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Abstract—In the complex landscape of modern networks,
the necessity of Intrusion Detection System (IDS) has become
paramount. An IDS is a crucial cybersecurity tool that plays a
pivotal role in safeguarding networks against a wide array of
threats and attacks. The application of deep learning models
for intrusion detection is becoming popular among research
communities due to its success in many other domains. However,
deep learning models require a significant amount of labeled
data to achieve effective training. Obtaining labeled data for
intrusion detection can be challenging and costly. To address it,
Deep Transfer Learning (DTL) can be employed. This research
introduces an innovative traffic classification method tailored for
5G networks. The approach leverages deep transfer learning by
utilizing pre-trained models and fine-tuning them. We evaluate
several deep-learning models in a transfer learning setting. The
Inception model being identified as the top-performing model
shows an improvement of approximately 10% in terms of F1-score
between IDS-based DTL and the same scheme without DTL.

Index Terms—5G Networks, Intrusion Detection, Deep Transfer
Learning

I. INTRODUCTION

In modern networks such as 5G network, the challenge of
intrusion detection has become increasingly complex due to the
rapid increase of devices, the exponential growth of data traffic,
and the dynamic nature of network architectures. Traditional
Intrusion Detection Systems (IDS) often struggle to keep pace
with the diverse and evolving attack techniques that target
these networks. This challenge is exacerbated by the scarcity
of labeled data specific to 5G environments, hindering the
development of accurate detection models.

Transfer learning (TL) [1] is a machine learning approach
where a model trained on one domain (called source domain)
is re-purposed to perform a different but related task (called
target domain). Instead of training a model from scratch for the
target domain, TL leverages the knowledge and representations
learned from the source domain to enhance the performance
on the target domain. TL is particularly useful in situations
where the target domain has limited data and features learned
from the source domain are applicable to the target domain.

TL enables the transfer of learned features, patterns, and
representations from the source domain to the target domain,
aiding in the detection of novel and sophisticated attacks. TL
also accelerates model convergence and reduces the resource-
intensive process of building an IDS from scratch for 5G net-
works. By capitalizing on TL techniques, intrusion detection in
modern networks like 5G can be more effective, adaptable, and

responsive to emerging threats, ultimately enhancing security
posture of these advanced communication infrastructures.

The goal of this paper is to implement and put into
practice an effective intrusion detection approach based on TL,
knowledge transfer, and model improvement. With scarce and
imbalanced datasets, we assess the detection rate and accuracy
for well-known and new Distributed Denial of Service (DDoS)
attacks in 5G networks. In intrusion detection, two distinct but
related datasets that include both benign traffic flows and attack
traffic flows in 5G networks are taken into consideration.

Our dataset1, which contains a large amount of network
traffic generated in a 5G lab testbed, is chosen as the source
domain. This dataset is an extended version of work [2].
The 5G-NIDD dataset [3], which has a sparse amount of
annotated 5G network traffic pertaining to current and modern
cyberattacks, is chosen as the target domain.

The main contributions of this paper are as follows:
• We collect six million traffic flows (attack and benign)

from a 5G testbed based on our dataset and use that as a
source domain in TL settings. The network has two slices
in our testbed and the traffic flows are collected from both
slices.

• We evaluate different deep learning algorithms as classi-
fiers to detect attacks. For this purpose, we create the base
model according to our dataset and apply a Deep Transfer
Learning (DTL) approach for each algorithm on the target
dataset. We show that the TL approach can enhance the
performance of deep learning models in our experiments.

The rest of this paper is organized as follows. Section II
discusses the related work on TL-based intrusion detection
solutions. Section III provides the background used in our
paper. Section IV introduces the proposed TL-based intrusion
detection approach. Section V describes the usage of the
approach and discusses the performance evaluation results.
Section VI concludes the paper.

II. RELATED WORK

In this section, we discuss some previous works related to
TL from the literature. As TL is a well-studied area of deep
learning in other domains such as Computer Vision and Natural
Language Processing, there are a plethora of studies in the
literature. However, the application of TL in a 5G network

1https://gitlab.com/behnam1394/dtl-ids-5g-dataset-2023



for intrusion detection is not well studied. Hence, this paper
studies the application of TL in the context of IDS in a 5G
network.

The paper [4] proposes a unique defense method against
evasion attacks including Fast Gradient Sign Method, Projected
Gradient Descent, Carlini & Wagner, and DeepFool on network-
based IDS. In order to improve communication between IDS
and adversarial detectors, a TL approach was employed. To
test defense’s effectiveness against unseen evasion techniques,
simulations of zero-day attack scenarios were run. The results
indicate how this fusion strategy improves detection in a parallel
IDS architecture, highlighting the effectiveness of the presented
defense in comparison to other strategies.

The study [5] applies TL to address the dynamic network
traffic and changing attack landscape in the Internet of Vehicles
(IoV). Based on the accessibility of labeled data from the IoV
cloud, two model updating strategies are suggested. To ensure
reliable model updating, the first method uses cloud-assisted
updates with less labeled data. When cloud-provided labels are
not available, the second option, referred to as local updates,
uses pseudo-labeled data instead. The effectiveness of these
strategies has been tested using wireless network intrusion
detection data, with results showing at least a 23% improvement
in accuracy over more conventional techniques.

The paper [6] introduces the IDS-INT technique, which
uses imbalanced network traffic to identify various attack
types. IDS-INT analyzes imbalanced data to find feature
correlations and network representations using TL. With the
use of contextual anchors for precise feature mapping, data on
network interactions is gathered to describe attacks thoroughly.
The SMOTE approach improves minority attack comprehension
while balancing network traffic. While a CNN-LSTM model
detects attack types by learning deep features, a CNN model
extracts deep features from balanced network data. IDS-INT
outperforms baseline approaches in performance evaluation
using well-known datasets, obtaining 99% precision, 100%
recall, 99% F1-score, and 99.21% accuracy.

The efficacy of TL for detecting zero-day attacks in IoT
networks with limited and imbalanced datasets is examined
in [7]. This study uses the BoT-IoT dataset as the source
domain for knowledge acquisition before applying it to the
UNSW-NB15 dataset as the target domain. The development
of a unique IDS that combines knowledge transfer and
model improvement shows significant detection accuracy for
both known and new cyberattack families. By applying the
framework to a different dataset after training on one, its
efficacy is confirmed. The results show that the proposed
method provides great accuracy and very low false positive
rates.

The paper [8] proposes a solution for traffic classification
in 5G IoT networks, addressing challenges associated with
limited datasets and computing resources. The method uses
DTL, utilizing weight initialization and neural network fine-
tuning to facilitate knowledge transfer from a source domain to
a target domain. The results show that, when using only 10%
of the USTC labeled dataset, the accuracy for LeNet-5, BiT,

and EfficientNet-B0 models surpasses 95.47%, 96.22%, and
96.40%, respectively. These accuracies are closely matched
to the results achieved with the full training data, which are
98.65%, 99.41%, and 98.68%, respectively.

In addition to the significant dataset and DTL approach,
our proposed method uniquely studies the performance im-
provement of deep learning algorithms within a multi-slice
5G network, providing insights into the adaptability of these
models across various network scenarios.

III. BACKGROUND

A. Intrusion Detection

A breach in computer or network security is called an
intrusion, and it frequently includes malicious packets being
transmitted by attackers in an effort to steal or manipulate
sensitive data. In order to detect possible security breaches,
IDS collects and analyzes network traffic, security logs, and
audit data from key nodes. The data collecting modules for
gathering necessary data, the analysis modules that use machine
learning and deep learning approaches to predict attacks, and
the numerous detection methods with responses ranging from
warnings to corrective actions are all part of the common
framework of IDSs [1].

B. Classifier Algorithms

• BiLSTM: An enhanced variation of the Long Short-Term
Memory (LSTM) algorithm is the Bidirectional LSTM
(BiLSTM) [9]. In order to manage long-term dependencies
and avoid the vanishing gradient issue that affects basic
Recurrent Neural Networks (RNNs), LSTM implements
the idea of memory cells in one or more hidden layers.
In a standard LSTM, information only passes from the
past to the future, but in BiLSTM, the structure includes
both forward and backward LSTM layers, and the output
layer processes the inputs from both levels concurrently
[9].

• CNN-based Algorithms: CNN is a well-known deep
learning architecture that is incredibly effective at perform-
ing image processing tasks. Three different types of layers
are often found in a CNN: convolutional layers, pooling
layers, and fully-connected layers. The feature patterns of
data retrieved by convolution operations in a convolutional
layer. Local correlations can be used in pooling layers
to minimize data complexity without affecting crucial
information and prevent over-fitting. All features are
connected through fully connected layers, which also
provide the output [10]. CNNs are the foundation of the
two DTL solutions created in this paper.
Two advanced CNN-based algorithms including ResNet
and Inception are utilized to train base learners on net-
work traffic data in our experiments. Microsoft Research
introduced ResNet in 2015 [11]. The vanishing gradients
issue in deep networks, which can cause underfitting
during training, is addressed by this model. Using identity
shortcut connections, the pre-trained ResNet model is em-
ployed as a meaningful residual extractor from raw data in



place of features. Using other layer combinations, refined
versions of ResNet, such as ResNet-34, and ResNet-50,
have been developed. Furthermore, Google created the
deep CNN architecture known as GoogLeNet, commonly
referred to as Inception-v1, for the ImageNet large-scale
visual recognition challenge. It is frequently employed for
image classification problems and has produced cutting-
edge outcomes on a number of benchmarks [1].

C. Transfer Learning (TL)

Transfer learning is applying previously learned information,
such as features and weights, to a new related domain.
This includes transferring models developed on one dataset
to another dataset. Consider a domain D, represented as
D = {x, P (X)}, characterized by feature space x and marginal
probability P (X) for sample data point X . Label space Y and
an objective function n, denoted probabilistically as P (γ,X),
make up a task T . In this case, a domain D establishes a task
T as, T = {γ, P (Y |X)} = {γ, n}, where Y = {y1, ..., yn}
and yi ∈ γ. So, a source domain Ds, associated source task Ts,
target domain DT , and target task TT may all be used to define
transfer learning. To ensure transfer learning, we put together
the target conditional probability distribution P (YT |XT ), which
is integrated into DT with information from DS and TS (when
DS ̸= DT or TS ̸= TT ) [12].

DTL includes a variety of methods: Domain adaptation,
which modifies various feature distributions and feature spaces
between the source and target domains to improve the perfor-
mance of the target learner; Multiple tasks within a domain
are simultaneously learnt through a process known as “multi-
task learning”, regardless of the source or target designation;
One-shot learning, which uses a small number of examples
to categorize more instances, and Zero-shot learning, which
uses no class instances and is independent of labeled data but
requires additional training data to comprehend unobserved
information [1].

IV. DTL-IDS: TL-BASED IDS IN 5G NETWORKS

This paper presents an intrusion detection approach for DDoS
attacks in 5G networks that are built on DTL. The approach is
divided into two phases: the first is an initial training phase on
the source domain, and the second is a phase of applying TL to
the target domain. Both phases employ the same BiLSTM and
CNN-based algorithms as their base learning components. Our
approach involves keeping the convolutional base unchanged
and utilizing its output to serve as input for the classifier.

We perform the following steps in our experiments:

A. Preprocessing

As part of the preprocessing step, we assigned labels to
different types of DDoS attacks in both source and target
datasets. This process involves categorizing and tagging the
network traffic or instance in both datasets to show the
specific kind of DDoS attack each instance represents. In our
experiments, we used eight features in total that include ‘Flow
Duration’, ‘Fwd Pkt Len Std’, ‘ACK Flag Cnt’, ‘Protocol’, ‘Tot

Fwd Pkts’, ‘Tot Bwd Pkts’, ‘TotLen Fwd Pkts’, and ‘TotLen
Bwd Pkts’. These features are selected by following [2]. The
same set of features are used in both source and target datasets.
We train the models for two classes: attack and benign.

B. Base Model Construction

The BiLSTM and CNN-based models were utilized to build
the base models using our dataset as the source domain. The
model will perform better if the domains for which the TL
may be employed are more comparable since inadequate data
instances will be dealt with and training time will be cut down.

In this phase, we have different steps as follows:
• Train on the source dataset from scratch and save the

model as a base model. These models are used for TL
approach on the target dataset.

• We also train the same models from scratch on the target
dataset in order to compare with the TL approach to see
improvement between IDS-based TL and without TL.

C. Layers Freezing Method and Transfer Learning Phase

Layers freezing, in which we freeze the learned parameters
of some of the pre-trained model’s layers that have the generic
features and only update (Fine-Tune) the parameters of the
other layers that have the specific high-level features, is one of
the methods utilized to enhance model performance and shorten
training time in TL. Our experiments show the effectiveness
of freezing all layers in the base model. In this case, we
load the trained base model on the target dataset and freeze
all layers by setting “trainable = False”. During the training
process, freezing includes limiting the update of weights
inside a specified layer. The convolutional base undergoes
freezing in this situation, resulting in its weights remaining
fixed and untrainable throughout subsequent training phases.
This measure is taken to protect important knowledge during
later training phases. Our method includes the freezing of the
convolutional base within the trained base model, allowing its
outputs to act as inputs for the classifier in the pursuit of TL.
For this purpose, we removed the last three layers from the
base model to get only the convolutional base and added more
layers. After that, we applied TL, and created a new model on
top of output layers from the base model and then trained our
new model on the target dataset, and finally saved the model.

D. Datasets

• Our Dataset: In this paper, we used our dataset as a
source dataset that is based on network slicing (two slices
are considered) and it includes benign and attack traffic.
To generate benign traffic, we access 500 popular websites
using a Python script. These websites include Streaming
YouTube and live videos, Downloading, copying, remov-
ing, and pasting files between user equipment and server,
ICMP ping, and SSH. Furthermore, our dataset contains
about six million instances collected through different days.
In addition, this dataset has 84 network traffic features and
nine DDoS types of attacks: UDP flood, TCP syn, TCP
push, TCP ack, TCP fin, TCP rst, TCP urg, TCP xmas,



TABLE I: Number of instances in each dataset

Our Dataset 5G-NIDD Dataset

Attack Type Instances Attack Type Instances

UDP flood 381073 UDP Flood 194946
TCP YMas 524288 SYN Flood 7566
TCP XMas 524288 GoldenEye 72499
TCP Urg 470757 ICMP flood 2
TCP SYN 405774 Slowloris 8669
TCP SRT 524288 UDP scan 33
TCP Push 524288 SYN scan 75
TCP FIN 916050 TCP Connect 189
TCP ACK 499729 TorShammer 31686
Benign 967567 Benign 15212

and TCP ymas. The time considered for capturing each
kind of attack is two minutes. All attacks are done based
on slice 1 and slice 2 with using “d” and “i” parameters
in hping3 tool (i= 120 and d= 350). All packet captures
of real-time network traffic are converted to CSV files by
the CICFlowMeter traffic generator.

• 5G-NIDD Dataset: This dataset is published by the
authors of [3]. The data are collected from a fully
functional 5G test network. Two types of attack (DoS and
port scans) are performed during data collection. The DoS
attacks are ICMP flood, UDP flood, SYN flood, HTTP
flood, and Slowrate DoS. The authors perform three types
of scan attack during the data collection. These attacks are
SYN scan, TCP connect scan, and UDP scan. 5G-NIDD
contains both application layer and transport layer attacks
whereas, our dataset contains only transport layer attacks.
The types of attacks in 5G-NIDD are different than our
dataset, which justifies the choice of 5G-NIDD as the
target dataset in transfer learning settings.

Table I shows the number of benign and attack traffic
instances in both our dataset and the 5G-NIDD dataset. A
measure for calculating the disparity between two distributions
is the Maximum Mean Discrepancy (MMD) [13]. We compute
the MMD score, which contrasts the distribution of the source
and target datasets. The distributions are the same if the MMD
score is 0, and different if the MMD value is larger than 0.
We calculate the MMD score on the two selected datasets in
our experiments. The MMD score is 0.2605 which illustrates
how dissimilar the two distributions are in both datasets.

V. EVALUATION RESULTS

We carefully regulated many parameters in order to provide a
rigorous and consistent experimental foundation and guarantee
the comparability and reliability of our assessment results.
Using a consistent random number seed across both datasets
is an important step in this process. This careful process
reduced the entry of needless randomness and variances in our
evaluation results. Additionally, we strategically kept the same
number of samples in each dataset’s training and test sets to
avoid further randomness in our evaluation results.

The number of training and test samples from the source
and target datasets were kept in exactly the same propor-
tion. Additionally, the essential issue of dataset balance was
addressed by the design of our experimental setting. Given

the importance of balanced datasets in generating trustworthy
conclusions, we selected benign and attack traffic samples to
preserve equilibrium. This required that one million samples of
benign traffic and an equal number of samples of attack traffic
(including all kinds of DDoS attacks) be carefully chosen from
both classes. Notably, we conducted the experiments five times
and took the average. The method of repeating the experiments
multiple times allowed us to generate more comprehensive
results. By taking the average of the outcomes from these five
repetitions, we were able to arrive at a final set of results.
After that, we selected the best result of our dataset out of five
iterations in order to create the base model and then use it in
the TL approach.

We implemented all algorithms using Keras running as a
Python library on TensorFlow using Google Collaboratory
cloud servers and Compute Canada [14] and a laptop with
an 11th Generation Intel Core i7 processor and 16GB RAM.
Both datasets include 8 features alongside the label, donating
to the modeling process. With a binary classification task, the
number of classes stands at 2. For training and validation, a
test split of 0.2 (80% training data) and a validation split of 0.2
are used. The training process is run 200 epochs, augmented
with early stopping mechanisms. The optimizer of choice is
Adam, associated with a learning rate set at 1e-5, donating to
the model’s convergence and optimization.

In our experiments, an empirical evaluation was conducted to
assess the performance of BiLSTM and CNN-based algorithms
using both our dataset and the 5G-NIDD dataset. For this
purpose, we used the well-known metrics namely, Accuracy,
Recall, Precision, and F-1 score to evaluate the performance of
our proposed method. Table II shows the average performance
comparison in terms of the mentioned metrics for all algorithms.

Subsequently, the application of TL was investigated to
ascertain its impact on algorithm performance based on 5G-
NIDD dataset. Notably, three distinct performances in Figure 1
were obtained, each corresponding to the metrics’ evaluations
across the three different stages: our dataset, the 5G-NIDD
dataset, and the 5G-NIDD dataset after applying TL. Upon
careful investigation, results consistently showed that the
algorithmic performance on the 5G-NIDD dataset with the TL
approach yielded excellent results compared to the performance
on 5G-NIDD dataset without TL.

As shown in figure 1, it becomes evident that the TL-
based approach not only exhibits remarkable performance in
contrast to the 5G-NIDD dataset but also showcases superior
performance relative to our dataset. The outcomes highlight that
BiLSTM on our dataset with 98.71%, Resnet on the 5G-NIDD
dataset with 88.68%, and ResNet on the TL-based approach
with 93.36% stand out with the highest levels of performance
in terms of accuracy compared to others. However, Inception
on the TL-based approach has the most improvement among
all algorithms in terms of F1-score.

VI. CONCLUSION

We study the effect of deep transfer learning on network
intrusion detection in this paper. DTL is a successful strat-



TABLE II: Performance Comparison

Model Our Dataset 5G-NIDD Dataset 5G-NIDD Dataset with TL

Acc (%) Rec (%) Pre (%) F1 (%) Acc (%) Rec (%) Pre (%) F1 (%) Acc (%) Rec (%) Pre (%) F1 (%)

BiLSTM 98.71 98.18 99.25 98.71 84.47 80.86 91.15 85.60 90.60 89.72 92.00 90.85
CNN 98.08 96.72 99.53 98.10 86.74 86.62 87.30 86.96 88.86 90.11 87.68 88.86
ResNet 91.04 88.67 94.81 93.15 88.68 93.47 83.53 88.02 93.36 94.56 92.18 93.34
Inception 91.05 91.63 90.66 91.06 84.14 88.53 81.35 82.82 91.82 89.25 95.35 92.19

Fig. 1: Model Average performance (%) based on our dataset, 5G-NIDD dataset and 5G-NIDD dataset with TL

egy that can help IDSs better detect attacks and intrusions
that conventional techniques can miss. Using BiLSTM and
CNN-based algorithms, the model trains the base model
by transferring the knowledge from our dataset to the 5G-
NIDD dataset. Our experiment shows that the transfer learning
approach can help the deep learning models achieve better
performance. This finding highlights the method’s flexibility
and resilience, demonstrating its efficiency in handling the
particular complexities of the 5G-NIDD dataset with transfer
learning and boosting its ability. This empirical investigation
clarifies how the algorithms behave in various situations,
advancing our understanding of how well they work in practical
situations.
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