
Diurnal Availability for Peer-to-Peer Systems

Nashid Shahriar1, Mahfuza Sharmin1, Reaz Ahmed1, Md. Mustafizur Rahman1, Raouf Boutaba2, Bertrand Mathieu3

1Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
2School of Computer Science, University of Waterloo Ontario, Canada,3Orange Labs

Email: {nshahriar, sharmin, reaz, mustafiz rahman}@cse.buet.ac.bd, rboutaba@bbcr.uwaterloo.ca, bertrand2.mathieu@orange-ftgroup.com

Abstract—Ensuring content availability in a persistent manner
is essential for providing any consistent service over peer-to-peer
(P2P) systems. This paper introduces an efficient protocol, called
DATA, to design highly available P2P systems irrespective of peer
uptime and churn. Our approach utilizes the diurnal pattern of
globally dispersed peers to develop a grouping strategy where
each group aims to ensure 24x7 data availability within the group.
Simulation results reveal that our protocol converges fast and
ensures high availability for each group with minimal overhead.

I. INTRODUCTION

There has been a rapid increase in the popularity of peer-to-

peer (P2P) systems in the last decade. Such systems typically

lack dedicated infrastructure, centralized administration, but

rather depend on the voluntary participation of individual

computers often referred to as peers. These properties attract

enormous number and heterogenous types of peers from

around the world to share their otherwise unused resources

such as computing power and storage. With the advancement

of P2P technology, traditional client-server based systems are

being investigated to be deployed in the P2P model.

One of the key challenges behind the success of P2P

solutions is to ensure persistent availability of the content

upon which the service is dependent. Existing availability

oriented approaches are either bandwidth hungry or require

complex predictive knowledge stored and computed during

replica relocation. Frequently, these approaches burden the

highly available peers resulting in a skewed load distribution-

Another shortcoming lies in gathering information needed for

the replication process in large and unstructured networks.

Cyclic diurnal pattern in peer availability has been observed

in the previous studies of P2P systems [3], [4], [5], [6].

Rzadca et al. [7] have shown that diurnal behavior of peers

can be a useful characteristic for improving availability if the

system has truly global scope i.e. the participating peers are

distributed in different time zones. When considering such a

system under a Universal Time Standard, the cyclic behavior

of the peers situated in different time zones can be found to

be complementary or partially overlapping. For example, two

cyclic peers that are usually down during the night, but located

in two distinct places having 12-hour clock difference, show

complementary availability pattern. Even the peers located

in the same time zone may show diverse availability pattern

depending on the individual’s Internet habit or job nature. As

shown in Figure 1, peers A, B, C, and D having similar daily

Internet habit and located in four different time zones can

together provide improved availability around the clock. Our

proposed scheme takes advantage of this kind of behavior to

improve availability with smaller replication overhead.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

UTC+0
A

UTC+6
B

A
va

ila
bi

lit
y

D
is

tr
ib

ut
io

n

UTC+12
C

UTC+18
D

Combined
All

Fig. 1. Global Availability Pattern

The remainder of the paper is organized as follows. In

section II, we propose an efficient peer grouping protocol

for developing P2P systems leveraging 24x7 availability with

high probability while minimizing the aforementioned short-

comings. Our protocol, called DATA (Diurnal Availability by

Temporal Assemblage) of peers is based on the utilization of

the diurnal availability patterns of geographically distributed

peers. To evaluate the effectiveness of our proposal, we

implement and evaluate our protocol using Peersim [1]. The

simulation results in section III also validate our claim: DATA

ensures persistent availability of the content by means of

intelligent grouping of small number peers.

II. DIURNAL GROUPING

In our proposed protocol, DATA, peers having complemen-

tary availability behaviors form groups. A group consists of

small number of peers and ensures that some members of

the group are available with high probability at any given

time. Collectively, such a group ensures overall increase in the

system’s availability. To develop the protocol, we first need to

keep track of the peers’ uptime history and to represent avail-

ability behaviors mathematically. We also need a measurement

technique for optimizing complementary availability patterns.

Subsection II-A presents a way to represent availability

pattern as a probabilistic vector and II-B describes the metrics

used by peers to select their best matching group mates.

The next challenge is to devise a strategy to form groups

in a distributed manner for an unstructured P2P system. If

there was an Oracle providing availability patterns of all the

peers across the P2P system, the optimal grouping would

still be an NP-complete problem [7]. In addition, collecting

and searching availability patterns of all the peers is not

feasible in an unstructured P2P system. So, we propose a

gossip based approach to construct a self-organizing gradient

topology based on optimistic availability patterns in II-C. The

information contained in the gradient topology is used to

devise the grouping strategies as elaborated in II-D.

The 9th Annual IEEE Consumer Communications and Networking Conference - Peer-to-Peer Networking and Content Distribution

978-1-4577-2071-0/12/$26.00 ©2012 IEEE 619

A. Availability Vector

The traditional definition of host availability simply mea-

sures it by the fraction of time a peer is online [9]. If a peer

joins and leaves n times during the period t − t0 and every

time remains up for duration ti, then host availability can be

computed as follows
A(t) =

∑n
i=1 ti

t − t0
(1)

However, this formula ignores the effect of time-of-day on

host availability which is a function of time t. According

to this formula, all peers A, B, C, and D in Figure 1 have

the same value for availability though they largely differ in

their pattern of availability. In [20] Yang et al. mathematically

demonstrated the drawbacks of applying the above formulation

in P2P system and argue for the necessity of a discrete model.

To discretize the traditional availability function, we propose

to use a vector representation similar to [20]. As our proposal

is based on the diurnal pattern of availability, we divide the 24
hours of a day into multiple, say K , slots of equal length ∆t.

So, K = 24
∆t

. We represent availability aik of a peer Pi in a

particular slot k, by a historical probability of Pi to be online

at kth time slot which is the time duration from 24
∆t

(k − 1)
to 24

∆t
(k) of every day. By gathering the peer’s most common

availability information throughout a day, we get aik for all

the K slots of a day. We represent availability behavior of a

peer Pi as a K dimensional vector, named Availability Vector

Ai as shown in Equation 2. DATA protocol layer deployed on

a peer Pi, can easily compute and maintain Ai by recording

its Internet connectivity history for a sufficient period of time.

Ai = {ai1, ai2, ..., aik, ..., aiK} (2)

We, now define the availability vector, Ag for a group of

peers formed using our protocol. The representation is the

same as Equation 2 but the meaning of individual components

is now different as more than one peer are involved. We

define the availability of a group as the availability of at

least 1 member of that group across time. For a group G,

the availability at the kth slot, represented by agk in Ag , can

be computed as follows:
agk = 1 −

∏

∀Pi∈G

(1 − aik) (3)

B. Metrics for Peer Selection

We define, the contribution Ci,j between two peers Pi and

Pj as the improvement on availability after merging them

in a new group. We derive two equations to compute Ci,j

from Ai and Aj of the two participating peers. Before posing

the equations, we introduce some terminology as follows.

Initially, the system starts with only individual peers but later

both isolated peers and grouped peers may be present. For

consistency, we consider a single peer as Singleton Group

which has the peer as its sole member. The size of the group

in which Pi resides is expressed by |Gi|, and |Gi| = 1 for a

Singleton group. |Gi ∪ Gj | denotes the size of the new group

consisting of the former two groups containing Pi and Pj .

The joint availability of peers Pi and Pj at slot k is denoted

by Jijk and defined by Jijk = aik ∗ ajk. Let Cijk denote the

contribution of any two peers Pi and Pj at slot k. We compute

the value of Ci,j using the following “Conservative” equation:

Ci,j =

K
∑

k=1

Cijk

|Gi ∪ Gj |
(4)

where,

Cijk =















0 if aik = ajk;

J
(

aik
ajk

)

ijk − Jijk if aik < ajk;

J
(

ajk
aik

)

ijk − Jijk if aik > ajk.

We now explain the motivation behind this equation. We

consider a time slot, say k, for two peers Pi and Pj to be

complementary if |aik − ajk| is close to 1. According to our

observation, for any two peers, Pi and Pj , complementary

slots should contribute more in the result and to reflect this the

value of Jijk is deducted from the term J
(

aik
ajk

)

ijk (or J
(

ajk
aik

)

ijk). To

illustrate, consider three peers Pi, Pj ,and Pl having availability

aik, ajk, and alk at slot k. For peer Pi, Pj is more attractive

than Pl at slot k if ajk > alk. To minimize the affinity

towards large groups which should in general have higher slot

availability, the term 1
|Gi∪Gj|

has been introduced in Equation

4 as a factor while summing up the slot wise contribution.

We call the above equation Conservative because it focuses

on the complementary behavior to ensure group’s availability

across time. We also derive a “General” equation based on

the concept of probability of at least one member of any

group being present. The underlying explanation is relatively

straightforward. If two peers Pi and Pj are merged into a

group G, Pi or Pj should be benefitted by the utility, Uig or

Ujg . Mathematically,

Uig =

K
∑

k=1

(agk − aik), Ujg =

K
∑

k=1

(agk − ajk)

The following General equation suffices to find the contri-

bution Ci,j satisfactorily.

Ci,j =
(Uig + Ujg)

|Gi ∪ Gj |
(5)

C. Availability Information

Peers in unstructured P2P systems keep little knowledge

about the system and interact with a limited number of

neighbors. In such a system, to find the current best candidate

to group with, DATA needs to devise a search strategy that

is efficient, scalable and that converges fast without any

centralized component. To keep the search space relatively

smaller, we propose to maintain a local list of current best

candidates named as knownlist in each peer. The search

method exploits the above list to achieve a significantly better

search performance than traditional search techniques, such as

random walk, which requires communication with potentially

all peers in the system. The absence of a centralized com-

ponent requires that the construction and maintenance of the

local list to be self-organized. In DATA, we propose a gossip

based information exchange method named Exploration to

generate a list of current best candidates under a completely

decentralized environment. Each group whether Singleton or

not, has a leader, which on behalf of the group is responsible

for communicating with other peers to process grouping

activities. Among the alive members of a Group, the peer

with the highest individual slot probability is chosen as the

620

leader of the group. When the leader goes down, a new leader

is elected according to the Bully Election Algorithm [21].

During exploration, each group leader collects availability

information from as many peers as it can reach, i.e., its direct

neighbors and the neighbors of its group mates. But it only

keeps the information about a predefined knowncount number

of peers in its knownlist whose contributions are attractive

in the current context. As shown in Table I each entry of

the knownlist contains identity of a peer, its availability and

grouping information.
TABLE I

DATA STRUCTURES CONTAINED IN PEER Pi

Data structure Description

neighborlist {Pj | ∀Pj , Pj ∈ neighbors(Pi)}
knownlist {Pj ,Aj , |Gj| , attempted | ∀Pj ∈ Pi.knownlist}

memberlist {Pj | ∀Pj ∈ G, Pi ∈ G, Pi 6= Pj}
leader {Pj | Pj ∈ G, ∀Pi ∈ G, Pj 6= Pi, ajk ≥ aik}

sentrequest {Pj | Pi has sent GroupInvitation to Pj}
Ai {ai1, ai2, ..., aik, ..., aiK}

Algorithm 1 Pi .EXPLORATION()

1: for each Pj ∈ Pi.neighborlist and Pj is up

2: NeighborInfo.add(Pj ,Aj)
3: for each eq ∈ ExploreQuery received

4: Ps ← eq.getSource()

5: er ← exploreReply(NeighborInfo)

6: Send er to Ps

7: if Pi is a Leader

8: for each Pm ∈ (Pi.memberlist ∪ Pi)
9: for each Pj ∈ Pm.neighborlist

10: if Pj ∈ Pi.memberlist and Pj is down

11: Continue to next iteration

12: Send ExploreQuery to Pj

13: Compute Ci,j

14: if Ci,j > min({Ci,k | ∀Pk ∈ Pi.knownlist})
15: Pi.knownlist.add(Pj)

16: for each er ∈ ExploreReply received

17: for each Pj ∈ er.NeighborInfo

18: Compute Ci,j

19: if Ci,j > min({Ci,k | ∀Pk ∈ Pi.knownlist})
20: Pi.knownlist.add(Pj)

As shown in Algorithm 1, in the exploration process, the

neighboring peers gossip with each other to exchange relevant

information. Initially, a leader, Pi, sends ExploreQuery to

all its neighbors and the neighbors of its group mates who

are alive in the current slot. At the same time, Pi initializes

its knownlist with the neighbors that are not member of

its group. In the second phase, all peers upon reception of

ExploreQuery, collect currently alive neighborhood infor-

mation and bundle it in the ExploreReply to be sent to

the requesting peer. Finally, the exploring peer utilizes the

peer availability information gathered from ExploreReply to

update its knownlist. Using the previously described equa-

tions, it compares the contribution for each of the collected

peer’s availability with the contribution of each peer in its

current knownlist and updates the knownlist with the best

set of peers having the highest contributions. By the end of its

exploration, the peer is expected to know the best matching

peers in its one or two hop neighborhood distance.

D. Group Construction

After gathering availability information and updating

knownlist through Exploration, a peer repeatedly executes a

process called PeerCycle to form and modify groups utilizing

the complementary uptime distribution in the peers’ availabil-

ity patterns. Such a group is constructed incrementally, i.e.,

forming groups with two single peers initially then growing

in size up to the maximum allowable group size. Later, two

non-Singleton groups merge into a larger one such that the

resultant availability of the new group in all the slots increases

from the availability of the former two groups by a sufficient

margin. Groups can revoke the membership of a peer if it is

not any more contributing to the availability increase.

Algorithm 2 Pi .PEERCYCLE()

1: if GroupUpdate received

2: Update Grouping Information

3: if Revoke received

4: |Gi| ← 1
5: Pi.leader ← Pi

6: Pi.knownList← Exploration()

7: if Pi is not a leader

8: Forward all Incoming Messages to the leader

9: exit

10: if SentRequestQueue not empty

11: Pm ← sentrequest.getPeer()

12: if Acceptance received from Pm

13: MergeGroup(Pi, Pm)
14: sentrequest.Clear()

15: exit

16: else if Denial received from Pm

17: sentrequest.Clear()

18: if Pi.knonwlist.A(Pm) 6= A(Pm)
19: Pi.knownList.A(Pm)← A(Pm)
20: Pm.attempted ← false

21: else

22: Pm.attempted ← true
23: else

24: Initiate wait count

25: exit

26: Pknown ← FindBestKnownPeer(Pi.knownlist)
27: Pinvitee ← FindBestInviation(GroupInvitations)
28: if Ci,Pinvitee

> Ci,Pknown
29: Send Acceptance to Pinvitee

30: else

31: Send GroupInvitation to Pknown

32: Send Denial to Pinvitee

33: sentrequest.add(Pknown)

34: for each Pj ∈ Pi.memberlist
35: Compute Ci,Pj

36: if Ci,Pj
< ADAPTIVE THRESHOLD

37: Modify Ag

38: Send Revoke to Pj

Algorithm 3 FINDBESTKNOWNPEER(KNOWNLIST)

1: Cmax ← ADAPTIVE THRESHOLD

2: for each Pj ∈ knownList
3: if Pj .attempted = false and |Gi ∪Gj | < MAXSIZE

4: Compute Ci,j

5: if Ci,j > Cmax

6: Cmax ← Ci,j

7: Pknown ← Pj

8: return Pknown

Algorithm 4 FINDBESTINVIATION(INVITATIONQUEUE)

1: requestmax ← ADAPTIVE THRESHOLD

2: for each gi in InvitationQueue

3: Pj ← gi.getSource()

4: if Pj∈Pi.knonwlist and Pi.knonwlist.A(Pj) 6=A(Pj)
5: Pi.knownList.A(Pj)← A(Pj)
6: Pj .attempted← false
7: compute Ci,j

8: if Ci,j > requestmax and |Gi ∪Gj| < MAXSIZE

9: requestmax ← Ci,j

10: Pinvitee ← Pj

11: Send Denial to all inviting peers except Pinvitee

12: return Pinvitee

In the PeerCycle process shown in Algorithm 2, a non-

leader peer finishes its turn by just forwarding all incoming

messages to its leader. On the contrary, a leader Pi, searches

the entries in its knownlist and the incoming requests to find

its best matching peer. The selection of the highest contributing

621

peer, Pknown from the knownlist is illustrated in Algorithm

3. The search on the incoming invitations is shown by the

Algorithm 4. Here Pi finds the best peer, Pinvitee in terms

of contribution among the inviting peers and sends rejections

to all the inviting peers except Pinvitee through Denial

messages. Pi then compares the contribution of Pinvitee with

that of Pknown to ensure that they are the best matching from

both ends. If the contribution of Pinvitee is greater, only then

Pi accepts the invitation by sending an Acceptance message

to Pinvitee . Otherwise Pi has found a better matching peer,

Pknown in its own knownlist. In this case, Pi rejects the

invitation from Pinvitee through a Denial and invites Pknown

to form a group through a GroupInvitation message. After

sending the GroupInvitation, Pi waits for the response from

Pknown, which can either be an Acceptance or a Denial. To

avoid inviting a unsuccessful peer repeatedly, a flag named

attempted is incorporated for each entry in the knownlist.

It is marked after a Denial is received and cleared after Pi

detects change in the Aj of Pj . Upon receiving a Denial, Pi

repeats the process by selecting one of the unattempted peers

in its knownlist in order of their contributions and inviting

it as previously described. When sending a GroupInvitation

or a Denial, the originator of the message piggybacks its

present availability and grouping information so that the

receiver can update its knownlist accordingly. Coalescing of

two groups is allowed if the resultant group size does not

exceed the predefined group size limit. To prevent unnecessary

GroupInvitations propagating across the network, an adap-

tive threshold has been incorporated whose value is computed

depending on the current grouping state of the peer.

If none of the invited peers agree to form a group,

Pi remains unchanged. On the contrary, upon receiving an

Acceptance from a peer Pm, Pi initiates the process of

coalescing of the two groups into a larger one as shown in

Algorithm 5. At this stage both peers reach an agreement to

form a new group and exchange their As and knownlists.

The components of availability vector Ag of the group Gn is

computed using the Equation 3. The best knowncount number

of peers with respect to the new Ag are chosen to construct

the new knownlist. GroupUpdate message containing these

updated information is propagated to all members of the new

group. When become alive, the members update their group

related information from the GroupUpdate and consider

group’s Ag and knownlist for further grouping activities.

Algorithm 5 MERGEGROUP(Pi , Pm)

1: create new group Gn where |Gn| ← |Gi ∪Gm|
2: Gn.memberlist ← Gi.memberlist ∪Gm.memberlist
3: Gn.leader ← Pl s.t. Pl is up and ∀x ∈ {Gn.memberlist}, Pl.id ≥ x.id
4: for each slot k from 1 to K

5: Ag [k] ← 1− ((1−Ai[k])(1−Am[k]))
6: Gn.knownlist ← best knowncount peers from Gi.knownlist ∪

Gm.knownlist w. r. t. the new Ag

7: gupdate← groupUpdate(Gn,Ag)

8: for each Pj ∈ Gn.memberlist
9: Send gupdate to Pj

III. EXPERIMENTAL RESULTS

To evaluate the performance of our protocol, we simulate

an unstructured P2P network using Peersim simulator [1]. We

have implemented four grouping strategies; one for each of the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

C
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

Group availability (nines)

Conservative

General

Random

Oracle

(a) alpha=0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

C
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

Group availability (nines)

Conservative

General

Random

Oracle

(b) alpha=0.5

Fig. 2. Group availability measurements

two proposed methods in Section II-B, i.e., Conservative and

General; the third strategy follows random grouping among

the currently alive two hop neighbors. To show the effect of

global availability knowledge, we have also implemented a

centralized Oracle based scheme. Time zone diversity is varied

using the parameter alpha. To illustrate the effectiveness of

our proposed protocol, we consider the following performance

metrics:

• Group availability: Group availability is measured in

units of nines [5], defined as −log10(1−T) , where T is

the fraction of the total observed time when at least one

member of the group is available. For instance, a group

availability of 2 nines implies that the group is accessible

during 99% of the total time.

• Group count: It is the total number of groups created by

each strategy. For a fixed network size, group count is

inversely proportional to the average group size which

we can use as the replication factor.

• Normalized message overhead: It is a measure of total

number of messages exchanged by the protocol normal-

ized by the group count.

From the groups’ availabilities in nines in Figure 2 we

can see that for non-random strategies with alpha = 0.1,

majority of the groups remain available more than 83% (0.75

nines) of total time whereas majority of groups formed by

random strategy remain available only around than 50% (0.30

nines) of the time. If we increase the time zone disparity

with alpha = 0.5, groups’ available time decreases as finding

matching peers becomes less probable. Figure 3 exhibits the

impact of varying time zone disparity on different approaches.

The figure clearly shows that impact of time zone diversity on

random strategy is very small and the curves for different alpha

tends to make close cluster. For all other three approaches,

time zone diversity has strong impact with alpha → 0 pro-

viding with the best availability for the group and alpha → 2
with the worst result.

The improvement we gain on availability as shown in the

above results comes at the cost of some overhead which is

illustrated in Figure 4. The group count which is plotted

along left axis can be a measure of replication overhead. The

important aspect of the Figure 4 is that for a fixed network size

the replication factor using Oracle has the lowest value, using

random grouping has the highest, and using our methods lies in

between the two. So far, all the graphs reveal the supremacy of

the Oracle but its main bottleneck is shown in Figure 4 where

normalized message overhead is plotted. The graph shows that

normalized overhead for Oracle is significantly larger (5 to 9

622

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

C
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

Group availability (nines)

0.0

0.1

0.5
1.0

1.5

2.0

(a) Conservative

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

C
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

Group availability (nines)

0.0

0.1

0.5

1.0

1.5

2.0

(b) General

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

C
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

Group availability (nines)

0.0

0.1

0.5

1.0

1.5

2.0

(c) Random

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

C
u

m
u

la
ti
v
e

 f
re

q
u

e
n

c
y
 (

in
 p

e
rc

e
n

ta
g

e
)

Group availability (nines)

0.0

0.1

0.5
1.0

1.5

2.0

(d) Oracle

Fig. 3. Group availability measurements

Fig. 4. Grouping overhead

times) than that of the other three strategies which is due to the

network level search. As the Oracle requires communication

with potentially all peers in the network, its normalized

overhead increases with the increase of time zone diversity.

The other three strategies involve communication with peers

in a limited search space and so their normalized overhead

remains somewhat constant. The normalized overhead for our

methods is slightly greater than the random case. This stems

from the fact that our methods require more attempts to find

the best matching peers from both ends.

IV. RELATED WORKS

A number of approaches to improve availability in P2P

systems can be found in the literature. These works vary in

the type of redundancy, method of data regeneration, and the

timing and number of peers storing redundant data. Bhag-

wan et al. [2] explored the issues of replication granularity,

replica placement, and application characteristics. In terms

of approach, redundancy is achieved either by replicating

the complete data or fragmenting and encoding the data by

erasure coding such that not all fragments are needed to

reproduce it [2], [18]. Data replication is mainly done in

two ways: reactive [9] or proactive [10]. Both approaches

aim to optimally place the replicas in minimal number of

peers so that overall availability of the data remains high.

Existing solutions use information like peers’ session time and

churn [15], availability history [16], lifespan distribution [19],

machines’ uptime, downtime, lifetime, and correlation among

them [13], Mean Time to Failure [8], up time score [18], recent

up time [17], application specific availability [12], availability-

prediction guided replica placement [9], [11], and probabilistic

models [14] to tune the redundancy overhead.

All these redundancy based approaches rely on the cooper-

ation of the hosts to achieve the desirable goal of availability.

While DATA follows the same assumption of host cooperation

it differs in the evaluation of replication criteria. Indeed, these

schemes take into account only the current but single score of

availability as the replication criteria whereas DATA dissemi-

nates the score across time to better capture the cyclic behavior

and time-of-day effect of the P2P system. Also unlike other

schemes DATA considers the fact of transient disconnections

and utilizes the reintegration of data to significantly reduce the

number of replicas needed.
V. CONCLUSION AND FUTURE DIRECTIONS

In this paper we have described an efficient grouping

scheme which irrespective of peer timing and churn ensures

data availability around the clock. we plan to refine it and to

store availability information using a Distributed Hash Table,

which should result in a globally optimized and scalable group

formation algorithm applicable to structured network. We

also intend to investigate performance of DATA by deploying

it on a real world P2P system and to ensure availability

for specific application requirements. The success of DATA

depends largely on the willingness and truthfulness of the

peers. Tackling the untrusted behavior of peers and security

issues of group formation is another prospective research issue.
REFERENCES

[1] PeerSim: A Peer-to-Peer Simulator. http://peersim.sourceforge.net/.

[2] R. Bhagwan, D. Moore, S. Savage, and G. Voelker. Replication strategies for highly

available peer-to-peer storage systems. In Proc. FuDiCo, 2002.

[3] D. Stutzbach, and R. Rejaie. Understanding churn in peer-to-peer networks. In Proc.

Internet measurement, 2006.

[4] J. Chu, K. Labonte, and B. N. LevineH. Availability and Locality measurements of

Peer-to-Peer File Systems. In Proc. ITCom, 2002.

[5] J. R. DOUCEUR. Is remote host availability governed by a universal law. Perfor-

mance Evaluation Review Vol. 31, Issue 3, 25-29, 2003.

[6] S. Saroiu, P. K. Gummadi and S.D. Gribble. A Measurement Study of Peer-to-Peer

File Sharing Systems. In Proc. MMCN, 2002.

[7] K. Rzadca, A. Datta, S. Buchegger. Replica Placement in P2P Storage: Complexity

and Game Theoretic Analyses. In Proc. DCS, June 2010, pp. 599-609.

[8] K. Kim. Time-related replication for p2p storage system. In Proc. ICN, 2008. s

[9] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker. Total Recall: system

support for automated availability management. In Proc. NSDI, 2004.

[10] A. Duminuco, E. Biersack, T. En-Najjary. Proactive Replication in Distributed

Storage Systems Using Machine Availability Estimation. In Proc. CoNEXT, 2007.

[11] J. W. Mickens and B. D. Noble. Exploiting Availability Prediction in Distributed

Systems. In Proc. NSDI, 2006.

[12] S. Shi, G. Yang, J. Yu, Y. Wu, and D. Wang. Improving Availability of P2P Storage

Systems. In Proc. APPT, 2003.

[13] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility of a Serverless

Distributed File System Deployed on an Existing Set of Desktop PCs. In ACM

SIGMETRICS, 2000.

[14] K. Ranganathan, A. Iamnitchi, and I. Foster. Improving Data Availability through

Dynamic Model-Driven Replication in Large Peer-to-Peer Communities. In Proc.

GP2PC, 2002.

[15] R. Mahajan, M. Castro, and A. Rowstron. Controlling the cost of reliability in

peer-to-peer overlays. In Proc. IPTPS, 2003.

[16] S. Blond, F. Fessant, E. Merrer. Finding Good Partners in Availability-aware P2P

Networks. In Proc. SSS, 2009.

[17] J. Sacha, J. Dowling, R. Cunningham, and R. Meier. Discovery of stable peers in

a self-organising peer-to-peer gradient topology. In Proc. IFIP 2006.

[18] T. Schwarz, Q. Xin, and E. Miller. Availability in Global Peer-To-Peer Storage

Systems. In Proc. IPTPS, 2004.

[19] F. E. Bustamante and Y. Qiao. Friendships that last: Peer lifespan and its role in

P2P protocols. Proc. Web Content Caching and Distribution, pp. 233 - 246, 2004.

[20] Z. Yang, J. Tian, and Y. Dai. Towards a More Accurate Availability Evaluation in

Peer-to-Peer Storage Systems. International Journal of High Performance Comput-

ing and Networking, Vol. 6 Issue 3/4, 2010.

[21] H. Garcia-Molina Elections in a Distributed Computing System. IEEE Transactions

on Computers, Vol. 31 Issue 1, 1982, pp. 48-59.

623

