
Virtual Network Embedding with Path-based
Latency Guarantees in Elastic Optical Networks
Sepehr Taeb∗, Nashid Shahriar∗, Shihabur Rahman Chowdhury∗, Massimo Tornatore†, Raouf Boutaba∗,

Jeebak Mitra‡, and Mahdi Hemmati‡
∗David R. Cheriton School of Computer Science, University of Waterloo,

{staeb | nshahria | sr2chowdhury | rboutaba}@uwaterloo.ca
†Politecnico di Milano, massimo.tornatore@polimi.it

‡Huawei Technologies Canada Research Center, {jeebak.mitra | mahdi.hemmati}@huawei.com

Abstract—Elastic Optical Network (EON) virtualization has
recently emerged as an enabling technology for 5G network
slicing. A fundamental problem in EON slicing (known as Virtual
Network Embedding (VNE)) is how to efficiently map a virtual
network (VN) on a substrate EON characterized by elastic
transponders and flexible grid. Since a number of 5G services
will have strict latency requirements, the VNE problem in EONs
must be solved while guaranteeing latency targets. In existing
literature, latency has always been modeled as a constraint
applied on the virtual links of the VN. In contrast, we argue
in favor of an alternate modeling that constrains the latency
of virtual paths. Constraining latency over virtual paths (vs.
over virtual links) poses additional modeling and algorithmic
challenges to the VNE problem, but allows us to capture end-to-
end service requirements. In this paper, we first model latency
in an EON by identifying the different factors that contribute
to it. We formulate the VNE problem with latency guarantees
as an Integer Linear Program (ILP) and propose a heuristic
solution that can scale to large problem instances. We evaluated
our proposed solutions using real network topologies and real-
istic transmission configurations under different scenarios and
observed that, for a given VN request, latency constraints can be
guaranteed by accepting a modest increase in network resource
utilization. Latency constraints instead showed a higher impact
on VN blocking ratio in dynamic scenarios.

I. INTRODUCTION

Ultra-low latency communication is an important quality-
of-service (QoS) requirement for many emerging applica-
tions such as intelligent transportation, industry automation,
immersive media experience through virtual and augmented
reality, online multi-player gaming, and tactile Internet [1]–[4].
Additionally, safety, real-time control, and healthcare related
applications can have life-threatening consequences if their
stringent latency requirements are not met [4]. Latency also
significantly impacts the revenue generated by services such
as electronic commerce and high-frequency trading [5]–[7].
Consequently, latency-sensitive applications have become one
of the major business drivers for the development of the fifth-
generation (5G) mobile networks [3], [8]–[10]. A key enabling
technology for deploying latency-sensitive applications in 5G
networks is network virtualization (aka network slicing) [11],
which allows the instantiation of one or more virtual networks
(VNs) with dedicated substrate resources to guarantee latency
between application end nodes.

A key challenge in instantiating VNs for latency-sensitive
applications is to devise a mechanism to efficiently map VN
nodes and links on the substrate network (SN). This problem,
known as Virtual Network Embedding (VNE) [12], has been
extensively studied in the past, with a particular focus on
ensuring bandwidth and reliability requirements [13]. Less
attention has been devoted to the VNE problem with latency
constraints. In existing literature, latency requirements have
been modeled as constraints applied to the virtual links of the
VN (i.e., each virtual link is mapped to satisfy a given latency
target) [14]–[18]. However, many 5G verticals require that
their end-users perceive ultra-low latency. This requires a given
latency constraint to be enforced along an entire path between
application end nodes [19]. For instance, two virtual nodes in
a VN can represent two trading sites running an online trading
service. In this case, the network operator must compute one or
more virtual paths between these two sites while guaranteeing
stringent latency requirements of the service [1].

p

400G

200G

200G

10 ms

15 ms

sq r

Fig. 1. VN with latency requirement on virtual paths (marked by solid lines)
From a resource allocation perspective, per-virtual-path la-

tency constraints have the advantage of granting more flexibil-
ity in the selection of substrate paths for embedding compared
to per-virtual-link latency constraints. For instance, in Fig. 1,
the latency bound on virtual link qr can be varied as long as
the latency constraints on virtual paths p-r-q and q-r-s are not
violated. Hence, more options to embed virtual link qr become
available if we assume path-based constraints, compared to
having a fixed latency budget on qr. This flexibility comes
with the challenge of cleverly distributing the latency budgets
of virtual paths to constituent virtual links in a way that results
in the optimal selection of substrate paths for embedding. To
the best of our knowledge, no previous work has addressed
the VNE problem with latency constraints on virtual paths.

The networking infrastructure supporting 5G slicing can
span different technology domains such as wireless radio,
access/core/metro transport networks, and multi-tier data cen-
ters [11]. In this paper, we focus on transport networks and978-1-7281-2700-2/19/$31.00 2019 c© IEEE

assume that a portion of the total latency budget is assigned to
the transport segment to satisfy the end-user latency require-
ments. Traditional “fixed grid” optical networks have been for
a long time a dominant technology in the transport segment
thanks to their high-bandwidth and low-latency. Recently, net-
work operators are adopting Elastic Optical Networks (EONs)
to overcome the limitations of fixed grid networks, such as
inflexible and coarse-grained resource allocation [20], [21].
EONs have the capability to allocate an arbitrary number of
spectrum slices for right-size spectrum allocation to customer
needs (i.e., EONs employ a flexible grid, as opposed to the
traditional fixed grid, to allocate optical spectrum slices). They
also leverage the advances in coherent-transmission technol-
ogy allowing the tuning of transmission parameters such as
baud rate, modulation format and forward error correction
(FEC) overhead. In what follows, we will consider EON
as the underlying substrate network (SN) for our problem.
We assume the existence of a logically centralized network
controller with a global view of the EON resources [22]–[25],
which will execute our solutions to provision VN requests.

EON virtualization has recently garnered interest from the
research community, especially due to its importance in 5G
network slicing [21]. VNE over EON introduces unique chal-
lenges arising from the large number of configurable transmis-
sion parameters available in EONs [26]. Several proposals for
optimal resource allocation in EONs have considered tuning
all or a subset of these transmission parameters for satisfying
bandwidth requirements [26]–[28]. However, no work in the
EON virtualization literature has considered satisfying path-
based latency requirements.

In this paper, we address the problem of VNE over EON
with latency guarantees on a set of given virtual paths, while
considering all the configurable transmission parameters. We
first present a mathematical representation of the inputs and
characterize the latency contributors in an EON (Section III).
Then, we present an Integer Linear Program (ILP) formulation
and a heuristic solution for solving the VNE problem with
path-based latency requirements (Section IV and Section V).
We perform extensive evaluations of our proposed solution
using real network topologies from [29] under different eval-
uation scenarios (Section VI). Our simulation results show
that the heuristic incurs only 2.5% and 0.8% additional cost
on average compared to the ILP for fixed- and flex-grid
EONs, respectively, while executing three to four orders of
magnitude faster. Moreover, we observed that guaranteeing
latency constraints of a VN causes a modest increase in
resource utilization, while it results in a more significant
impact on VN blocking ratio in dynamic scenarios.

II. RELATED WORKS

VNE over EON Variants of the VNE problem have been
extensively studied over the last decade considering layer 2/3
SN [13]. VNE has also been investigated in the context of
fixed-grid optical networks [30] and, more recently, in the
context of EONs [26]–[28], [31]. Most of the research on
VNE over EON considers tuning a subset of the flexible

transmission parameters for optimizing resource allocation.
More recently, Shahriar et al., proposed an optimization model
for allocating resources to VNs while considering all the
flexible transmission parameters made available by EONs,
namely baud rate, modulation format, and FEC overhead.
Their study shows that considering all degrees of freedom
made available by EONs results in 60% less spectrum resource
utilization compared to the case with no flexibility.

Latency-guaranteed VNE on Layer-2/3 Networks A
number of research efforts have been dedicated to investigate
the VNE problem on layer-2/3 SN while considering various
forms of latency constraints such as per-VLink latency [14]–
[18] and differential delay in a multi-cast VN [16], [32].
While most of these works consider a single delay source,
Chochlidakis et al., models latency in SN as a combination
of propagation delay and queuing delay [33]. Queuing delay,
modeled as a hyperbolic function of residual link capacity
in the authors’ earlier work [34], is then approximated using
a piecewise linear function for simplifying the optimization
model. Finally, an elaborate discussion on the contributing fac-
tors to layer-2/3 substrate network delay and literature survey
on how they have been modeled in the past are presented
in [35]. Another related problem that has received recent at-
tention is low-latency service function chain provisioning and
scheduling in 5G networks [19], [36]–[42]. However, service
function chain provisioning and scheduling is a fundamentally
different problem than the one addressed in this paper.

Latency Considerations in Optical Networks Several
research papers and industry white papers have identified dif-
ferent sources of latency in an optical network [2], [43]–[46].
Accordingly, latency in optical networks stems from various
technology domains such as physical layer operations [43],
components inside an optical switching element [44], and
transport layer processing [2], [45], [46]. These studies were
helpful to us in determining which latency components should
be considered while modeling the latency-constrained VNE
problem for EON, and which could be omited to keep model
complexity at a reasonable level.

To the best of our knowledge, VNE with latency require-
ments on virtual paths over a substrate EON with flexible
transmission parameters has not been addressed. Furthermore,
the literature on latency-guaranteed VNE over layer-2/3 SNs
has considered per-VLink latency constraints. In contrast, we
propose a novel latency modeling for the VN, i.e., latency
requirements on virtual paths, which is more suited to capture
the requirements of emerging ultra-low latency applications.

III. MATHEMATICAL MODEL AND PROBLEM STATEMENT

A. Substrate EON

The substrate EON (SN) is an undirected graph G = (V,E),
where V and E are the set of substrate optical nodes (SNodes)
and substrate optical links (SLinks), respectively. Without loss
of generality, we assume the optical nodes to be colorless,
directionless, and contentionless [47]. We also assume the
SLinks to be bi-directional, i.e., adjacent optical nodes are
connected by one optical fiber in each direction. The optical

frequency spectrum on each SLink e = (u, v) ∈ E is
divided into equal-width slices represented by the set S and
enumerated as 1, 2. . . |S|. In what follows, we use the term
frequency/spectrum slot and slice interchangeably. P and
Pk
uv ⊂ P represents the set of all paths in G and the set

of k-shortest paths between nodes u, v ∈ V , respectively. The
two endpoints of a path p ∈ P are represented by src(p)
and dst(p). The number of SLinks and the physical length
of a path p in kilometers are represented by |p| and len(p),
respectively. We use the binary variable δpe to denote the
association between a path p ∈ P and any link e ∈ E.

The following transmission parameters can be configured
on a path p with physical length len(p) to enable data
transmission with different data-rates d ∈ D: baud-rate or
symbol-rate, b, modulation format, m, and forward error
correction code (FEC) overhead, f , selected from the set of
possible values B, M, and F , respectively. We use a tuple
t = (d, b,m, f) ∈ T = (D × B × M × F) to represent
a transmission configuration that dictates the combination of
b ∈ B, m ∈ M, and f ∈ F that can be used to yield
a data-rate d ∈ D. For the sake of representation we use
t(d), t(b), t(m), and t(f) to denote the data-rate, baud-rate,
modulation format, and FEC overhead of a configuration
t ∈ T . A reach table R, computed based on physical layer
characteristics, specifies the maximum length of a path (i.e.,
the reach rt) capable of retaining a satisfactory optical signal
to noise ratio when configured according to a transmission
configuration t ∈ T . Finally, nt denotes the number of slices
required to accommodate a transmission configuration t ∈ T ,
which is dependent on the parameters of t.

B. Virtual Network Request

The VN requests are made in the form of an undirected
graph Ḡ = (V̄ , Ē), where V̄ and Ē are the set of virtual
nodes (VNodes) and virtual links (VLinks), respectively. The
function τ : V̄ → V represents VNode to SNode mapping and
is an input to our problem (a common assumption for optical
network virtualization [48]). Each virtual link ē ∈ Ē has a
bandwidth requirement β̄ē. We allow the VLinks to be mapped
to multiple substrate paths (SPaths) (similar to [26], [49]), each
with a lower data-rate than β̄ē, since the reach becomes smaller
for higher data-rates (e.g., more than 400Gbps) limiting the
number of usable paths. However, we limit the number of
VLink splits to maximum q (≥ 1). Such multi-path provision-
ing is supported by technologies such as Virtual Concatenation
(VCAT) in Optical Transport Network (OTN) [50] or bonding
capabilities of FlexE [51]. Some VPaths in a VN request
have latency constraints depending on the QoS of the services
provided by the VN. We represent such constraints as follows:

1) Latency Constraints: We assume there exists a function
latency(.), which, when applied on any path, either virtual or
substrate, returns the latency of that path. Let, ā be a loop-
free path in the VN (i.e., a VPath). A VPath can have one
(i.e., representing a single VLink) or more VLink(s), therefore,
|ā| >= 1. We represent the latency budget of a VPath using a
tuple ` = (ā, L) ∈ (PḠ×R+), where PḠ is the set of all paths

in Ḡ that require a bounded latency as mandated by the service
provider and R represents the set of all positive real numbers.
The tuple ` implies that, after embedding, the latency of the
VPath `(ā) should not exceed `(L), i.e., latency(`(ā)) ≤ `(L),
where latency(`(ā)) =

∑
ē∈ā latency(ē) and latency(ē) is

the latency of the VLink ē. All the latency constraints of a
VN request are represented by the set of such tuples L(Ḡ).

C. Latency Model

We present a latency model that captures different key
latency contributors in an EON. The latency contributors can
be broadly classified into those at EON nodes and those on a
lightpath (Table I). This latency model will be used to compute
the latency perceived along a lightpath, which in turn will help
determine the usable lightpaths for the VN embedding.

TABLE I
LATENCY CONTRIBUTORS IN EON
Node latency = 2(Ltxp + Lfec)

OTN/FlexE elements (Lotn) Negligible
Transponders (Ltxp) 30 ns
FEC processing (Lfec) 10 µs (std.), 150 µs (super)
Path latency = len(p)Lprop + nampLamp + (|p|+ 1)Lroadm

Fiber propagation (Lprop) 4.9 µs/km
Regenerators (Lrgn) Not considered
Amplifiers (Lamp) 150 ns/unit
CD compensation (Ldcf) Not considered
ROADMs & BV-OXCs (Lroadm) O(nanoseconds)

1) Latency contributors at an EON node: We assume a
multi-layer flexible node architecture as presented in [52], that
consists of a set of OTN/FlexE line-cards (with or without
a FEC module), a set of bandwidth-variable transponders
(BVTs), and a reconfigurable optical add-drop multiplexer
(ROADM). A transparent lightpath goes through all these
components only at the source and destination EON nodes of
the lightpath. At intermediate nodes, also known as the bypass
nodes, the lightpath only passes through ROADMs bypassing
OTN/FlexE elements and BVTs. Therefore, we will consider
the latency contributed by ROADMs as a latency component
at lightpath level to be discussed in Section III-C2.e.

a) OTN/FlexE elements: One potential source of latency
is due to processing and/or congestion at OTN/FlexE nodes for
virtual link demand splitting/merging. In case of FlexE, a pair
of FlexE shims at the source and destination nodes map/re-
create FlexE client(s) to/from a group of bonded Ethernet
signals. In OTN, a mapper/demapper converts higher layer
signal(s) to OTN frame(s) and vice versa. Research literature
on the subject reports that the processing delay at FlexE shim
or OTN mapper/demapper is negligible compared to other
delay along the fibers [45], [46]. Furthermore, OTN is a
deterministic transport technology, eliminating queuing delay
due to congestion at the nodes. Similarly, FlexE nodes can be
scheduled with static resource allocation, thereby avoiding any
congestion altogether [46]. Therefore, we ignore the latency
incurred by OTN/FlexE nodes in our model.

b) Transponders (BVTs in case of EONs): Transponders
convert a client demand to an optical signal with just enough
spectrum to carry the demand [52]. The latency incurred on

transponders varies depending on their design and supported
functionality. More complex transponders include functional-
ity such as in-band management and can have latencies in the
range 5 – 10 µs [44]. However, many equipment vendors offer
simpler and lower-cost transponders without features such
as in-band management. These devices result in transponder
processing time Ltxp as low as 30 ns [2].

c) FEC processing: FEC is used for detecting and cor-
recting transmission errors due to noise and other impairments
present in transmissions. A stronger FEC increases system
margin for a given Bit Error Rate (BER) and optical signal
power, thereby increasing the signal-to-noise ratio, enabling
longer optical reaches. FEC encoder/decoder modules in-
troduce a processing delay Lfec of ≈10 µs for standard
FECs [46]. However, processing delay for super FECs with
increased correction ability can go up to 150 µs [44]. Since
a pair of FEC modules and transponders are involved in a
lightpath, the delay introduced at the terminal nodes is:

Ln = 2(Ltxp + Lfec) (1)
2) Latency contributors on a lightpath: A lightpath can

span several optical fibers through several bypass EON nodes.
Depending on the path’s length there can be re-generators, am-
plifiers, dispersion compensating fibers (DCF), and ROADMs
placed along the path, each contributing towards latency.

a) Fiber propagation: The major latency contributor on
a lightpath is the propagation delay, Lprop, which amounts to
≈4.9 µs per kilometer of fiber.

b) Regenerator: 3R (re-amplification, re-shaping, re-
timing) regenerators are used to increase the lightpath reach.
They significantly contribute to latency, as 3R regeneration in-
volves optical-to-electrical-to-optical conversion that can take
≈100 µs [44]. In this study, we assume that the substrate EON
does not contain any 3R regenerators (rather the modulation
format and FEC levels can be tuned to attain different reaches
for a transparent lightpath). Therefore, we do not consider any
latency incurred by 3R re-generators.

c) Amplifier: Amplifiers are needed to boost the signal
strength on long transmission lines [43]. Unlike regenerators,
amplifiers operate completely in the optical domain, eliminat-
ing the need to separately amplify each individual channel.
Erbium doped fiber amplifiers (EDFAs), widely used in long-
haul networks, introduce a delay, Lamp, of ≈150 ns [2]. One
way to eliminate this delay is to use more expensive Raman
amplifiers [44]. The number of amplifiers on a lightpath p,
namp(p) is ≈ dlen(p)/fspane, where len(p) is the physical
length of p and fspan is the typical distance between two
amplifiers, called fiber span (in the order of 80km).

d) Dispersion compensating fiber: Another potential la-
tency contributor in a fiber transmission line is the dispersion
compensating fiber (DCF) [2]. DCF is used to compensate
Chromatic Dispersion (CD) of the optical signal that stems
from the differential speeds of lightpaths occupying different
spectrum ranges in fibers. The length of DCF is typically be-
tween 15% to 25% of the overall fiber length, which increases
fiber propagation delay [43]. Nonetheless, in modern coherent
transmission systems, CD is mainly compensated through

digital signal processing (DSP) at the receiver, eliminating the
need for DCF [53]. Therefore, we do not consider any latency
pertaining to dispersion compensation in our model.

e) ROADM and BV-OXC: Another component present
along a transparent lightpath is the ROADM, installed on
the bypass EON nodes. ROADMs may also include BV-OXC
that can switch spectrum at intermediate EON nodes. Since
optical flows are optically and independently switched by
these intermediate devices for different lightpaths, the delays
introduced by ROADMs and BV-OXCs, Lroadm, are in the
order of tens of ns [1], [45]. The total number of ROADMs
(or, BV-OXCs) on a lightpath p is (|p| + 1), where |p| is the
number of SLinks on the lightpath.

Based on the above discussion, the latency incurred on a
lightpath can be expressed as follows:
Lp = Ln + len(p)Lprop + namp(p)Lamp + (|p|+ 1)Lroadm

(2)
In case of VLink embedding with splits (as discussed in

Section III-B), the set of lightpaths supporting a VLink ē ∈ Ē
can differ with each other in terms of physical length and
number of intermediate hops, resulting in different latency for
these lightpaths. Hence, the latency of ē is determined by
the lightpath p with the maximum Lp since the destination
OTN/FlexE node has to wait for the slowest split before
merging all the splits of a VLink. If Pē is the set of paths
used for embedding the splits of a VLink ē ∈ Ē, the latency
perceived for the VLink ē ∈ Ē is as follows:

latency(ē) = max
p∈Pē

Lp (3)

3) Differential delay requirement: VLink embedding by
splitting its demand over multiple SPaths imposes additional
buffering overhead at the destination OTN/FlexE node to offset
the different delays experienced by different splits of the
VLink transmitted on different lightpaths. This is also known
as the differential delay [54], [55]. To account for differential
delay, the destination node needs to store all but the most
delayed flow in a buffer until the last flow arrives. The amount
of buffer needed to compensate the differential delay depends
on both the data-rates of the individual paths and the maximum
allowed differential delay (DDmax). Both VCAT and FlexE
impose very strict bound on DDmax, specifically, 250 µs
and 10 µs, respectively [51], [55]. We express differential
delay requirement for a VLink in terms of the maximum and
minimum delay of its embedding SPath set as follows:

∀ē ∈ Ē : (max
p∈Pē

Lp − min
p∈Pē

Lp) ≤ DDmax (4)

D. Problem Statement

Given an SN G, a reach table R, and a VN request Ḡ with
VNode mapping function τ and latency constraint set L(Ḡ):
• Compute the link embedding function γ : Ē → χ : χ ⊂
P ×T ×S2 and 1 ≤ |χ| ≤ q, i.e., compute up to a max-
imum of q splits for the bandwidth demand β̄ē of each
VLink ē ∈ Ē. For each split, γ should select an SPath and
an appropriate transmission configuration t ∈ T from the
reach tableR, and allocate a contiguous segment of slices
represented by the starting and ending slice index on each

SLink along the SPath. Note that the same SPath can be
used multiple times as the splits of a VLink following
the reasoning in [26]. χēi = (p, t, sb, st)|1 ≤ i ≤ q

represents the i-th split, where χ(p)
ēi and χ

(t)
ēi denote the

selected SPath and transmission configuration for the i-
th split, respectively. In addition, allocation of spectrum
slices for the i-th split begins at index χ

(sb)
ēi and ends

at index χ
(st)
ēi along each SLink in the SPath χ

(p)
ēi . The

VLink embedding should be computed in a way such
that the latency constraints on VPaths are satisfied, i.e.,
∀` ∈ L(Ḡ) : latency(`(ā)) ≤ `(L).

• The total number of slices required to provision the VN
is minimum according to the following cost function:∑

∀ē∈Ē

q∑
i=1

(χ
(st)
ēi − χ

(sb)
ēi + 1)× |χ(p)

ēi | (5)

Here, |χ(p)
ēi | is the number of SLinks on the SPath χ(p)

ēi .

The above is subject to substrate resource constraint, and
spectral contiguity (i.e., the allocated slices of each split are
always adjacent to each other) and continuity (i.e., the same
sequence of slices are allocated on each SLink along an SPath)
constraint, and differential delay requirement on the lightpaths.

E. Pre-computations
For each VLink ē ∈ Ē, we pre-compute Pk

ē , a set of k
shortest paths between the pair of SNodes where the VLink’s
endpoints’ are mapped. For each SPath p ∈ Pk

ē , we pre-
compute the set of admissible transmission configurations,
Tēp ⊂ T , such that each configuration t ∈ Tēp results in a
reach rt ≥ len(p) and has a data-rate t(d). Tē contains all the
distinct tuples suitable for ē and is defined as

⋃
∀p∈Pk

ē
Tēp.

IV. PROBLEM FORMULATION

We present a path-based ILP formulation for optimally
solving the problem given a set of candidate SPaths for
each VLink. Note that some of the constraints except the
latency and differential delay constraints have been presented
in different forms in different research works [26], [56], [57].
In the interest of completeness, we present both the common
ones and the ones specifically required for the problem at hand.

A. Decision Variables

We allow a VLink’s bandwidth demand to be satisfied
by provisioning slices over one or more SPaths where an
SPath can be used more than once (up to a maximum of q)
as discussed in III-D. To model the same SPath appearing
more than once in a VLink’s embedding, we assume each
transmission configuration on an SPath can be instantiated
multiple times (up to a maximum of q times). The following
variable represents VLink mapping:

wēpti =

1 if ē ∈ Ē uses i-th instance of t ∈ Tēp

on path p ∈ Pk
ē

0 otherwise

Finally, the following decision variable creates the relationship
between a mapped SPath and the slices in its SLinks:

yēptis =

1 if ē ∈ Ē uses slice s ∈ S on path p ∈ Pk

ē

with the i-th instance of t ∈ Tēp
0 otherwise

B. Constraints

1) VLink demand constraints: We provision a VLink by
splitting it across up to q SPaths. Constraint (6) ensures
that for each VLink ē ∈ Ē, the sum of data-rates resulting
from applying the selected transmission configuration on the
selected paths is equal to the VLink’s demand. Then, (7)
enforces an upper limit on the number of splits.

∀ē ∈ Ē :
∑
∀p∈Pk

ē

∑
∀t∈Tēp

q∑
i=1

(wēpti × t(d)) = β̄ē (6)

∀ē ∈ Ē :
∑
∀p∈Pk

ē

∑
∀t∈Tēp

q∑
i=1

wēpti ≤ q (7)

2) Slice assignment and Spectral Contiguity constraints:
We ensure by (8) that if a path p is selected with a specific
transmission configuration t, then the required number of
slices nt to support the data-rate t(d) is allocated on the path.
(9) ensures that each slice on an SLink is allocated to at most
one path. Finally, (10) ensures the slices allocated on each link
of a path form a contiguous frequency spectrum.
∀ē ∈ Ē,∀p ∈ Pk

ē ,∀t ∈ Tēp, 1 ≤ i ≤ q :
∑
∀s∈S

yēptis = ntwēpti

(8)

∀e ∈ E,∀s ∈ S :
∑
∀ē∈Ē

∑
∀p∈Pk

ē

∑
∀t∈Tēp

q∑
i=1

wēptiyēptisδpe ≤ 1

(9)

∀ē ∈ Ē,∀p ∈ Pk
ē ,∀t ∈ Tēp, 1 ≤ i ≤ q, 1 ≤ s ≤ |S| − 1 :

|S|∑
s′=s+2

yēptis′ ≤ |S| × (1− yēptis + yēpti(s+1)) (10)

3) Latency Constraints: Recall from Section III-B1 that
the VN embedding has to satisfy a set of path-based latency
constraints L(Ḡ). Since each such constraint ` ∈ L(Ḡ)
involves one or more VLinks, we first introduce a new decision
variable vlink latē that finds the latency of each VLink ē
using the following linear constraint derived from (3):
∀ē ∈ Ē,∀p ∈ Pk

ē ,∀t ∈ Tēp, 1 ≤ i ≤ q : Lpwēpti ≤ vlink latē
(11)

The following constraint uses (11) to ensure that each latency
constraint ` ∈ L(Ḡ) is satisfied:

∀` ∈ L(Ḡ) :
∑
∀ē∈`(ā)

vlink latē ≤ `(L) (12)

4) Differential Delay Constraints: Recall from Sec-
tion III-C3, VLink embedding must satisfy the differential
delay requirement (4). We use (11) and (13) to find the
maximum and minimum delay of each VLink, respectively. In
(13), we need to avoid getting zero as the minimum latency of
a VLink induced by a non-selected path, tuple, and instance
combination. The second term on the r.h.s of (13) achieves this

goal by assuming that λ is larger than the maximum value of
Lp in the EON. For a non-selected path combination, second
term on the r.h.s of (13) becomes active, generating constraint
min delay(ē) ≤ λ. For a selected path, tuple, and instance
combination, the second term becomes zero and the first term
generates the constraint min delay(ē) ≤ Lp. As λ >> Lp,
min delay(ē) ≤ Lp dominates over min delay(ē) ≤ λ to
generate the minimum delay of all the selected path, tuple,
and instance combinations. Finally, (14) uses (11) and (13) to
enforce the differential delay requirements:
∀ē ∈ Ē,∀p ∈ Pk

ē ,∀t ∈ Tēp, 1 ≤ i ≤ q :

min delay(ē) ≤ wēpti × Lp + (1− wēpti)× λ (13)
∀ē ∈ Ē : vlink latē −min delay(ē) ≤ DDmax (14)

C. Objective Function
Our cost function minimizes the total number of spectrum

slices required to embed all the VLinks of a VN as shown in
the first part of (15). However, to break ties among multiple
solutions with the same total number of slices, we use the
second term with a fractional weight ε in (15) that minimizes
the number of splits over all the VLinks.

minimize(
∑
∀ē∈Ē

∑
∀p∈Pk

ē

∑
∀t∈Tēp

q∑
i=1

∑
∀s∈S

yēptis × |p|+

ε×
∑
∀ē∈Ē

∑
∀p∈Pk

ē

∑
∀t∈Tēp

q∑
i=1

wēpti)

(15)

D. Hardness of the Problem
A restricted sub-problem of VNE with latency constraints

on VPaths is VNE with latency constraints on individual
VLinks, i.e., when the lengths of the VPaths are only one.
Rost et al., have shown that the latter is NP-complete and
cannot be approximated under any objective unless P =
NP [58]. Therefore, by restriction, the VNE problem with
path-based latency constraints is also NP-complete. More
recent results have shown that parameterized approximation
algorithm in terms of the treewidth of the VN request can
be devised for the VNE problem with latency constraints on
individual VLinks [59]. However, computing the treewidth of
a graph by itself is an NP-hard problem [59].

V. HEURISTIC ALGORITHM

A. Heuristic solution for VN Embedding

We propose a heuristic solution to tackle the computational
complexity of the optimal solution. We first give an overview
of the heuristic’s embedding process outlined in Alg. 1. Alg. 1
takes as input a VN Ḡ, an EON G, set of latency constraints
L(Ḡ), and a node mapping function τ : V̄ → V . One way
of computing a cost efficient VLink mapping for a given
VNode mapping is to consider all |Ē|! possible orders of
sequentially embedding VLinks. The lowest cost mapping
among all possible VLink orders then can be chosen as a cost
effective solution for the given VNode mapping. However, this
brute-force approach is not scalable. Instead, Alg. 1 considers
only one sequential VLink order that is dynamically computed
to converge to a solution within a reasonable time.

To embed a VLink ē, one needs to compute the maximum
latency allowable for ē that will not violate any of the latency
constraints. This is not trivial because ē can belong to multiple
VPaths with different latency constraints, e.g., VLink qr on
VPaths p-r-q and q-r-s in Fig. 1. What makes it even more
difficult is that the mappings (and corresponding latencies) of
other VLinks on these VPaths may not be known at this time
due to the sequential nature of Alg. 1. For instance, at the time
of estimating the latency budget of the VLink qr in Fig. 1,
the mappings and latency budgets of VLinks rp and rs might
not be known. Therefore, Alg. 1 estimates an upper bound
of the latency budget of a VLink ē based on the latencies of
already mapped VLinks, and on the estimated latencies and
slice availability in the candidate SPaths of the other unmapped
VLinks. Assuming the SPaths in Pk

ē are sorted in increasing
order of their lengths, this upper bound is set to the latency
of the maximal i-th SPath pi ∈ Pk

ē |i ≤ k, such that this
chosen value does not violate any of the latency constraints.
Therefore, the estimated latency budget generates an allowed
set of candidate SPaths Pi

ē = {p1, p2, .., pi} for ē’s embedding.
Algorithm 1: Algorithm for VN Embedding

1 function VNEmbedding(G, Ḡ, L(Ḡ), τ)
2 Ēremaining ← Ē
3 while Ēremaining 6= φ do
4 < ē, i >←

GetNextVLinkToEmbed(G, Ḡ, Ēremaining,Pk
ē)

5 Zē ←FindOptimal(G, ē,Pi
ē, Tē)

6 foreach e ∈ p|p ∈ Iē.Pi
ē do

7 Perform slice assignment using Iē.S
8 χē.P ← Iē.Pi

ē, χē.T ← Iē.TPi
ē

9 if χē = φ then return < φ, φ >
10 Ēremaining ← Ēremaining − {ē}
11 return γ : Ē → χ >

To increase the chances of finding a feasible solution,
Alg. 1 embeds the most constrained VLink ē in terms of slice
availability in its allowed set of candidate SPaths Pi

ē during
each iteration. Alg. 1 uses Alg. 2 to find the most constrained
VLink ē from the set of unmapped VLinks and the allowed set
of candidate SPaths Pi

ē for ē (details of Alg. 2 will be given in
the next subsection). For the chosen VLink ē, Alg. 1 invokes
FindOptimal procedure to compute the optimal solution for
ē based on Pi

ē (line 5). FindOptimal procedure is adapted
from [26] to take latency and differential delay constraints into
account. Alg. 1 then allocates spectrum slices on all SLinks
present in the solution returned by FindOptimal and updates
the VLink mapping function χ. If no solution can be found
for any ē, VN embedding fails. Note that after a VLink is
mapped, its actual latency can be computed from the set of
SPaths used for mapping, and slice availability in the candidate
SPaths of the unmapped VLinks will need to be updated.
Therefore, Alg. 2 is invoked in each iteration of Alg. 1 to
dynamically find the most constrained VLink leveraging the
up to date status of embedding and EON.

B. VLink Ordering and Latency Budget Allocation

Alg. 2 estimates the latency budgets of the unmapped
VLinks in a way such that embedding of VLinks appearing

later in the order become more unlikely to fail due to very
tight budgets or due to insufficient number of contiguous slices
in their candidate SPaths. For instance, the estimated latency
budget of the VLink qr belonging to VPaths p-r-q and q-r-
s in Fig. 1 should not be too large to leave close to zero
latency budgets for other VLinks on p-r-q or q-r-s. One way of
ensuring this is to maximize the number of allowed candidate
SPaths for the VLinks while satisfying the latency constrains.
While this approach works well in a green-field EON with
ample spectrum slices, it may lead to infeasible embedding in
a dynamic environment where some of the SPaths in Pi

ē are
fragmented due to accommodating existing VNs. Therefore,
Alg. 2 takes slice availability in the candidate SPaths into
account while estimating latency budgets.

Alg. 2 computes an index iē for each VLink ē, denoting the
maximum index of the SPath in the set of allowed SPaths for
ē corresponding to the latency budget. While computing this
index, Alg. 2 employs spectrum awareness by maximizing the
minimum number of usable slices in the allowed set of SPaths
for each of the remaining VLinks while satisfying all latency
constraints. To do so, Alg. 2 performs binary search over the
interval between 1 and the minimum value of the number of
free slices in the candidate SPaths of the remaining VLinks.
In each iteration of binary search, Alg. 2 chooses a median
value med in the range and increases iē until the total number
of free slices in the SPaths in Pi

ē becomes equal or more than
med. It then uses iē to compute the estimated latency of ē.
After estimating latencies for all the unmapped VLinks, Alg. 2
checks if any latency constraint in L(Ḡ) is violated. Based on
this test, the binary search continues in the appropriate range
and terminates when the range size becomes 1.

The binary search in Alg. 2 provides a lower bound a on
the minimum number of usable slices across all the VLinks.
However, it does not identify the VLink(s) with the minimum
number of usable slices. According to the property of binary
search, there exists at least one VLink for which iē cannot be
increased beyond a without violating at least one latency con-
straint. Alg. 2 identifies such VLink by attempting to increase
the iē for each virtual link ē and checking if all the latency
constraints can still be satisfied using the expanded set of
allowed SPaths. The VLink that fails this test is then returned
as the most constrained one along with its corresponding index
iē (line 28). If multiple such VLinks exist, Alg. 2 returns the
one with higher demand, which is ensured by traversing the
VLinks in decreasing order of their demand (line 23).

a) Running Time Analysis: Alg. 2 performs a binary
search on a range of k×|S|, resulting in O(log k|S|) iterations.
In each iteration of the search, latency budget estimation can
take O(k|Ē|) time since we need to check all the VLinks
and all their k candidate shortest paths at the initial stage.
Each iteration of the binary search also involves checking
|L| latency constraints, each of which can have |V̄ | VLinks,
requiring O(|L||V̄ |) time. Finally, finding the most constrained
VLink takes |Ē|×|L||V̄ | time as |L| latency constraints need to
be checked for each VLink. Therefore, the total running time
of Alg. 2 is O(log(k|S|)× (k|Ē|+ |L||V̄ |) + |Ē| × |L||V̄ |).

Algorithm 2: Algorithm for finding a VLink based on
latency constraints and spectrum availability

1 function GetNextVLinkToEmbed(G, Ḡ, Ērest,Pk
ē ,L(Ḡ))

2 foreach ē ∈ Ē \ Ērest do
3 p← SPath with the longest length in χē.P
4 est latency(ē)← Lp using (2)
5 L ← all latency constraints in L(Ḡ)
6 a← 1, b← minē∈Ērest

∑
pi∈Pk

ē
free slices(pi)

7 while b− a > 1 do
8 med← a+b

2
9 foreach ē ∈ Ērest do

10 iē ← free(ē)← 0
11 while free(ē) < med do
12 iē ← iē + 1
13 free(ē)← free(ē) + free slices(piē)
14 est latency(ē)← Lpiē

using (2)
15 all constraints satisfied← true
16 foreach l ∈ L do
17 est latency(`(ā)) =

∑
ē∈ā est latency(ē)

18 if est latency(`(ā)) > `(L) then
19 all constraints satisfied← false
20 break
21 if all constraints satisfied = true then a← med
22 else b← med
23 foreach ē ∈ Ērest in decreasing order of β̄ē do
24 iē ← iē + 1
25 est latency(ē)← Lpiē

using (2)
26 foreach l ∈ L do
27 est latency(`(ā)) =

∑
ē∈ā est latency(ē)

28 if est latency(`(ā)) > `(L) and free(ē) = a
then return < ē, iē − 1 >

C. Compute optimal solution for a single VLink
Alg. 1 invokes FindOptimal procedure that computes the

optimal embedding of a VLink given its mapped endpoints
and a set of allowed SPaths in Pi

ē. The optimal solution for a
VLink consists of a multi-set of SPaths where each SPath in
the multi-set has an associated transmission configuration and
spectrum slice allocation. FindOptimal is adapted from [26]
that exhaustively explores all possible multi-sets of SPaths in
Pi
ē. We modified FindOptimal to consider only those multi-

sets of SPaths that satisfy the differential delay constraints
enforced by (14). For each of the candidate multi-set of
SPaths, FindOptimal checks the feasibility of all possible
transmission configurations. Finally, for each pair of a multi-
set of SPaths and a corresponding transmission configuration,
FindOptimal performs slice allocation using First-Fit ap-
proach [30]. Among all the feasible solutions consisting of
multi-set of SPaths, an associated transmission configuration,
and a spectrum slice allocation, FindOptimal returns the one
that requires the minimum number of spectrum slices.

VI. EVALUATION

A. Simulation Setup

1) Testbed and Topology: We have implemented both the
ILP formulation and the heuristic algorithm in C++. We use
Nobel Germany (17 nodes and 26 links) and Germany50 (50
nodes and 88 links) networks from SNDlib repository [29]
as the SNs for small and large scale simulations, respectively.
Ten shortest paths between all pairs of SNodes in each SN are
pre-computed as input. Spectrum bandwidth on each SLink

is set to 600GHz and 4THz for small scale and large scale
simulations, respectively. For the steady state analysis, we use
the Nobel Germany SN and set 4THz spectrum bandwidth on
the SLinks. Depending on the evaluation scenario, we consider
fixed- and flex-grid variations of the SN. The fixed-grid
variation allocates spectrum slices in 50Ghz granularity and
considers only a few data rates supported by the transponders
(i.e., 100Gbps, 200Gbps, and 400Gbps). Whereas, the flex-
grid case allocates spectrum in 12.5Ghz granularity and allows
transponders to support a higher number of data rates up to
800Gbps. To achieve a given data rate, a transponder is al-
lowed to choose from a number of transmission configurations
provided in reach tables (as discussed in Section III-A) for
both fixed- and flex-grid variations. Latency characteristics of
the SNs are set according to Table I. We synthetically generate
the VNs with different properties based on the simulation sce-
nario. We map each VNode to a random SNode while ensuring
that no two VNodes from the same VN are mapped to the same
SNode. VLink demands are varied between 100Gbps to 1Tbps
with possible values as multiples of 100Gbps. Simulations are
performed on a machine with 8×10-core 2.40GHz Intel Xeon
E7-8870 processors and 1TB memory.

2) VN generation for microbenchmarking: In this scenario,
we consider each VN request in isolation for each of the
compared approaches discussed in Section VI-A5. We vary
the VNs by changing their link to node ratio (LNR) and the
total bandwidth demand, while keeping the number of VNodes
fixed at 8 and 50 for small- and large-scale simulations,
respectively. For each simulation run, we generate 5 and 50
VNs with the same LNR and similar total bandwidth demands
for small- and large-scale simulations, respectively, and report
the mean of the performance metrics over those VNs.

3) VN generation for steady state analysis: This analysis
considers VN arrivals and departures over a period of time.
This provides insight into the number of accepted VNs for
different compared variants. We have developed an in-house
discrete event simulator that generates simulation scenarios
representing the arrival and departure of VNs. The VN arrival
rate of each scenario follows a Poisson distribution with a
given mean. We vary the mean of Poisson distribution between
4 – 12 VNs per 100 time units. VN life time in all the scenarios
is exponentially distributed with a mean of 100 time units. The
number of VNodes of each arrived VN is kept at 8, whereas,
the LNR of the VN is chosen randomly between 1 and 3.5.
The simulation time of each scenario is 10000 time units, and
we exclude measurements from the first 1000 time instances
to capture the steady state performance. For each problem
instance, we generate 5 random simulation scenarios and
report mean performance metrics to gain statistical confidence.
These parameters have been chosen in accordance with those
used in the network virtualization literature (e.g., [60]–[65]).

4) Latency constraint generation: For each VN, we gen-
erate |Ē| VPath-based latency constraints. To do so, we sort
all the shortest VPaths between all pairs of VNodes in non-
increasing order (in terms of the number of VLinks) and
choose the first |Ē| paths. For each selected VPath ā, we

generate a latency budget `(ā) by leveraging the set of input
candidate SPaths for each VLink ē ∈ ā, which ensures
the existence of a feasible latency budget for embedding.
Otherwise, an arbitrarily generated latency budget can be too
strict (or too relaxed) causing none (or all) of the candidate
SPaths to satisfy that budget. If p∗ē is the SPath with shortest
distance among the set of candidate SPaths for a VLink ē ∈ ā,
then the latency budget for the VPath ā is generated as follows:

` = (ā, L) : `(L) = α
∑
∀ē∈ā

Lp∗ē (16)

1.0 ≤ α ≤ 2.0 is a tuning parameter allowing us to vary
the strictness of the latency constraints. For instance, α = 1.0
implies only the shortest candidate SPath p∗ē for each VLink
in ā can satisfy the latency constraints. When α > 1.0, (16)
increases the latency bound for a VPath ā allowing more
candidate SPaths for each VLink to satisfy the constraints.

TABLE II
COMPARED VARIANTS

Variant Latency Con-
straints

Differential Delay
Constraints

L(∞)-DD(∞) α = ∞ DDmax=∞
L(α)-DD(∞) Variable α DDmax=∞
L(∞)-DD(250) α = ∞ DDmax=250 µs
L(∞)-DD(10) α = ∞ DDmax=10 µs
L(α)-DD(250) Variable α DDmax=250 µs
L(α)-DD(10) Variable α DDmax=10 µs
5) Compared Variants: We consider six problem variants

representing different combinations of latency and differential
delay constraints (Table II). L(∞)-DD(∞) is the baseline that
considers neither latency nor differential delay constraints,
whereas, L(α)-DD(∞) imposes only latency constraints with
varying α. In contrast, L(∞)-DD(250) and L(∞)-DD(10)
consider only differential delay constraints. Depending on the
different values of DDmax imposed by the enabling technolo-
gies discussed in Section III-C3, there are two more variants
L(∞)-DD(250) and L(∞)-DD(10). Finally, L(α)-DD(250) and
L(α)-DD(10) apply both constraints for varying α with the
corresponding values of DDmax, respectively.

B. Evaluation Metrics

a) Spectrum slice usage (SSU): The percentage of spec-
trum slices allocated to a VN embedding with respect to the
total number of slices in the SN.

b) Avg. number of splits used for a VLink (NSU): The
ratio of the total number of splits used to embed the VLinks
of a VN to the total number of VLinks in a VN.

c) Avg. number of distinct SPaths used for a VLink
(NDP): The ratio of the total number of distinct SPaths used
to map the VLinks of a VN to the number of VLinks in a VN.

d) Execution Time: The time required for an algorithm
to find a VN embedding.

e) Blocking ratio: The fraction of VN requests over all
the VN requests that could not be embedded on the EON.

f) Cost ratio: The ratio of costs obtained by two different
approaches for solving the same problem instance, where cost
is computed using (15).

C. Microbenchmarks

1) Impact of latency and differential delay constraints:
Fig. 2(a) shows the impact of latency constraint (α=1.25) on

 8

 16

 24

 32

 40

 48

1 1.5 2 2.5

SS
U

 (%
)

VN LNR

Fixed-L(∞)-DD(∞)
Fixed-L(1.25)-DD(∞)

Flex-L(∞)-DD(∞)
Flex-L(1.25)-DD(∞)

(a) Impact of VN density

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

L(∞)-DD(∞)
L(1.25)-DD(∞)

L(1.25)-DD(250)

L(1.25)-DD(10)
Variants

NDP(Fixed)
NSU(Fixed)

NDP(Flex)
NSU(Flex)

(b) Impact of diff. delay

 45

 46

 47

 48

 49

 50

 1.6 1.7 1.8 1.9 2

SS
U

 (%
)

α

L(∞)-DD(∞)
L(∞)-DD(250)
L(∞)-DD(10)

L(α)-DD(250)
L(α)-DD(∞)

L(α)-DD(10)

(c) Impact of latency and diff. delay

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.04 1.08 1.12 1.16 1.2

C
D

F

Cost Ratio

Fixed grid Flex grid

(d) Cost ratio of the heuristic
Fig. 2. Small scale analysis

SSU, compared to the case where VNs do not apply any
latency guarantee (L(∞)-DD(∞)), for both fixed- and flex-
grid EON. To show the actual impact, ILP formulation is
executed on VNs with LNR ranging from 1 to 2.5. We observe
that relatively-sparse VNs (i.e., LNR < 2) do not exhibit much
increase in SSU for both fixed- and flex-grid, while denser
VNs (i.e., LNR ≥ 2) result in higher SSU when subject to
latency guarantees. This is because VLinks in dense VNs
cannot always use the most spectrally-efficient SPaths due to
spectrum resource exhaustion/fragmentation on those SPaths.
The increase in SSU is more marked for fixed-grid due to its
lack of flexibility in transmission configuration and spectrum
allocation. Finally, note that, in the solutions obtained with
L(∞)-DD(∞), up to 32% of latency constraints would be
violated, which demonstrates the importance of having an
explicit enforcement of latency bounds.

Fig. 2(b) shows how NDP and NSU are affected by the
differential delay constraints. For instance, DDmax = 10
forces the splits of a VLink to use SPaths that differ by at most
2km in length. To ensure that in Nobel Germany SN, the same
SPath is used by all the splits of a VLink in most cases of our
simulation, as reflected by the values of NDP (≈1) and NSU
(>1) incurred by L(∞)-DD(10). Such strict requirement also
rendered some of the VN embeddings infeasible. The NDP
for L(∞)-DD(250) does not significantly differ from that of
L(∞)-DD(∞). In fact, since the objective function minimizes
spectrum usage, shorter SPaths are preferred whenever pos-
sible and splits with high length difference among candidate
SPaths are selected rarely.

We observed that considering differential delay constraints
does not significantly impact resource usage, i.e., SSU. This
is because the first few candidate SPaths (sorted in increasing
order of length) of a VLink had sufficient capacity in most
cases, allowing VLinks to be mapped on them. In order
to force the VLinks to use a wider range of SPaths, we
deliberately generated a set of VNs that maximize the VLinks
with overlapping candidate SPaths, to increase the chances
of having bottleneck SLinks along the first few candidate
SPaths. For this scenario, Fig. 2(c) presents the SSU (obtained
using the ILP) on fixed-grid while varying the latency budget.
Even in such a scenario, we do not observe significant impact
of the differential delay constraint on SSU. Rather, latency
constraints have larger impact on SSU as the α governs which

SPaths can be used in the embedding of a VLink.
2) Comparison between Heuristic and Optimal solution:

Our cost function (15) is dominated by resource usage in
the EON. Therefore, cost ratio between heuristic and ILP
gives an empirical measure of how much additional resources
are allocated by the heuristic. We present the cumulative
distribution function (CDF) of cost ratios in Fig. 2(d). Over
all instances, the heuristic resulted in only 2.5% and 0.8%
additional cost on average compared to the optimal solution
for fixed- and flex-grid EONs, respectively.

3) Scalability Analysis: Fig. 3(a) presents a comparison
between the heuristic’s and the ILP’s execution time for
solving the same problem instances across different variants.
In general, flex-grid increases complexity due to higher num-
ber of data rates and finer spectrum granularity, resulting in
increased running time for both ILP and heuristic. Higher
LNR implies a larger number of VLinks, hence, the larger
execution time. ILP’s execution time is not influenced by the
adoption of differential delay constraint. However, the heuristic
becomes faster for the same scenarios as it prunes the search
space by considering only the combination of SPaths that
satisfy differential delay constraint. In all cases, heuristic was
observed to run 3 to 4 orders of magnitude faster than ILP.
We also run the heuristic on much larger problem instances
(described in Section VI-A1) and report the execution time by
varying α in Fig. 3(b) and by varying VN LNR in Fig. 3(c).
Fig. 3(b) shows that increasing α expands heuristic’s search
space by allowing more SPaths as the potential candidates,
resulting in increased running time. Fig. 3(c) shows that even
for a VN with as many as 175 VLinks (i.e., VN LNR 3.5),
the heuristic finds a solution in ≈2 minutes.

D. Steady State Analysis

We simulate the arrival of VNs at different rates on both
fixed- and flex-grid EON and embed a VN as it arrives
using the heuristic. Fig. 4 presents the blocking ratio for a
number of variants by varying arrival rate of VNs. L(∞)-
DD(∞), our baseline variant, yields the lowest blocking ratio,
but does not guarantee that all the latency constraints will
be satisfied. Among the compared variants, the one with the
strictest latency constraint (i.e., α = 1.1) results in the highest
blocking ratio, i.e., 20% and 12% more on average than the
baseline for fixed- and flex-grid EONs. This is because only a
small fraction of the candidate SPaths of a VLink can satisfy

10-2
10-1
100
101
102
103
104

 1 1.5 2 2.5

ILP

Heuristic

Ex
ec

ut
ion

 T
im

e
(s

)

VN LNR

Fixed-L(1.25)-DD(∞)
Fixed-L(1.25)-DD(250)

Fixed-L(1.25)-DD(10)

Flex-L(1.25)-DD(∞)
Flex-L(1.25)-DD(250)

Flex-L(1.25)-DD(10)

(a) Impact of VN density in small scale

100

101

102

103

 1 1.2 1.4 1.6 1.8 2

Ex
ec

ut
ion

 T
im

e
(s

)

α

Fixed-L(α)-DD(∞)
Fixed-L(α)-DD(250)

Fixed-L(α)-DD(10)

Flex-L(α)-DD(∞)
Flex-L(α)-DD(250)

Flex-L(α)-DD(10)

(b) Impact of α in large scale

10-1

100

101

102

103

 1 1.5 2 2.5 3 3.5

Ex
ec

ut
ion

 T
im

e
(s

)

VN LNR

Fixed-L(1.4)-DD(∞)
Fixed-L(1.4)-DD(250)

Fixed-L(1.4)-DD(10)

Flex-L(1.4)-DD(∞)
Flex-L(1.4)-DD(250)

Flex-L(1.4)-DD(10)

(c) Impact of VN density in large scale
Fig. 3. Scalability analysis

 0

 10

 20

 30

 40

 50

 4 6 8 10 12

Bl
oc

ki
ng

 ra
tio

 (%
)

Arrival rate

L(1.1)-DD(∞)
L(1.4)-DD(∞)
L(1.7)-DD(∞)
L(2.0)-DD(∞)

L(∞)-DD(∞)
L(∞)-DD(250)
L(∞)-DD(10)

(a) Fixed-grid

 0

 10

 20

 30

 40

 50

 4 6 8 10 12

Bl
oc

ki
ng

 ra
tio

 (%
)

Arrival rate

L(1.1)-DD(∞)
L(1.4)-DD(∞)
L(1.7)-DD(∞)
L(2.0)-DD(∞)

L(∞)-DD(∞)
L(∞)-DD(250)

L(∞)-DD(10)

(b) Flex-grid
Fig. 4. Impact of arrival rate and latency constraints

 0

 10

 20

 30

 40

 50

 60

 70

 1 1.25 1.5 1.75 2

Bl
oc

ki
ng

 ra
tio

 (%
)

SN LNR

L(1.1)-DD(∞)
L(1.4)-DD(∞)
L(1.7)-DD(∞)
L(2.0)-DD(∞)

L(∞)-DD(∞)
L(∞)-DD(250)
L(∞)-DD(10)

(a) Fixed-grid

 0

 10

 20

 30

 40

 50

 60

 70

 1 1.25 1.5 1.75 2

Bl
oc

ki
ng

 ra
tio

 (%
)

SN LNR

L(1.1)-DD(∞)
L(1.4)-DD(∞)
L(1.7)-DD(∞)
L(2.0)-DD(∞)

L(∞)-DD(∞)
L(∞)-DD(250)
L(∞)-DD(10)

(b) Flex-grid
Fig. 5. Impact of SN density and latency constraints

such latency constraints, which also skews the resource usage
on the SLinks of those SPaths. Relaxing the latency constraint
(i.e., increasing α) allows the VNs to be embedded using other
(potentially longer) SPaths avoiding the bottleneck SLinks,
hence, blocking ratio decreases for higher α. Applying only
differential delay constraints does not significantly impact the
blocking ratio, which conforms with our previous finding on
SSU. Unlike latency constraints, differential delay constraints
do not reduce the size of the candidate SPath pool for a VLink,
thus yields a blocking ratio similar to the baseline variant.

We also vary SN density (i.e., SN LNR) for a fixed
arrival rate of 10 and present the resulting blocking ratio
for different variants in Fig. 5. For a sparse SN, i.e., a ring
SN, only 2 SPaths are available for mapping each VLink and
candidate SPaths of different VLinks overlap with each other.
Consequently, spectrum resources in SLinks exhaust faster,
forcing all the variants to block similar percentages of VNs.
With the increase in SN LNR and consequently spectrum
resources up to a certain point, spectrum capacity no longer

remains a bottleneck and blocking ratio becomes dominated
by latency constraints, yielding a similar behavior as the one
in Fig. 4. Finally, as the SN become denser, higher SPath
diversity eliminates the impact of latency constraints, resulting
in almost 100% VN requests to be accepted.

VII. CONCLUSION

Motivated by the increasing demand for low-latency ser-
vices, in this paper, we address the problem of VN embedding
over EON with latency guarantees. We consider both fixed-
and flex-grid EONs with flexible transmission parameters,
namely baud rate, modulation format, and FEC overhead to
efficiently allocate resources to VLinks. We present a novel
approach that constrains latency over virtual paths, instead of
bounding the latency on each virtual links, to better capture
application latency requirements. We also identify latency con-
tributions of various active/passive elements in an EON. To an-
alyze the impact of latency constraints on resource allocation,
we present an ILP formulation for embedding VNs that respect
latency and differential delay constraints when using multiple
SPaths to satisfy VLink demands. We also devise a heuristic
algorithm to address the computational complexity of the ILP
formulation. Our proposed heuristic performs close to the ILP
formulation while executing several orders of magnitude faster.
In static scenarios, our extensive simulations, based on realistic
reaches, transmission configurations, and topologies, show that
guaranteeing latency does not require significant additional
resources. However, in a dynamic scenario, an additional 20%
and 12% VN requests were blocked for fixed- and flex-grid
EONs (Nobel Germany topology), respectively, when subject
to latency constraints. We also show that by adding 15%
SLinks to the unmodified Nobel Germany topology, we can
bring the blocking ratio down to 10% and 1% for fixed- and
flex-grid EONs, respectively.

ACKNOWLEDGEMENT

We thank our shepherd Stefan Schmid and the anonymous
reviewers of IEEE ICNP 2019 for their valuable feedback.
This work was funded in part by Huawei Canada and in part
by an NSERC CRD Grant. This work benefited from the use
of CrySP RIPPLE Facility at University of Waterloo.

REFERENCES

[1] S. Zhang, R. Wang, U. Mandal, M. F. Habib, and B. Mukherjee,
“Connecting the clouds with low-latency, low-cost virtual private lines
enabled by sliceable optical networks,” in Proceedings of IEEE Global
Communications Conference (GLOBECOM), 2013, pp. 2370–2375.

[2] Infinera, “Low latency – how low can you go?” White paper, 2016.
[3] M. A. Lema, A. Laya, T. Mahmoodi, M. Cuevas, J. Sachs, J. Mark-

endahl, and M. Dohler, “Business case and technology analysis for 5G
low latency applications,” IEEE Access, vol. 5, pp. 5917–5935, 2017.

[4] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey
on low latency towards 5G: Ran, core network and caching solutions,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3098–
3130, 2018.

[5] “Information week – wall street’s quest to process
data at the speed of light,” 2007. [Online]. Avail-
able: https://www.informationweek.com/wall-streets-quest-to-process-
data-at-the-speed-of-light/d/d-id/1054287

[6] V. Reporter, “The value of a millisecond: Finding the optimal speed of
a trading infrastructure,” Vision note, April 2008.

[7] A. Technologies, “State of online retail performance – 2017 holiday
retrospective,” White paper, 2017.

[8] G. G. M. S. Association, “The road to 5G: Drivers, applications,
requirements and technical development,” White paper, 2015.

[9] Nokia, “5G use cases and requirements,” White paper.
[10] Huawei, “5G: A technology vision,” White paper.
[11] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network

slicing in 5G: Survey and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 94–100, 2017.

[12] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualiza-
tion,” Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[13] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[14] J. Inführ and G. R. Raidl, “Introducing the virtual network mapping
problem with delay, routing and location constraints,” in Network
optimization. Springer, 2011, pp. 105–117.

[15] L. Shengquan, W. Chunming, Z. Min, and J. Ming, “An efficient virtual
network embedding algorithm with delay constraints,” in Proceedings
of IEEE International Symposium on Wireless Personal Multimedia
Communications (WPMC), 2013, pp. 1–6.

[16] S. Ayoubi, C. Assi, K. Shaban, and L. Narayanan, “Minted: Multicast
vIrtual NeTwork Embedding in cloud data centers with Delay con-
straints,” IEEE Transactions on Communications, vol. 63, no. 4, pp.
1291–1305, 2015.

[17] F. Bianchi and F. Lo Presti, “A markov reward based resource-latency
aware heuristic for the virtual network embedding problem,” ACM
SIGMETRICS Performance Evaluation Review, vol. 44, no. 4, pp. 57–
68, 2017.

[18] K. Hejja and X. Hesselbach, “Online power aware coordinated virtual
network embedding with 5G delay constraint,” Elsevier Journal of
Network and Computer Applications, vol. 124, pp. 121–136, 2018.

[19] B. Martini, F. Paganelli, P. Cappanera, S. Turchi, and P. Castoldi,
“Latency-aware composition of virtual functions in 5G,” in Proceedings
of IEEE Conference on Network Softwarization (NetSoft), April 2015,
pp. 1–6.

[20] O. Gerstel, M. Jinno, A. Lord, and S. B. Yoo, “Elastic optical net-
working: A new dawn for the optical layer?” IEEE Communications
Magazine, vol. 50, no. 2, 2012.

[21] R. Boutaba, N. Shahriar, and S. Fathi, “Elastic optical networking for
5G transport,” Springer Journal of Network and Systems Management,
vol. 25, no. 4, pp. 819–847, 2017.

[22] L. Liu, Y. Yin, M. Xia, M. Shirazipour, Z. Zhu, R. Proietti, Q. Xu,
S. Dahlfort, and S. J. Ben Yoo, “Software-defined fragmentation-aware
elastic optical networks enabled by openflow,” in Proceedings of Eu-
ropean Conference and Exhibition on Optical Communication (ECOC
2013), 2013, pp. 1–3.

[23] N. Cvijetic, A. Tanaka, P. N. Ji, K. Sethuraman, S. Murakami, and
T. Wang, “SDN and Openflow for dynamic flex-grid optical access and
aggregation networks,” IEEE/OSA Journal of Lightwave Technology,
vol. 32, no. 4, pp. 864–870, 2013.

[24] L. Liu, R. Muñoz, R. Casellas, T. Tsuritani, R. Martı́nez, and I. Morita,
“Openslice: An openflow-based control plane for spectrum sliced elastic

optical path networks,” OSA Optics express, vol. 21, no. 4, pp. 4194–
4204, 2013.

[25] R. Casellas, R. Martı́nez, R. Muñoz, R. Vilalta, L. Liu, T. Tsuritani,
and I. Morita, “Control and management of flexi-grid optical networks
with an integrated stateful path computation element and openflow con-
troller,” IEEE/OSA Journal of Optical Communications and Networking,
vol. 5, no. 10, pp. A57–A65, 2013.

[26] N. Shahriar, S. Taeb, S. R. Chowdhury, M. Tornatore, R. Boutaba,
J. Mitra, and M. Hemmati, “Achieving a Fully-Flexible Virtual Network
Embedding in Elastic Optical Networks,” in Proceedings of IEEE
International Conference on Computer Communications (INFOCOM),
2019, pp. 1756–1764.

[27] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” IEEE/OSA Journal of Lightwave Technology,
vol. 32, no. 3, pp. 450–460, 2014.

[28] R. Lin, S. Luo, J. Zhou, S. Wang, A. Cai, W.-D. Zhong, and M. Zuker-
man, “Virtual network embedding with adaptive modulation in flexi-grid
networks,” IEEE/OSA Journal of Lightwave Technology, vol. 36, no. 17,
pp. 3551–3563, 2017.

[29] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “SNDlib
1.0—survivable network design library,” Networks: An International
Journal, vol. 55, no. 3, pp. 276–286, 2010. [Online]. Available:
http://sndlib.zib.de/home.action

[30] B. C. Chatterjee, N. Sarma, and E. Oki, “Routing and spectrum
allocation in elastic optical networks: A tutorial,” IEEE Communications
Surveys & Tutorials, vol. 17, no. 3, pp. 1776–1800, 2015.

[31] J. Zhao, S. Subramaniam, and M. Brandt-Pearce, “Virtual topology map-
ping in elastic optical networks,” in Proceedings of IEEE International
Conference on Communications (ICC), 2013, pp. 3904–3908.

[32] M. Zhang, C. Wu, M. Jiang, and Q. Yang, “Mapping multicast service-
oriented virtual networks with delay and delay variation constraints,” in
Proceedings of IEEE Global Telecommunications Conference (GLOBE-
COM), 2010, pp. 1–5.

[33] G. Chochlidakis and V. Friderikos, “Low latency virtual network em-
bedding for mobile networks,” in Proceedings of IEEE International
Conference on Communications (ICC), 2016, pp. 1–6.

[34] G. Chochlidakis and V. Friderikos, “Mobility aware virtual network
embedding,” IEEE Transactions on Mobile Computing, vol. 16, no. 5,
pp. 1343–1356, 2016.

[35] W. Mandarawi, A. Fischer, A. M. Houyou, H.-P. Huth, and H. De Meer,
“Constraint-based virtualization of industrial networks,” in Principles of
Performance and Reliability Modeling and Evaluation. Springer, 2016,
pp. 567–586.

[36] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource
optimization with network function virtualization,” IEEE Transactions
on Communications, vol. 64, no. 9, pp. 3746–3758, 2016.

[37] H. A. Alameddine, L. Qu, and C. Assi, “Scheduling service func-
tion chains for ultra-low latency network services,” in Proceedings
of IEEE/ACM/IFIP International Conference on Network and Service
Management (CNSM), 2017, pp. 1–9.

[38] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-
optimal VNF placement at the network edge,” in Proceedings of IEEE
Conference on Computer Communications (INFOCOM), 2018, pp. 693–
701.

[39] S. Fichera, R. Martinez, B. Martini, M. Gharbaoui, R. Casellas, R. Vi-
lalta, R. Muñoz, and P. Castoldi, “Latency-aware network service or-
chestration over an SDN-controlled multi-layer transport infrastructure,”
in Proceedings of International Conference on Transparent Optical
Networks (ICTON), 2018, pp. 1–4.

[40] D. Harutyunyan, N. Shahriar, R. Boutaba, and R. Riggio, “Latency–
aware service function chain placement in 5G mobile networks,” in
Proceedings of IEEE Conference on Network Softwarization (NetSoft),
2019, pp. 133–141.

[41] M. D. M. Nguyen and M. Ghaderi, “Proactive service orchestration with
deadline,” in Proceedings of IEEE Conference on Network Softwariza-
tion (NetSoft), 2019, pp. 369–377.

[42] H. Alameddine, M. H. K. Tushar, and C. Assi, “Scheduling of low
latency services in softwarized networks,” IEEE Transactions on Cloud
Computing, March 2019.

[43] J. Jay, “Low signal latency in optical fiber networks,” in Corning Optical
Fiber, Proc. of the 60th IWCS, Conference, Charlotte, NC, USA,(6-9 Nov.
2011). Citeseer, 2011.

[44] V. Bobrovs, S. Spolitis, and G. Ivanovs, “Latency causes and reduction
in optical metro networks,” in Optical Metro Networks and Short-Haul

Systems VI, vol. 9008. International Society for Optics and Photonics,
2014, p. 90080C.

[45] Optelian, “A sensible low-latency strategy for optical transport net-
works,” White paper, 2014.

[46] Y. Pointurier, N. Benzaoui, W. Lautenschlaeger, and L. Dembeck, “End-
to-end time-sensitive optical networking: Challenges and solutions,”
IEEE/OSA Journal of Lightwave Technology, vol. 37, no. 7, pp. 1732–
1741, April 2019.

[47] N. Amaya, G. Zervas, and D. Simeonidou, “Introducing node archi-
tecture flexibility for elastic optical networks,” IEEE/OSA Journal of
Optical Communications and Networking, vol. 5, no. 6, pp. 593–608,
2013.

[48] G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee, “A survey on
OFDM-based elastic core optical networking,” IEEE Communications
Surveys & Tutorials, vol. 15, no. 1, pp. 65–87, 2012.

[49] A. Pagès, J. Perelló, S. Spadaro, and J. Comellas, “Optimal route,
spectrum, and modulation level assignment in split-spectrum-enabled
dynamic elastic optical networks,” IEEE/OSA Journal of Optical Com-
munications and Networking, vol. 6, no. 2, pp. 114–126, 2014.

[50] G. Bernstein, D. Caviglia, R. Rabbat, and H. Van Helvoort, “Vcat-lcas
in a clamshell,” IEEE Communications Magazine, vol. 44, no. 5, pp.
34–36, 2006.

[51] Flex ethernet 2.0 implementation agreement [online]
https://www.oiforum.com/wp-content/uploads/2019/01/oif-flexe-02.0-
1.pdf.

[52] V. López and L. Velasco, Elastic Optical Networks. Architectures,
Technologies, and Control, Switzerland: Springer Int. Publishing, 2016.

[53] T. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and
Y. Zhang, “Chromatic dispersion compensation in coherent transmission
system using digital filters,” OSA Optics express, vol. 18, no. 15, pp.
16 243–16 257, 2010.

[54] S. Huang, C. U. Martel, and B. Mukherjee, “Survivable multipath pro-
visioning with differential delay constraint in telecom mesh networks,”
IEEE/ACM Transactions On Networking, vol. 19, no. 3, pp. 657–669,
2011.

[64] A. Blenk, P. Kalmbach, J. Zerwas, M. Jarschel, S. Schmid, and
W. Kellerer, “Neurovine: A neural preprocessor for your virtual network
embedding algorithm,” in Proceedings of IEEE International Conference
on Computer Communications (INFOCOM), 2018, pp. 405–413.

[55] X. Chen, A. Jukan, and A. Gumaste, “Multipath de-fragmentation:
Achieving better spectral efficiency in elastic optical path networks,”
in Proceedings of IEEE International Conference on Computer Com-
munications (INFOCOM), 2013, pp. 390–394.

[56] N. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network
embedding with coordinated node and link mapping,” in Proceedings of
IEEE International Conference on Computer Communications (INFO-
COM), 2009, pp. 783–791.

[57] Y. Wang, X. Cao, and Y. Pan, “A study of the routing and spectrum allo-
cation in spectrum-sliced elastic optical path networks,” in INFOCOM,
2011 Proceedings IEEE. IEEE, 2011, pp. 1503–1511.

[58] M. Rost and S. Schmid, “Charting the complexity landscape of virtual
network embeddings,” in Proceedings of IFIP Networking Conference
and Workshops, 2018, pp. 1–9.

[59] M. Rost, E. Döhne, and S. Schmid, “Parametrized complexity of virtual
network embeddings: Dynamic & linear programming approximations,”
ACM SIGCOMM Comput. Commun. Rev., vol. 49, no. 1, pp. 3–10, Feb.
2019.

[60] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–
29, 2008.

[61] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking (TON), vol. 20, no. 1, pp. 206–
219, 2012.

[62] C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-
Pastor, and A. Monje, “On the optimal allocation of virtual resources in
cloud computing networks,” IEEE Transactions on Computers, vol. 62,
no. 6, pp. 1060–1071, 2013.

[63] S. R. Chowdhury, R. Ahmed, M. M. A. Khan, N. Shahriar, R. Boutaba,
J. Mitra, and F. Zeng, “Protecting virtual networks with drone,” IEEE
Transactions on Network and Service Management, vol. 13, pp. 913–
926, 2016.

[65] S. R. Chowdhury, S. Ayoubi, R. Ahmed, N. Shahriar, R. Boutaba,
J. Mitra, and L. Liu, “Multi-layer virtual network embedding,” IEEE
Transactions on Network and Service Management, vol. 15, no. 3, pp.
1132–1145, Sept 2018.

