (e.g., cost, number of bottleneck
SLinks) by an algorithm compared to the initial value of the
metric before optimization.

c) Performance Gap: Performance gap is the relative
performance difference between a heuristic and the optimal
solution. We compute performance gap for a metric M (e.g.,
cost or bottleneck SLink reduction) using the following:

(Mprevious −Moptimal)− (Mprevious −Mheuristic)

Mprevious −Moptimal

In the above equation,Mprevious,Moptimal, andMheuristic

represent the value of a metric before optimization, the optimal

value and the value obtained using a heuristic, respectively.
Performance gap shows the relative gap between the im-
provement obtained by a heuristic compared to the optimal
solution. Cost and reduction ratio fail to capture the essence
of relative performance improvement by the heuristic and
optimal solution, hence, we also use performance gap metric to
compare the performance of heuristic with that of the optimal.

C. Comparison between ReViNE-OPT and ReViNE-FAST

 0
 0.2
 0.4
 0.6
 0.8

 1

 1.05 1.1 1.15 1.2 1.25 1.3

CD
F

Cost Ratio (ReViNE-FAST : ReViNE-OPT)

(a) CDF of cost ratio

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

CD
F

Cost Performance Gap (%): ReViNE-FAST vs ReViNE-OPT

(b) CDF of Cost Performance Gap
Fig. 2. Comparison between ReViNE-OPT and ReViNE-FAST

We ran both ReViNE-FAST and ReViNE-OPT on the small
test cases to compare ReViNE-FAST’s performance with
ReViNE-OPT. In our simulations, both ReViNE-FAST and
ReViNE-OPT were able to reduce the number of bottleneck
SLinks down to zero. Therefore, the cost function, after re-
allocation in this case, directly represents the bandwidth cost
of the solutions. For small scale scenario, the ratio of costs
obtained by the solutions gives the extent of extra bandwidth
used by ReViNE-FAST. It is worth mentioning that even with
smaller problem instances, ReViNE-OPT took several hours to
finish. On the other hand, we performed 32 parallel instances
of simulated annealing, each performing 60,000 iterations in
less than 20 seconds.

We plot the CDF of ReViNE-FAST to ReViNE-OPT’s cost
ratio in Fig. 2(a). In Fig. 2(a), the 90th percentile of cost
ratio is within ∼1.24, i.e., in 90% cases the heuristic uses up
to ∼24% extra bandwidth compared to the optimal solution.
On average, we found ReViNE-FAST to allocate ∼19% extra
bandwidth compared to ReViNE-OPT. To demonstrate the per-
formance of ReViNE-FAST more clearly, we also plot the CDF
of performance gap for cost metric between ReViNE-FAST and
ReViNE-OPT in Fig. 2(b). Performance gap demonstrates the
relative performance improvement obtained by the discussed
approaches. We observe that the relative performance gap
between ReViNE-FAST and ReViNE-OPT is within ∼0.45%,
with an average of ∼0.3% over all test cases. The significance
of this metric is that the total cost reduction by the heuristic
is within ∼0.3% of the total cost reduction obtained by the
optimal solution on average for these test cases.

D. Impact of Reallocation

 0.48
 0.51
 0.54
 0.57
 0.6

 0.63

 2500 5000 7500 10000

V
N

 A
cc

ep
ta

nc
e

Ra
tio

Time

With Reallocation
No Reallocation

(a) Impact on VN Acceptance Ratio

-10

-5

 0

 5

 10

 0 2500 5000 7500 10000%
 D

iff
. i

n
N

o.
 o

f S
Li

nk
s

Time

<30% Utilization >80% Utilization

(b) Impact on Load Distribution
Fig. 3. Impact of VN Reallocation

In this section, we present quantitative results showing
the impact of reallocation on VN acceptance ratio and load
distribution over SN. For this study, we repeat the same
experiment from Section II with the exception of executing
ReViNE-FAST every 450 time units. Such setting triggers
about 24 reallocations during the simulation runtime, simulat-
ing a scenario with hourly reallocation. We performed a total
of 60,000 iterations of simulated annealing search. Utilization
threshold for determining bottleneck links was set to 75%.

Fig. 3(a) shows the impact of reallocation on VN acceptance
ratio. In order to clearly present the results, we excluded
the data from warm up period, i.e., first 1000 time units
in this case. The advantages of reallocation is clearly evi-
dent from Fig. 3(a). The results show about 5% increase in
VN acceptance ratio. It is worth mentioning that this result
represents a lower bound of the improvement since VNs
are being embedded using the optimal algorithm. In reality,
VNs are embedded using heuristic [2] and we foresee more
improvement in acceptance ratio for those cases.

In Fig. 3(b), we present the difference between percentage
of SLinks having different utilizations with and without reallo-
cation. To show the results more clearly, we present only two
classes of utilization: lightly loaded links, i.e., links with less
than 30% utilization, and highly loaded links, i.e., links having
more than 80% utilization. A positive value in difference
indicates more of that type of link present without reallocation.
We observe a larger area above the positive line for the highly
loaded links in Fig. 3(b), indicating an overall reduction in
bottleneck SLinks. We also observe a larger area over the
positive line for the lightly loaded SLinks, indicating higher
utilization of the network. Therefore, the overall network
utilization has been increased while bottlenecks have been
decreased by performing periodic reallocations.

E. Comparison with Related Work [7]

We have implemented the state-of-the-art simulated anneal-
ing heuristic for VNE reallocation from [7] and compare SA-
realloc’s performance with our solutions. SA-realloc generates
neighboring solutions by randomly migrating a VNode to the
first feasible SNode. However, SA-realloc does not provide
any comparison with the optimal solution. We compare SA-
realloc with both ReViNE-OPT and ReViNE-FAST and present
the results in Fig. 4.

 0
 0.25
 0.5

 0.75
 1

 2 2.5 3 3.5 4 4.5 5

CD
F

Cost Ratio with ReViNE-OPT

SA-realloc ReViNE-FAST

 0
 0.25
 0.5

 0.75
 1

 1.1 1.2 1.3

(a) Cost Ratio Comparison

 0.2

 0.4

 0.6

 0.8

 1

 2 2.5 3 3.5 4 4.5
CD

F
Cost Ratio (ReViNE-FAST : SA-Realloc)

(b) Cost Ratio of SA-realloc [7] to ReViNE-FAST

Fig. 4. Performance comparison with [7]

SA-realloc was also able to reduce the number of bottleneck
SLinks down to zero for the small test cases. However, as we
can see from Fig. 4(a), solutions obtained using [7] use 2.8×
extra bandwidth compared to ReViNE-OPT on average. In
contrast, ReViNE-FAST uses only ∼19% extra bandwidth on
average compared to ReViNE-OPT. We perform a head-to-head
comparison of [7] and ReViNE-FAST in Fig. 4(b) by plotting
the CDF of cost ratio between SA-realloc and ReViNE-FAST.
The results show that ReViNE-FAST always performs better
than SA-realloc and uses 3.15× less bandwidth on average.

F. Large Scale Results

As stated earlier, ReViNE-OPT was not able to solve the
larger test cases. Therefore, we only compare ReViNE-FAST
with SA-realloc from [7] using the large test cases. For this
scenario, ReViNE-FAST spawned 4 parallel searches in 4
separate threads pinned on dedicated CPUs, while SA-realloc
was run with a single thread as per the description in [7]. We
first recorded the cost function value after terminating both
the heuristics after 5 minutes of execution. We also compare
the convergence behavior of both heuristics by running them
for extended period of time, i.e., more than 5 minutes.

Fig. 5 shows the results for 5 minute execution duration.
We plot the CDF of SA-realloc to ReViNE-FAST’s cost
ratio in Fig. 5. Even for the large test cases, ReViNE-FAST
always performs better than SA-realloc. Solutions generated

 0
 0.2
 0.4
 0.6
 0.8

 1

 2 2.2 2.4 2.6 2.8 3 3.2

CD
F

Cost Ratio (SA-realloc: ReViNE-FAST)
Fig. 5. Large inputs run for ≤ 5 minute

 0
 20
 40
 60
 80

 100

 0 5 10 15 20 25 30 35

Re
du

ct
io

n
(%

)

Execution Time (min)

ReViNE-FAST Cost
ReViNE-FAST Bottleneck Links

SA-realloc Cost
SA-realloc Bottleneck Links

Fig. 6. Convergence behavior comparison

by ReViNE-FAST have ∼2.5× lesser value of cost function
on average compared to those obtained by SA-realloc.

Results for running both ReViNE-FAST and SA-realloc
for longer duration ranging from 5–30 minutes in 5 minute
increments are presented in Fig. 6. Fig. 6 gives us some insight
into the quality of results obtained during the first 5 minute
of execution compared to longer runs. We report the mean
percentage reduction in cost function and the number of bot-
tleneck SLinks against increasing execution time in Fig. 6. Our
first observation is that ReViNE-FAST performs significantly
better compared to SA-realloc for similar execution time. For
instance, ReViNE-FAST reduces both the cost function and
the number of bottleneck SLinks by ∼80% within the first 5
minutes, compared to about ∼40% reduction by SA-realloc.
Even after 30 minutes of execution, ReViNE-FAST maintains
similar performance gap with that of SA-realloc. Finally, the
improvement obtained within the first 5 minutes of execution is
more significant compared to the improvement obtained when
ReViNE-FAST runs longer. Although the same is true for SA-
realloc, however, the solution quality obtained by ReViNE-
FAST in first 5 minutes is closer to the optimal.

VII. RELATED WORKS

Different variants of VNE has received a significant atten-
tion from the research community over the past years [2].
However, VNE algorithms from these works are mostly online
and can cause substrate resource fragmentation and skewed
utilization over time. This motivated research proposals to re-
allocate VNE to improve SN performance. In this section, we
discuss the state-of-the-art in VNE reallocation and contrast
our approach with them.

Some of the earlier work in VNE also proposed to per-
form periodic migration of virtual resources to increase VN
acceptance ratio [17] or remove bottlenecks from the SN [18].
[17] proposes to migrate both VNode and VLinks, whereas,
[18] proposes to migrate only VLinks. These works assume
that VLinks can be embedded on multiple SPaths, which is
not valid in our case. Moreover, [17] and [18] do not provide

optimal solutions to the problem and the performance gap of
their heuristics with optimal solution is unknown.

A few research works have proposed to perform reallocation
of VNs when a new VN request cannot be embedded on the
SN [14], [19], [20]. [19] reallocates the VNodes and VLinks
to remove bottlenecks in the SN that lead to rejection of a
VN request. On the other hand, [14] migrates star-subgraphs
of VNs to make room for the rejected VN in the SN. [20]
addresses similar problem as [19] and [14] with the addition
of minimizing VNode and VLink migration to reduce service
disruption. These approaches are reactive, i.e., they trigger
a reallocation at certain events such as failure to embed a
VN, and propose one shot heuristics for VNE reallocation.
In contrast, we propose to use a local search meta-heuristic
to explore more of the solution space. Our solution can be
used both pro-actively or reactively. A few other works have
addressed VNE reallocation problem to better balance the
load across the SN and also reduce SLink utilization [15],
[21]. However, they do not provide both optimal and heuristic
solutions that strike a balance between minimizing the number
of bottleneck SLinks and the total bandwidth cost.

Finally, some research works have proposed to use meta-
heuristics for VNE reallocation [7], [22]. Unlike single step
algorithms, meta-heuristic algorithms explore more of the so-
lution space through systematic search methods. [7] proposes
to use simulated annealing for VNE reallocation. It generates
the neighboring solution by randomly migrating a VNode from
a randomly selected VN. In contrast, we perform multiple
operations to generate a neighboring solution. Moreover, we
parallelized our simulated annealing search, which is not done
in [7]. More recently, Yuan et al., [22] proposed to use particle
swarm optimization (PSO) for VNE reallocation to minimize
peak SNode and SLink utilization. Unlike simulated annealing,
PSO is a population based meta-heuristic, i.e., at a given time
the search frontier is expanded from a population of solutions.
It would be interesting to quantitatively compare our solution
with that of [22] and we leave it as a future work.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented Reallocation of Virtual
Network Embedding (ReViNE), which strikes a balance be-
tween minimizing the number of bottleneck SLinks and the
total bandwidth cost. We have proposed both optimal and
heuristic solutions to ReViNE. Simulation results show that
our proposed heuristic performs within ∼19% of the optimal
solution and generates more than 2.5× better solutions com-
pared to the state-of-the-art simulated annealing based VNE
reallocation. In the future, we plan to extend and apply our
work in the context of Dense Wavelength Division Multiplexed
(DWDM) optical networks. Fragmentation and skewed utiliza-
tion can affect DWDM networks more than IP networks since
the wavelengths have to be assigned in discrete fashion and
wavelength continuity constraints have to be maintained for
VLink provisioning. Another interesting extension of this work
would be to explore population based meta-heuristics such as
Artificial Bee Colony optimization [23] for solving ReViNE.

REFERENCES

[1] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualiza-
tion,” Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[2] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[3] N. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network
embedding with coordinated node and link mapping,” in INFOCOM
2009, IEEE. IEEE, 2009, pp. 783–791.

[4] A. Razzaq and M. S. Rathore, “An approach towards resource efficient
virtual network embedding,” in Evolving Internet (INTERNET), 2010
Second International Conference on. IEEE, 2010, pp. 68–73.

[5] S. R. Chowdhury, R. Ahmed, M. M. A. Khan, N. Shahriar, R. Boutaba,
J. Mitra, and F. Zeng, “Protecting virtual networks with drone,” in Proc.
of IEEE/IFIP NOMS, 2016.

[6] E. Aarts and J. Korst, Simulated annealing and boltzmann machines.
New York, NY; John Wiley and Sons Inc., Jan 1988.

[7] S. B. Masti and S. V. Raghavan, “Simulated annealing algorithm for
virtual network reconfiguration,” in Next Generation Internet (NGI),
2012 8th EURO-NGI Conference on. IEEE, 2012, pp. 95–102.

[8] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies
with rocketfuel,” ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4, pp. 133–145, 2002.

[9] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking (TON), vol. 20, no. 1, pp. 206–
219, 2012.

[10] M. R. Rahman and R. Boutaba, “Svne: Survivable virtual network
embedding algorithms for network virtualization,” IEEE Transactions on
Network and Service Management, vol. 10, no. 2, pp. 105–118, 2013.

[11] Y. Dinitz, N. Garg, and M. X. Goemans, “On the single-source unsplit-
table flow problem,” Combinatorica, vol. 19, no. 1, pp. 17–41, 1999.

[12] C. Chekuri, S. Khanna, and F. B. Shepherd, “The all-or-nothing mul-
ticommodity flow problem,” in Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing. ACM, 2004, pp. 156–165.

[13] S. Herker, A. Khan, and X. An, “Survey on survivable virtual network
embedding problem and solutions,” in International Conference on
Networking and Services, ICNS, 2013.

[14] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, “Vnr al-
gorithm: A greedy approach for virtual networks reconfigurations,”
in Global Telecommunications Conference (GLOBECOM 2011), 2011
IEEE. IEEE, 2011, pp. 1–6.

[15] B. Wanis, N. Samaan, and A. Karmouch, “Substrate network house
cleaning via live virtual network migration,” in Communications (ICC),
2013 IEEE International Conference on. IEEE, 2013, pp. 2256–2261.

[16] P. N. Tran and A. Timm-Giel, “Reconfiguration of virtual network
mapping considering service disruption,” in Communications (ICC),
2013 IEEE International Conference on. IEEE, 2013, pp. 3487–3492.

[17] Y. Zhu and M. H. Ammar, “Algorithms for assigning substrate network
resources to virtual network components.” in INFOCOM, vol. 12, 2006.

[18] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–
29, 2008.

[19] N. F. Butt, M. Chowdhury, and R. Boutaba, “Topology-awareness and
reoptimization mechanism for virtual network embedding,” in Interna-
tional Conference on Research in Networking. Springer, 2010, pp.
27–39.

[20] P. N. Tran, L. Casucci, and A. Timm-Giel, “Optimal mapping of virtual
networks considering reactive reconfiguration,” in Cloud Networking
(CLOUDNET), 2012 IEEE 1st International Conference on. IEEE,
2012, pp. 35–40.

[21] R. Mijumbi, J. Serrat, J. Rubio-Loyola, N. Bouten, F. De Turck,
and S. Latré, “Dynamic resource management in sdn-based virtualized
networks,” in 10th International Conference on Network and Service
Management (CNSM) and Workshop. IEEE, 2014, pp. 412–417.

[22] Y. Yuan, C. Wang, C. Wang, S. Zhu, and S. Zhao, “Discrete particle
swarm optimization algorithm for virtual network reconfiguration,” in
International Conference in Swarm Intelligence. Springer, 2013, pp.
250–257.

[23] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (abc) algorithm,”
Journal of global optimization, vol. 39, no. 3, pp. 459–471, 2007.

